The invention relates to an apparatus for forming, filling, and sealing flexible pouches. More particularly, the invention is directed to a pouch forming apparatus operable to simultaneously separate a plurality of pouches and transfer the plurality of pouches into a multi-pouch fill-seal machine.
Flexible pouches are used to package a variety of products and are often formed of a roll of continuous web of flexible film material, such as plastic, laminate, or foil. The flexible pouches are typically sealed along the side edges prior to the separation of the flexible film into individual separate pouches. In order to increase the production of finished pouches it is often advantageous to increase the number of pouches undergoing an operation (filling or sealing) at one time. However, the increase in number of pouches operated on often results in a decrease in quality due to the improper placement of each individual pouch into the fill-seal portion of the machine. Also, during the separation of the pouches it is difficult to extend the pouch material the required distance to cut the several pouches. This problem is particularly troublesome when dealing with a thin gauge pouch material.
As the flexible film is preprinted with information, such as mages and text describing the product to be contained therein, any inaccuracies in the separation of the film into the individual pouches results in a defective pouch. As such, it is important that the flexible film be accurately positioned with respect to the side seals that delineate the film into separate pouches.
Accordingly, there exists a need for an apparatus capable of accurately and simultaneously separating a continuous film having a plurality of side seals into a plurality of individual pouches, and an apparatus for simultaneously transferring the plurality of separated pouches into a multi-pouch fill seal machine.
The present invention provides an apparatus for forming a flexible pouch from a continuous web of flexible film, which overcomes the above-mentioned disadvantages of the previously known machines by simultaneously separating the film into a plurality pouches and transferring the plurality of pouches into a multi-pouch fill seal machine.
In brief, the apparatus is provided for simultaneously separating a portion of a continuous web of film into a plurality of pouches. The continuous web of film having a leading edge and a plurality of spaced apart side seals. The apparatus includes a base, a plurality of blade pairs, and a film guide device. The plurality of blade pairs are mounted to the base and spaced apart a distance corresponding to the side seals in the film. The plurality of blade pairs are moveable between an open position and a closed position. The film guide device includes a guide member that releasable attaches to a portion of the film adjacent the leading edge. The guide members suspends the film between the plurality of blade pairs in the open position so as to align the plurality of seals on the film with the plurality of spaced apart blade pairs to accurate separate the film into a plurality of pouches upon movement of the plurality of blade pairs move from the open position to the closed position.
The plurality of spaced apart blade pairs includes a plurality of first blade portions and a plurality of second blade portions. Each of the plurality of second blade portions corresponds to one of the plurality of first blade portions. The plurality of first blade portions are fixed to the base member and the plurality of second blade portions are pivotally mounted to the base member along a first pivot axis. The apparatus further includes a reciprocating mechanism that reciprocatingly pivots the plurality of second blade portions along the first pivot axis between the open position and the closed position.
The reciprocating mechanism includes a pair rocker arms, a connection member, and a reciprocating unit. The pair of rocker arms are pivotally attached to the base member along a second pivot axis. The connection member extending between the pair of rocker arms and connected to each of the plurality of second blade portions. The reciprocating unit reciprocatingly pivots the pair of rocker arms about the second pivot axis to drive the plurality of second blade portions between the open position and the closed position.
In addition, a transfer apparatus is provided to transfer the plurality of pouches simultaneously separated by the separating apparatus to a multi-pouch fill seal machine. The pouches include an upper edge, an opposite lower edge, and a pair of side edges extending between the upper edge and the bottom edge. The transfer apparatus is positioned between the separating apparatus and the multi-pouch fill seal machine.
The transfer apparatus includes a frame, an elongated member, and a plurality of clips. The frame is positioned between the separating apparatus and the fill-seal machine. The elongated member is slidably attached to the frame along a first direction between a first position adjacent the separating apparatus and a second position adjacent the fill-seal machine. The plurality of clips grip the upper edge of the pouches. Each of the plurality of clips are slidably attached to the elongated member in a second direction which is perpendicular to the first direction. The plurality of clips grip the upper edge of the pouches as the separation apparatus separates the pouches and transfers the pouches to the fill-seal machine. The plurality of clips are spaced apart a first distance when the elongated member is in the first position and the plurality of clips move in the second direction as the elongated member moves from the first position to the second position such that the plurality of clips are spaced apart a second distance when the elongated member is in the second position. The second distance being greater than the first distance.
A better understanding of the present invention will be had upon reference to the following detailed description when read in conjunction with the accompanying drawings wherein like reference characters refer to the like parts throughout the several views and in which:
The present invention has utility as an apparatus for simultaneously separating a plurality of pouches from a continuous web of flexible film, which accurately aligns the plurality side seals form in the film with a plurality of blade pairs. By providing a film guide device that suspends the film between the plurality of blade pairs, the film can be accurately positioned for the simultaneous separation of a plurality of pouches.
With reference to
The outer layer of the film is usually preprinted with information including images and text displaying the product to be contained therein. Alternatively, at least a portion of the material may be not printed, i.e. translucent, in order to view the contents contained therein. The clear portion could also be in a gusset or insert. The film is optionally formed of more than one type of material.
As best seen in
As best seen in
The pouch forming section 110 forms the flexible pouches out of a roll 104 of flexible film material 102. The film 102 is unrolled from the roll 102 and feed into a film driver 106 of the forming section 110. The film driver 106 includes a plurality of horizontally aligned rollers which draw up the flexible film 102 into the apparatus 100. At the exit of the driver 106, the flexible film 102 is folded from a single ply into a dual ply forming a front and rear panel of the pouch.
After or during the folding of the flexible film 102, various features are optionally added at a feature addition section 108. The optionally added features include but are not limited to a reclosable closure such as a zipper fastener, caps, or any other features known to those skilled in the art.
The flexible film 102 proceeds through the feature addition section 108 and into a sealing section 120. At the sealing section 120, a plurality of sealing bars 122 are individually or simultaneously controlled by a motor such as a servo motor. The sealing bars 122 form side seals 22 in the film 102. The sealing bars 122 use heat, pressure, ultrasonics, or any combination thereof in order to form the seal 22. The sealing bars 122 optionally form bottom seals along the lower edge 14 of the pouch 10 or form a gusset seal to seal an inserted gusset to the pouch 10.
The side seals 22 delineate the continuous web of film 102 into a continuous web of pouches each having an area sealed off from the adjacent pouches 10. The sealing bars 122 form the side seals 22 across the height of the film 102 so as to separate the film 102 into individual pouch sections. Although the folded flexible film 104 includes individually defined pouch sections, the pouch sections are still interconnected the film 102 the side seals 22 needs to be cut along the side seals 22 to separate the film 102 into individual pouches 10 and to form the side edges 16 of the pouches 10.
The film 102, including the individually pouch sections defined by the seals 22 from the sealing bars 122, exits the sealing station 122 and advances to the separation and transfer section 130, specifically, the separating apparatus 200 best seen in
In order to extend the film 102 across the length of the separating apparatus 200 while providing sufficient support and height placement to avoid the film 102 from drooping or otherwise falling out of alignment, the separating apparatus 200 includes a film guide device 207 that supports the film 103 as the leading edge 103 extends across a cutting device 207. The film guide device 206 includes a plurality of guide members 208 connected to a belt 210. The belt 210 is rotatable about an outer peripheral of a track support 212. Each of the guide members 208 includes a plurality of holes 214 that operate as a suction cup or device having a vacuum, such that the guide members 208 have a suction effect upon contact with the film 102 so as to suspend and pull the film 102.
The film cutting section 207 includes a base 216 upon which a plurality of blade pairs 218 are mounted. The pairs of blade pairs 218 are moveable between an open position as best seen in
The film support device 205 further includes at secondary film guide 220 positioned on a side opposite the side from the film driver 208. The secondary film guide 220 includes at least one aperture 222 that is connected to the vacuum device such that the secondary film guide 220 functions as a suction device similarly to the film guide member 208. The secondary film guide 220 is attached to moveable shaft 224 connected to the track support 212, and is moveable between a retraced position as best seen in
As such, the film guide device 206 provides sufficient stabilization and support in both the length and height direction of the film 102 during separation. In the alternative, the film guide member 208 and the secondary film guide 220 utilizes clamps or pinches rather than the negative pressure in the form of a suction cup or vacuum to steady the film 102 is feed across the separating apparatus 200.
The plurality of blade pairs 218 each includes a first blade portion 226 and a corresponding second blade portion 228. The first blade portions 226 and the second blade portions 228 operated to slice, shear, or otherwise cut the seals 22 formed in the film 102 to separate continuous web of pouch sections into individual pouches 10. The first blade portions 226 are positioned on one side of the film 102 and the second blade portions 228 are positioned on the other side of the film 102. The first blade portions 226 are secured to the base 216 and the second blade portions 228 are pivotally mounted to the base 216 about a first pivot axis P1 such that the plurality of blade pairs 218 are moveable between an open position and a closed position upon pivoting of the second blade portions 228 about the pivot axis P1.
The cutting section 207 includes a reciprocating mechanism 230 that reciprocatingly moves the blade pairs 218 between the open position and the closed position. The reciprocating mechanism 230 includes a pair of rocker arms 232 positioned on either side of the blade pairs 218. The rocker arms 232 are attached to a reciprocating unit 234 that reciprocatingly pivots the rocker arms 232 about a second pivot axis P2 which is parallel and spaced apart from the first pivot axis P1. The reciprocating unit 234 is optionally an electronically controlled servo motor or a reciprocating mechanical mechanism.
A connection rod 236 acting as a connection member extends between the pair of rocker arms 232. The connection rod 236 being attached to each of the second blade portions 228 to transmit the reciprocating pivoting of the rocker arms 232 about pivot axis P2 to reciprocatingly pivot second blade portions 228 about the second pivot axis P2 to reciprocatingly move the blade pairs 218 between the open position and the closed position.
As best seen in
The transfer apparatus 300 includes a frame member 302 that is positioned between the separating apparatus 200 and the gripper mechanism 410 of the fill seal machine 400. The frame is suspended above the gripper mechanism 410. An elongated member 304 is slidably attached to the frame 302 for reciprocating movement along a first direction B1. The elongated member 304 is moveable between a first or pick up position as best seen in
The transfer apparatus 300 includes a plurality of holders 306 each having a clip 308 attached to a bottom end for gripping the upper edge 12 of the pouch 10. Each of the holders 306 are slidingly attached to the elongated member 304 for movement along a second direction B2 which is perpendicular to the first direction B1. As discussed in greater detail below, the clips 308 are operable to attach to the film 102 between the seals 22 i.e. the upper edges 12 of the pouches 10, prior to the separation of the film 102. As best seen in
The clips 308 are optionally electronically controlled to open upon the elongated member 304 moving into and out of the first position and second position so as to grip the pouches 10 from the separating apparatus 200 in the first position and deposit the pouches 10 into the gripping mechanism 410 in the second position. Alternatively, the clips 308 are actuated by cams positioned on the frame 302 adjacent the first position and the second position.
The holders 306 include a slide member 310 positioned on an upper side opposite the clips 308. The slide members 310 are configured to engage within guide slots 312 formed in guide plates 314 attached to the frame 302. The guide slots 312 allow for the movement of the holders 306 in the direction of arrow B2 as the elongated member 304 moves in the direction of arrow B1. Specifically, the guide slots 312 allow for the distance between each of the holders 306 to be increased from a first distance when the elongated member 304 is in the first position and a second distance when the elongated member 304 is in the second position as described in greater detail below.
With reference to
The gripper mechanism 410 includes a plurality of gripper arms 414 positioned at each side of the pouch 10 to grip the side edges 16 of the pouches 10 a predetermined length L1 from the upper edge 12. The length L1 is of sufficient length so that the gripper arms 414 are spaced apart from the clips 308. The gripper arms 414 grip the side edges 16 of the pouches the predetermined length L1 from the upper edge 12 to avoid interfering with the various operations the pouches 10 undergo in the fill seal machine 400 and to avoid contacting the clips 308 as the pouches 10 are transferred from the separating apparatus 200 to the loading station of the fill seal machine 400. The clips 308 attach to the upper edge 12 of the pouches 10 and extend below the upper edge 14 a second predetermined length which is less than the predetermined length L1.
Each gripper arm 414 includes an inner arm 416 and an outer arm 418. The outer arms 418 are moveable between a raised position as best seen in
The gripper mechanism 410 further includes a plurality of limit arms 424 acting as pouch stabilization devices that prevent the pouches 10 from swaying. The limit arms 424 are offset so that the limit arm 424 of each adjacent pair of limit arms 424 are positioned either above or below the next adjacent pair of limit arms 424. By offsetting the limit arms 424 the gripper mechanism 410 can be made more compact and additional pouches 10 can be gripped. The limit arms 424 are positioned adjacent the lower edge 14 of the pouch and below the gripper arms 414. The limit arms 424 do not grip the side edges 16 of the pouches 10 having generally L shaped arms that receive the side edges 16 within a corner portions such that the limit arms 424 are substantially spaced apart from the front 18 and rear 20 panels. The shape of the limit arms 424 also provides for the limits arms 424 to receive pouches 10 having various widths. Rather, the limit arms 424 merely limit the ability of the pouches to move or sway due to the forces acting on the pouch 10 during fill and sealing operations. Specifically, in a rotary style fill seal machine 400, as illustrated in
It is appreciate, of course, that the illustrated gripper mechanism 420 includes depicts four pair of gripper arms 414 and limit arms 424 to grip four pouches, the invention is not limited to such a configuration, and optionally includes dual, triple, or quintuple simultaneous pouch separating (as seen in
In order to facilitate a better understanding of the invention, the operation of simultaneously separating a plurality of pouches and transferring the plurality of pouches to a multi-pouch fill seal machine will now be discussed. With reference to
The blade pairs 218 are in the open position with the first blade portions 226 and the second blade portions 228 being spaced apart. As the guide member 208 rotates along one side of the track support 212, the film 102 is pulled the between the spaced apart first blade portions 226 and the second blade portion 228. As the guide member 208 rotates around the distal end of the track support 212, the secondary film guide 220 moves from the retracted position as seen in
As the leading edge 103 of the film 102 reaches the secondary film guide 220, the elongated member 304 moves from the second position adjacent the gripper mechanism 410 to the first position adjacent the separating apparatus 200. In the first position the clips 308 grip the upper edge 12 of the film 102 between the side seals 22, as best seen in
Once the blade pairs 218 cut the film 102 into the plurality of pouches 10, the elongated member 304 moves from the first position as best seen in
The distance between the holders 306 is varied between D1 in the first position and D2 in the second position as the pouches 10, when cut by the movement of the blade pairs 218, are in abutting contact as the side seals 22 were cut to form the side edges 16. However, the gripper arms 414 of the gripper mechanism 410 are spaced apart and in order to accurately position the pouches 10 within the gripper arms 414 as seen in
As the elongated member 304 moves into the second position the pouches 10 are positioned to be gripped by the gripper arms 414. Specifically, once the clips 308 are in the second position, the cams 420 are actuated to move the outer arms 418 from the raised position to the closed position to grip the pouches a predetermined length L1 from the upper edge of the pouch 10. In addition, the limit arms 424 are moved from the open position to the closed position to limit the swinging of the pouches 10. Once the pouches 10 have been gripped by the gripper arms 414 the elongated member 304 moves from the second position back towards the first position to transfer the next set of pouches separated by the separating apparatus 200.
As the blade pairs 218 move from the closed position to the open position due to the reciprocating pivoting of the rocker arms 234 due to the movement of the reciprocating unit 234, the secondary film guide 220 is moved from the extended position to the retracted position. The guide members 208 rotate around the support track 212 as the feed device 202 feeds the film 102 towards the separating apparatus 200, thereby repeating the cycle of feeding the film 102, suspending and pulling the leading edge 103 of the film 102 across the cutting device 207, aligning the seals 22 with the blade pairs 218, moving the elongated member 304 from the second position to the first position, gripping the upper edge 12 of the pouches with the clips 308, separating the film 102 into individual pouches 10 by movement of the blade pairs 218 from the open position to the closed position, and transferring the separated pouches 10 into the gripper mechanism 410.
It will be appreciated, of course, that fill seal machine 400 is optionally either a rotary or linear fill seal machine. It is appreciated, of course, that many modifications and variations of the present invention are possible in light of the above teachings and may be practiced other than as specifically described.
This application claims priority of U.S. Provisional Patent Application Ser. No. 61/485,529 filed May 12, 2011, which is incorporated herein by reference in the entirety.
Number | Date | Country | |
---|---|---|---|
61485529 | May 2011 | US |