The present invention generally relates to apparatus, methods and articles of manufacture for automatically terminating magnet-wire. More particularly, this invention relates to apparatus, methods and articles of manufacture for automatically terminating magnet-wire in magnet-wire assemblies.
Magnet-wire assemblies, used in various electrical applications, such as motors, solenoids and transformers, are comprised of one or more wire assemblies and one or more terminals. The wire assemblies, which may be coil, bobbin or field assemblies, are usually created through winding wire in some desired fashion about a core. The terminals, which may be any of a number of configurations, provide means for connecting the ends of the wire assembly to other components in the electrical application.
Terminals may be attached to the wire assembly using a number of methods, in a process generally known as a “termination process.” The termination process might be manual or automated (with the latter category including semiautomated processes.) Whether manual or automated, a termination process typically begins with a wire assembly comprised of a core and wire winding. On the core, and/or other areas on the wire assembly, a terminal attachment area or areas is provided, for affixing the terminal or terminals. For example, a terminal attachment area is often a cavity disposed on a side of the core with the ends of the wire winding extending through the bottom of the core.
If a terminal or terminals is installed within a terminal attachment area and so through the wire end extending through the cavity, an electrical connection is made between the terminal and wire winding. Thus, when the wire assembly is installed in an application, appropriate connections are made to the terminals and the assembly may be energized as desired.
Both wire assemblies and terminals may come in a number of specialized configurations, and so terminal installation may become quite complex. One type of machine that is commonly used in the automated termination process provides a mounting platform, known as a “fixture,” for holding wire assemblies while a terminal is installed on the assembly. Each fixture is customized for holding a desired wire assembly configuration, and differently customized fixtures may be used in the same machine.
In these machines, an operator inserts a wire assembly into a fixture in the machine to begin the termination process. The operator then maneuvers the fixture into position for the termination operation. The machine inserts the desired terminal or terminals into the appropriate area or areas on the wire assembly, which, as noted above, is usually a cavity area or areas. The operator then withdraws the fixture from its position, removes the now-terminated wire assembly from the fixture, and inserts a new to-be-terminated wire assembly in the fixture, beginning a new termination process cycle.
The termination process in these machines is slowed by the operator's need to insert each assembly into the fixture, maneuver the fixture with assembly into an appropriate position for the termination operation, withdraw the terminated assembly and fixture from the termination operation position and then withdraw the terminated assembly. Of course, if a fixture needs changing, such as when a different assembly configuration is to be terminated, the operator needs to change the fixture as well, thus adding to downtime.
Some attempts have been made to improve assembly rates of prior art automated termination machines. For example, prior art machines may allow an operator to unload a fixture with a terminated assembly and load a new to-be-terminated assembly while yet another assembly is processing on the machine. Even with such a machine, each assembly still needs to be loaded individually, and so the overall process is still limited by the need for operator intervention for each assembly.
Therefore, it is an object of the present invention to provide apparatus, methods and articles of manufacture for automatically terminating wire assemblies.
It is a further object of the present invention to provide apparatus, methods and articles of manufacture for automatically terminating wire assemblies through use of fixtures that provide for multiple assembly loading and unloading.
It is a further object of the present invention to provide apparatus, methods and articles of manufacture for automatically terminating wire assemblies through use of fixtures that provide for multiple assembly loading and unloading, including automatic fixture ejection.
The summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
The present invention comprises apparatus, methods and articles of manufacture for automatically terminating magnet-wire in magnet-wire assemblies. In the preferred embodiments, a termination machine is provided. A pallet is provided for use in the machine. The pallet has multiple chambers for holding assemblies to be terminated. The pallet is removably mounted to a fixture in the machine. The fixture, in turn, is mounted to a rotary actuator, which in turn is mounted upon a linear actuator for movement to and from an insertion head, where the terminals are inserted in the assemblies and so the assemblies are terminated.
A termination process according to the preferred embodiments begins with the pallet, with to-be-terminated assemblies, being loaded upon the fixture by an operator. The fixture is positioned in a loading/unloading area in the termination machine. The fixture with pallet is then moved along the linear actuator to the termination area. In the termination area the terminals are inserted into the assemblies by the insertion head. The rotary actuator may spin or otherwise rotate the pallet as well in order to accommodate terminal insertion across a number of assemblies.
After the assemblies have been terminated, a two stage dislodging process begins. In the first stage, the now-terminated assemblies are loosened from the pallet. In the second stage the pallet is unseated from the fixture. The fixture with pallet is moved back along the linear actuator to the loading/unloading area, and the pallet is removed from the fixture by the operator. A new pallet with to-be-terminated assemblies may then be loaded upon the fixture and a new termination process can then begin.
Additional objects, advantages and novel features of the invention will be set forth, in part, in the description and figures which follow, and other additional objects will become apparent to those skilled in the art on examination of the following, or may be learned by practice of the invention.
Reference is now made to the accompanying Figures for the purpose of describing, in detail, the preferred embodiments of the present invention. The Figures and accompanying detailed description are provided as examples and are not intended to limit the scope of the claims appended hereto.
The fixture and pallet will then be moved to termination area b along linear actuator 35 (see
It should be noted that in this embodiment and all preferred embodiments, a pallet comprises a variable number of chambers for receiving assemblies to be processed. For example, in this embodiment, as will be further described below, four chambers are available on the pallet to receive assemblies. Other embodiments may have less than four or more than four. For example, a pallet may only hold one very large assembly. Moreover, in operation, not all available chambers need to be filled with assemblies during any particular termination process.
It should also be noted that the chambers of any particular pallet may be customized for the assemblies to be terminated. So for example, customized pallet embodiments may be configured for retaining various types of assemblies as desired.
Returning now to
The fixture moves from loading/unloading area a to termination area b and back on linear screw actuator 35. In the especially preferred embodiment, a linear screw actuator from Tol-O-Matic, Inc. is used, Part No. TBD-M3S-SNO 1 SPL. A stepper motor (not shown) and driver drives the screw, with a control system in place to control the stepper motor, which in the especially preferred embodiment is a motor and driver from Pacific Scientific appropriate to drive the actuator. The control system is as known in the art. In other embodiments, other methods may be used to control the screw, such as for example, a servomotor, which may be desired for greater speed and/or precision. Additionally, other linear movement means as known in the art may be used in yet other embodiments.
The especially preferred embodiments use a rotary actuator from Robohand, Inc., Model RR-36M-180-M, although other means to provide rotary motion to the fixture may be used in other embodiments. Of course, only partial rotary motion, or no rotary motion, may be desired. Additionally, the rotary actuator and fixture may be provided as one unit in various other embodiments. Additionally, the especially preferred embodiments use an MPT-5 insertion module from Tyco Electronics Corporation as an insertion head. By use of the MPT-5, assemblies to be terminated can have cavities in either a linear pattern, axial pattern or a combination of both. Of course, other embodiments may use other termination heads as known in the art.
It should be noted that in other embodiments, a first area may comprise separate loading and unloading areas as desired. Additionally, a second area may comprise a termination area, rotation area and/or dislodging area, or any combination thereof as desired.
Before turning to a further description of the terminal installation process of the preferred embodiments, it might be helpful to review the pallet, fixture, and rotary actuator of the preferred embodiment.
Generally, assemblies are loaded into the pallet from the top of the pallet, and pushed downward, as there is some frictional resistance from the pallet rails, until the bottom edge or edges of the assembly (depending upon assembly shape) encounters the top edge of assembly ejector plate 42, as is described in further detail below.
Pallet 20 comprises first and second pallet rails 40 and 41, assembly ejector plate 42, and pallet base assembly 43. The pallet rails are fixed by pallet screws, as for example, screw 44 in ridges of pallet base assembly 43. Pallet retaining plate 47 is fixed by screws 49 to the pallet rails. Torsion springs 50 and 51 are fixed to pallet retaining plate 47 by screws 52. Dowel pin stops 53 are also fixed to pallet retaining plate 47.
Moving briefly to
Returning to
Fixture 21 also provides a recess r for pneumatic cylinder 45. Pneumatic cylinder 45, as will be described in further detail below, assists in dislodging the assemblies and pallet. Pins c and d on fixture 21 insert into recesses on pallet base assembly 43 and so locate the pallet when loaded upon fixture 21.
It should be noted that, in certain embodiments, it may be desired to utilize locating pins that are directional as well, that is, utilize locational pins that are uniquely shaped so as to provide appropriate guidance into uniquely shaped corresponding recesses on the pallet base assembly. Thus, in these embodiments, if the base assembly is attempted to be fitted in reverse, the studs would not engage with the opposite recess.
Fixture 21 is itself mounted on flange 28 of rotary actuator 25, through the use of screws not shown here. Flange 28 may rotate as a termination process proceeds (see, e.g.,
Ports 26 provide the connections for pneumatic cylinder 45. Additionally flow controls 27 and 29 are shown, for the rotary drivers within the actuator and for the pneumatic cylinder 45. Legs 30 retain actuator 25 on base 31 on linear actuator 35. Not shown are various feed lines for the pneumatics.
A rotary actuator, such as is used in the preferred embodiments, provides sufficient speed, accuracy and strength (to resist the downward force supplied by the termination head.) Other embodiments may use other mechanisms as known in the art to provide any desired rotation. Additionally, yet other embodiments may not use a rotary movement means at all, and have a pallet, and/or pallet-fixture combination, or other means as known in the art for holding a wire assembly installed upon a retention platform on a linear movement means.
As described above, with regard to this embodiment, once the assemblies are terminated, or otherwise as desired, the assemblies and pallet 20 are dislodged from the fixture 21 in a two stage process. (It should be noted that other embodiments may use a one stage process in dislodging a pallet and assembl(ies) from a fixture or other retention platform.) The first stage at least partially loosens the assemblies within the pallet, which eases subsequent removal of the assemblies from the pallet and subsequent reuse of the pallet. The second stage unseats the pallet from the ball detents of the fixture, where it may be removed as desired. In the especially preferred embodiments, this dislodging occurs in a dislodging area, away from the termination area but before the rotary actuator, fixture and pallet reach the loading/unloading area. The rotary actuator, fixture and pallet stop along the linear actuator, the dislodging process occurs, and then the rotary actuator, fixture and pallet proceed to the loading/unloading area where the unseated pallet with loosened assemblies is removed. In the especially preferred embodiments, the light curtain shuts down when the rotary actuator, fixture and pallet reach the loading/unloading area and so the operator can reach into the machine for pallet and assembly removal. (Otherwise of course, any breach of the light curtain by the operator would shut the machine down.) As was described above, in yet other embodiments, a second area may be expansive enough to include a dislodging area.
Turning to
Torsion springs 50 and 51 and 60 and 61 are shown on either side of pallet 20, behind pallet retaining plates 47 and 67 respectively. Dowel stop pins 53 and 63 are also shown. Pneumatic cylinder 45 is at rest.
Turning now to
The pallet is still sufficiently retained within the fixture so as to be able to travel back along the linear actuator to the loading/unloading area. Once it arrives, the light curtain shuts down and the operator can then reach inside the machine, remove the pallet and remove the assemblies from the pallet.
Once the pallet with terminated assemblies has been removed, the operator may load a new pallet with assemblies to be terminated. These are usually loaded into a new pallet while a pallet is being terminated. The operator places the pallet with the assemblies to be terminated on the fixture and pins c and d (shown in
The above description and the views and material depicted by the figures are for purposes of illustration only and are not intended to be, and should not be construed as, limitations on the invention.
Moreover, certain modifications or alternatives may suggest themselves to those skilled in the art upon reading of this specification, all of which are intended to be within the spirit and scope of the present invention as defined in the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
4375229 | Mikami et al. | Mar 1983 | A |
5224251 | Cameron et al. | Jul 1993 | A |
5655293 | Celoudoux et al. | Aug 1997 | A |
5933932 | Watanabe et al. | Aug 1999 | A |
6427322 | DeCecca et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040177500 A1 | Sep 2004 | US |