This application claims the benefit of priority to international patent application number PCT/IB2012/052053, having a filing date of Apr. 24, 2012, which claims the benefit of priority to German patent application number DE202011050146.9, having a filing date of May 16, 2011, the complete disclosures of which are hereby incorporated by reference for all purposes.
The invention relates to an apparatus for the milling cutting of rock, minerals or other, in particular hard, materials, comprising a tool drum mounted on a drum carrier rotatably about a drum axis, and comprising a plurality of tool carriers, which are arranged distributed over the periphery of the tool drum and carry cutting tools and which can be rotatingly driven and the shaft axes of which run transversely to the drum axis.
An apparatus of this type is known from WO 2008/025 555 A1. With this known apparatus, it is possible, with high stock removal rate and large removal surface, to mine rock or other hard materials economically, wherein the mill cutting or stock removal takes place radially outside the periphery of the tool drum. The known apparatus can advantageously be used to drive galleries or tunnels with the aid of part-face heading machines provided with an arm which is pivotable transversely to the main direction of advance and on the front end of which the tool drum is rotatably mounted. Such an apparatus can also be used, however, on mining machines for longwall-type extraction at the face.
In the known apparatus, it is also known to arrange the shaft axes of the tool carriers inclined by a few degrees in relation to the radial direction of the drum axis, whereby, when the apparatus is advanced in the axial direction of the tool drum, a good loosening result is achieved. It has been shown, however, that when the known apparatus is used on a machine extension arm which is pivoted from one side to the other and back, or else is moved back and forth by means of a mining machine at the face, no uniformly good mining result in both pivoting or motional directions is achieved, but rather the milling performance in one pivoting or motional direction of the machine extension arm or of the mining machine is better than in the opposite direction.
The object of the invention is to rectify this situation and to offer a solution for an apparatus for the milling cutting of rock or the like of the type stated in the introduction, with which, irrespective of the motional direction of the tool drum, an equally good milling performance of the cutting tools mounted on the tool carriers is achieved.
This object is achieved with the invention by two tool drums arranged rotatably mounted side by side in twin arrangement on the drum holder, wherein the shaft axes of the tool carriers of the first tool drum span a first conical surface about the drum axis and the shaft axes of the tool carriers of the second tool drum span a second conical surface about the drum axis, the two conical surfaces being open to opposite sides.
As a result of the twin arrangement comprising two side-by-side tool drums, in which the axes of the tool carriers of one drum are inclined relative to the radial direction in one direction and the axes of the tool carriers of the other drum are inclined in the opposite direction, tools which are or can be optimally geared to the material to be cut and with which the material can be milled away with the same, high efficiency both in the forward and in the return motion, are provided for both pivoting motion directions of the machine extension arm. Through suitable positioning of the machine extension arm, it is here possible that it is only ever the tools of the tool spindles of one of the two tool drums which are engaged with the material to be extracted, whilst the tools on the other drum run freely and are only brought back into engagement with the face upon a change of direction of the machine extension arm.
Preferably, the two conical surfaces are oriented in mirror image or symmetrical to each other and have at least approximately the same included angle. In a particularly preferred embodiment of the invention, the arrangement is made such that the shaft axes of the tool carriers of the two tool drums are oriented such that they are mutually inclined in O-arrangement.
The two tool drums can be mounted on the drum holder at an axial distance apart which corresponds at least to the drum width of a tool drum. Due to the distance between the two tool drums, it is already possible by slight adjustment of the machine extension arm, upon a change of direction thereof, to disengage the previously working tools of one drum from the rock and to bring the tools of the other drum into operative engagement with the rock in order to mill this away when the apparatus is subsequently moved back.
It has proved particularly advantageous if the rotational direction of the tool carriers of the first tool drum is counter to the rotational direction of the tool carriers of the second tool drum. As a result of the different rotational directions, a milling result of the cutting tools which is equally good in both motional directions of the apparatus is obtained.
It is possible to assign to each tool carrier a dedicated drive. It has proved particularly advantageous, however, if the tool carriers of the first and/or second tool drum have a common drive. The arrangement can be made, for example, such that the common drive comprises a crown gear arranged concentrically to the drum axis, and respectively a bevel gear, which meshes with this crown gear, for each tool carrier of the first and/or second tool drum. In this design, it is possible for the crown gear to be arranged in a rotationally secure manner on the drum axis, whilst the tool drum rotates around the axis, whereby the tool carriers are set in rotation by the same drive as the respective tool drum and a fixed speed ratio between the speed of the tool drum and the speed of the tool carriers is obtained.
In this configuration, each tool carrier can be connected to a drive shaft, which at its other end supports the bevel gear. For a particularly stable configuration, the drive shaft can be in the form of a rigid shaft. It is also possible, however, to use an articulated shaft, preferably a Cardan shaft, which is of advantage, in particular, when the setting angle at which the tool carriers are inclined is intended to be variable.
The drive shafts are expediently accommodated in a protected manner inside the tool drum, whereby a premature wearing of gearwheels and bearings can be avoided. As already indicated, the tool drum and the tool carriers can be drivable by a common drive, wherein a design in which the crown gear of the bevel gear steps for the tool carriers is arranged on a common drive shaft with the sun wheel of a planetary gearing, via which the associated tool drum is driven, has proved particularly advantageous. In a particularly compact construction, this design allows maximum possible flexibility in the fixing of the speed ratios between the speed of the tool carriers and the speed of the tool drum(s) supporting these. It is also possible, however, that, though the tool carriers have a common drive, this is independent from a drive for the associated tool drum, whereby the rotational velocity of the tool carriers can be made particularly advantageously to be adjustable independently from the rotational velocity of the tool drum.
The included angles of the conical surfaces spanned by the shaft axes of the tool carriers can preferably be between ±3° and ±9°, measured relative to the radial direction of the tool drums.
The apparatus according to the invention can be used on a machine for longwall-type (face) extraction, or else can be used, particularly advantageously, also with part-face heading machines, for instance in order to drive drifts in underground mining or tunnelling.
Further features and advantages of the invention emerge from the following description and the drawing, in which preferred embodiments of the invention are explained in greater detail on the basis of examples, wherein:
The mining machine which in
On the drum axle 16 received in a rotationally secure manner in the two fork ends 14, 15, two tool drums 17A, B are rotatably mounted side by side in twin arrangement, to be precise at such a distance apart that between them is accommodated a somewhat schematically represented drum drive 18, with which the tool drums 17 can be set in rotation in a manner which will be described in greater detail below.
Each of the two tool drums 17 is provided with a plurality of tool carriers 19, which are arranged distributed over the periphery and carry cutting tools 20 for milling away the rock or the like. The tool carriers can be rotatingly driven, wherein their shaft axes 21 run substantially transversely to the drum axle 16. The arrangement is here made such that the shaft axes 21 of the tool carriers 19 of the two tool drums 17 are oriented inclined in relation to the radial direction 22 of the respective tool drum at an angle of about 6° inwards, i.e. in the direction of the respectively other tool drum, so that the shaft axes of the tool carriers of the first and second tool drum 17A, B span first and second conical surfaces 23, 24, which are oriented in mirror image to each other and are open towards each other at respectively the same included angle α, i.e., in similar fashion as with a spring-loaded adjusted anti-friction mounting, assume an ‘O’-arrangement, which can be clearly seen in
The mirror-image twin arrangement of two tool drums provided on their periphery with tool carriers allows particular efficiency in the mining progress, since namely each of the two tool drums, the tool carriers of which rotate about shaft axes inclined in relation to the radial direction, can be optimally matched to the either right-directed or left-directed direction of advance of the drum holder 13. As can be clearly seen at 25 in
It can be seen that the tool carriers 19 in the tool drum are provided with a common drive, to which a crown gear 27 which is arranged concentrically to the drum axle 16 and is mounted fixedly on the drum axle 16 belongs. Each tool carrier 19 is connected to a drive shaft 28, which at its other, radially inner end supports a bevel gear 29 which meshes with the toothing on the crown gear 27. The entire common drive is accommodated inside the tool drum (not jointly represented in
The invention is not limited to the represented and described illustrative embodiments, but rather various modifications and additions are possible without departing from the scope of the invention. Thus it is possible, for instance, for the rotary drive of the tool carriers, to assign to each of these a separate drive, or a common drive for all tool carriers of a tool drum may be provided, which common drive, however, is decoupled from the rotary drive for the drum. Self-evidently, the apparatus according to the invention can be used not only on mining machines, but particularly advantageously also on part-face heading machines or the like, as are used in underground mining for the driving of drifts or in tunnelling.
Number | Date | Country | Kind |
---|---|---|---|
20 2011 050 146 | May 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2012/052053 | 4/24/2012 | WO | 00 | 11/21/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/156841 | 11/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2689117 | Lindberg | Sep 1954 | A |
2730344 | Cartlidge | Jan 1956 | A |
2976027 | Allimann | Mar 1961 | A |
3074702 | Allimann | Jan 1963 | A |
4098539 | Zitz et al. | Jul 1978 | A |
5924222 | Stoetzer | Jul 1999 | A |
6270163 | Mullet et al. | Aug 2001 | B1 |
6626500 | Cribb et al. | Sep 2003 | B1 |
7604301 | Lang | Oct 2009 | B1 |
20100001574 | Bechem | Jan 2010 | A1 |
Number | Date | Country |
---|---|---|
1185508 | Jun 1998 | CN |
101512101 | Aug 2009 | CN |
288 984 | May 1915 | DE |
WO 2008025555 | Mar 2008 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/IB2012/052053, dated Mar. 28, 2013, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140232170 A1 | Aug 2014 | US |