This invention relates to an apparatus for transporting a rotor such as, for example a propshaft. In particular, but not exclusively, the invention relates to an apparatus for transporting a rotor from a first location and loading the rotor into a balancing machine at a second location so that a balancing operation can be undertaken on the rotor. The invention also relates to a method of loading a rotor into such a balancing machine.
Propshafts, and more generally rotors, can be formed of a single rotor portion or multiple rotor portions linked together in end-to-end alignment. Rotors formed of multiple rotor portions may comprise two or three such portions, and less commonly may comprise four portions. The rotor portions are often connected to each other in an articulated fashion, and often adjacent rotor portions can “plunge” relative to each (e.g. they can move axially relative to each other) and the articulate joints can sometimes plunge.
Balancing is typically carried out on rotors to overcome or lessen the problem of ‘unbalance’—the uneven distribution of mass around the axis of rotation of the rotor. Unbalance is when the inertia axis of the rotor is offset from its central axis of rotation, which results from the mass of the rotor not being distributed uniformly about its central axis. Rotors suffering unbalance may generate a moment when rotating which leads to vibration.
It is known to balance a single piece rotor using two balance planes. Each balance plane is a plane disposed substantially perpendicular to the axis of the rotor. When balancing a multiple piece rotor, balancing is carried out in additional balance planes: a two piece rotor may be balanced in three planes, a three piece rotor may be balanced in four planes, and a four piece rotor may be balanced in five planes.
Correction for unbalance is typically carried out by welding balance weights to the rotor. Rotors are designed with zones where balance weights can be added corresponding to the number of balancing planes, which are usually near the end of each rotor portion.
The mechanism for correcting unbalance is typically automated, by which balance weights are attached (e.g. welded) to the rotor at a set position along the axis of the rotor for each plane, within specified balance zones. Once weights for all planes (where required) are applied to the rotor, the rotor unbalance is measured again using the same method. If the unbalance measured in any plane remains outside of a predefined tolerance threshold, a second step of correction is carried out within the corresponding balance zone.
To perform the balancing process a rotor is loaded into a balancing machine that includes an apparatus for driving the rotor. Each end of the rotor is located in a respective mounting apparatus that includes a chuck to secure that end of the rotor. The mounting apparatuses are driven by a drive mechanism so as to transfer torque to the rotor. The ends of the rotor typically include means for connecting the rotor to other components (in its end use), and those endmost connections are often articulated to the remaining component parts of the rotor. The endmost articulated connections often include an array of apertures (e.g. evenly spaced angularly around an axis of the rotor) through which fasteners pass when the rotor is installed in its end use. Due to the manufacturing process of such rotors, it is often the case that the apertures in the endmost articulated connection at one end of the rotor are not aligned with the apertures in the endmost connection at the opposite end of the rotor.
Currently the loading of the rotor into the balancing machine is a manual process. This means that when the rotor is loaded into a balancing machine it is necessary to align the apertures in the endmost connections with the respective mounting apparatus (which usually include one or more projections which are received in the apertures so as to provide a rotationally fast connection therebetween). This manual loading represents a significant time delay between balancing multiple rotors, which has significant cost implications for large-scale balancing, e.g. for the automotive industry.
The present invention has been devised to address this long felt want to be able to fully automate the balancing process for a rotor without an operator having to load a rotor into the balance machine.
According to a first aspect of the invention, we provide an apparatus for transporting a rotor from a first location to a second location, including:
According to a second aspect of the invention, we provide a method of loading a rotor into a balancing machine, the balancing machine including:
Further features of the first and second aspects of the invention as set out in dependent claims 2 to 20 appended hereto.
Embodiments of the first and second aspects of the invention will be described by way of example only with reference to the accompanying drawings, of which:
Referring firstly to
The apparatus 10 includes a movement device in the form of a robotic arm having a fixed structure 12 which is fixed to, for example, a ground surface. Connected to the part 12 are two articulated arms 14, 16 which can pivot about axes 13, 15. Pivotally connected to a remote end of the arm 16 is a main body 20 to which is connected the working components which grasp and hold the rotor 80. As an alternative an automated “pick and place” device with one or more axes could be used separate or integral/attached to a balance machine.
These figures also show a balancing machine 100, which is well known in the art. The balancing machine 100 includes first 110 and second 120 mounting apparatus or chucks to engage with and hold the remote ends of the rotor 80. The machine 100 also has a pair of intermediate supports 130, 140 for supporting the central rotor part of the rotor 80. The chucks 110, 120 and intermediate supports 130, 140 are axially moveable towards and away from each other.
Referring particularly to
The parts 87, 88 might typically be CV (constant velocity) joints, flanged joints, open universal joints, serrated flange joints, splined interface joints, rubber couplings, DOJs, slip yokes. In each case there is a location diameter or Pitch diameter that is located and held by a chuck (described later) so that balancing can be performed.
It should be appreciated that whilst in the present embodiment the apparatus 10 is configured for a three piece rotor, embodiments are envisaged which are suitable for two piece, one piece or where there are greater than three rotor portions. In such embodiments either the apparatus is specifically configured for such rotors, or is adjustable so as to cater for rotors with different numbers of rotor portions.
Referring particularly to
Referring particularly to
In more detail, each positioning device 85, 86, 87, 88 has a downwardly extending part which extends over the rotor substantially perpendicularly thereto. The part has an opening/recess 31 which opens downwardly and into which the rotor is received. Essentially, the part is n-shaped at its free end (so as to straddle the rotor). The axial position of each of the positioning devices 22a, 22b, 22c, 22d is controlled by a pneumatic actuator, with appropriate location feedback to a controller, as required, although a hydraulic or electro-mechanical actuator could be used. The actuator moves the positioning device 22a, 22b, 22c, 22d along a rail, or similar member, which extends parallel with the elongate rotor axis.
Whilst in the present embodiment the positioning devices 22a, 22b, 22c, 22d are configured for axially positioning or repositioning the component part of the rotor relative to another component part of the rotor or another body (e.g. a component part of a balancing machine or a main body of the apparatus), embodiments are envisaged where the same or additional positioning devices are configured for angularly positioning or repositioning a component of the rotor relative to another component part of the rotor or another body. In other words, the or a positioning device(s) may be capable of rotating a component part relative to another component part of the rotor or another body. They may, for example, be capable of rotating one or more articulated parts of the rotor or one or more elongate rotor portions of the rotor. Embodiments are envisaged where one or more of the holding devices 23a, 23b, 23c include means for rotating the rotor part which it holds, and/or means for axially displacing the rotor part it holds.
The apparatus 10 also includes two position determination devices 51, 52 (see
A method of loading the rotor 80 into the balancing machine 100 will now be described. The method includes the initial step of collecting the rotor 80 from a first location, which is remote from the balancing machine 100 (by remote we mean that the rotor is not already located on or in the balancing machine, but is positioned elsewhere—the rotor need not be positioned far from the machine). The rotor 80 may be supported on a surface or other suitable support(s) (e.g. a plurality of V-shaped support members, which would mean that the rotor portions 81, 82, 83 where closely coaxially aligned). The robotic arm then moves the main body 20 so that it is positioned directly above the rotor 80 (it could position the rotor laterally to one side of the machine). At this point, or before, the members 27a, 27b of each holding device 23a, 23b, 23c are moved away from each other so that they can be lowered over the rotor 80. The positioning devices 22a, 22b, 22c, 22d are also moved to desired axial positions which ensure that they will not foul the articulated pats 85, 86, 87, 88.
The robotic arm then lowers the main body until the rotor portions 81, 82, 83 are received in between the members 27a, 27b of each holding device 23a, 23b, 23c. The members 27a, 27b of each holding device 23a, 23b, 23c are then moved towards each other until they engage and sufficiently grasp the rotor portions 81, 82, 83 (the holding devices 23a, 23b, 23c may include force feedback sensors to ensure the part is clamped and/or also to ensure that the members 27a, 27b do not apply too much force to the rotor portions 81, 82, 83).
In this particular example, the robotic arm then raises the main body 20 and the rotor 80 from the surface or support. Prior to this or at the same time the positioning devices 22a, 22b, 22c, 22d are moved to desired axial positions so as to engage the articulated parts 85, 86, 87, 88 and hold those parts in the desired axial positions relative to each other. The positioning devices 22a, 22b, 22c, 22d also hold the articulated parts 85, 86, 87, 88 perpendicular with the elongate axis of the rotor 80. This ensures that the parts 85, 86, 87, 88 can easily be engaged with the chucks 110, 120 and intermediate supports 130, 140 of the balancing machine 100.
Prior to or at the same time as the rotor 80 is being moved towards the balancing machine 100 (or indeed before loading of articulated endmost parts 87, 88 in to the chucks 110,120) the cameras 51, 52 determine the position of the array of apertures 89, 90 in the endmost articulated parts 87, 88. Details of said aperture positions are then transmitted to the balancing machine 100, which rotates its chucks 110, 120 so that projections 91, 92 thereon are rotationally aligned with the apertures 89, 90 (when the rotor is eventually loaded). The angular position of each chuck 110, 120 is always known as the spindles which drive them have encoders that are connected to the balance machine's electronic control system.
The rotor 80 is then lowered into the balancing machine 100 (see
The balancing machine 100 is then use to balance the rotor 80 as is well known in the art.
As an alternative, instead of the balancing machine 100 receiving signals from both cameras 51, 52 and then rotating the chucks 110, 120 accordingly, the balancing machine 100 may rotate the chuck 110 so as to align its projections 91 with the apertures 89 of the part 97. The rotor 80 may then be loaded into the machine 100 and the chuck 110 moved axially towards the part 87 until it is fully engaged therewith. The chuck 110 may then effect rotation of the rotor 80 until the apertures 90 of the part 88 are aligned with the projections 92 of the second chuck 120. The second chuck 120 may then be moved axially towards the part 88 (or the chuck 110 and rotor 80 may be moved axially towards the chuck 120) until it is fully engaged therewith. Once this has been achieved, the holding devices 23a, 23b, 23d and positioning devices 22a, 22b, 22c, 22d release the rotor 80 and the main body 20 is moved away from the balancing machine to allow the balancing process to take place. As will be appreciated, in order to permit such a system to operate, the holding devices 23a, 23b, 23c must be configured for permitting the rotor portions 81, 82, 83 to rotate where required. As a further alternative, the rotor may first be engaged with a fixed chuck, and the rotated by that chuck, and then other chuck moved into engagement with the other endmost part of the rotor (i.e. the rotor is not moved axially).
As a further alternative, the rotor 80 may be rotated not by the chuck 110, but by a suitable mechanism on the apparatus 10. For example, one or more of the holding devices 23a, 23b, 23c may be configured for rotating the rotor the desired amount so as to align the apertures 90 of the part 88 with the projections 92 of the chuck 120.
When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Number | Date | Country | Kind |
---|---|---|---|
1314459.7 | Aug 2013 | GB | national |
The present application is a continuation of U.S. patent application Ser. No. 14/870,527, filed 30 Sep. 2015, which is a continuation of PCT Patent Application PCT/GB2014/052055, filed 7 Jul. 2014 with the United Kingdom Receiving Office, which is a PCT filing of, and claims the benefit of, Patent Application 1314459.7, filed 13 Aug. 2013 in the United Kingdom. Each listed parent application is hereby incorporated by reference in its entirety
Number | Name | Date | Kind |
---|---|---|---|
4590578 | Barto, Jr. | May 1986 | A |
4724708 | Okano et al. | Feb 1988 | A |
5175914 | Mitsukuchi et al. | Jan 1993 | A |
5191817 | Mitsukuchi et al. | Mar 1993 | A |
5321874 | Mills | Jun 1994 | A |
5380978 | Pryor | Jan 1995 | A |
5576496 | Carlini et al. | Nov 1996 | A |
6416273 | Herbermann | Jul 2002 | B1 |
6923058 | Nieman et al. | Aug 2005 | B2 |
7066025 | Corbin | Jun 2006 | B1 |
7441456 | Corbin et al. | Oct 2008 | B1 |
8056410 | Sanchez et al. | Nov 2011 | B2 |
9849590 | Fowler | Dec 2017 | B2 |
20030074151 | Rapp | Apr 2003 | A1 |
20060130576 | Turner et al. | Jun 2006 | A1 |
20070013199 | Hall et al. | Jan 2007 | A1 |
20080141773 | Rogalla | Jun 2008 | A1 |
20090014968 | Dolp | Jan 2009 | A1 |
20100294038 | Sanchez et al. | Nov 2010 | A1 |
20110197672 | Peinelt et al. | Aug 2011 | A1 |
20130168516 | Winter | Jul 2013 | A1 |
20130272833 | Duncan | Oct 2013 | A1 |
20150246740 | Boden | Sep 2015 | A1 |
20160016316 | Fowler | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
2478836 | Sep 2011 | GB |
2515062 | Dec 2014 | GB |
S5612529 | Feb 1981 | JP |
H11351199 | Dec 1999 | JP |
2002111592 | Apr 2002 | JP |
2011143175 | Nov 2011 | WO |
2014181102 | Nov 2014 | WO |
2014181103 | Nov 2014 | WO |
Entry |
---|
Balancing Machines—Drive Shaft, Propshaft-Dynamic, Static Balancer, http://web.archive.org/web/20130731001133/http://www.universal-balancing.com, Jul. 31, 2013, pp. 1 to 3. |
Balancing Machines—Drive Shaft, Propshaft-Dynamic, Static Balancer, http://web.archive.org/web/20120818135820/http://www.universal-balancing.com, Aug. 18, 2012, pp. 1 to 3. |
UK Search Report under Section 17 for GB application GB1314459.7, dated Mar. 28, 2014, pp. 1 to 1. |
International Search Report and Written Opinion for PCT application PCT/GB2014/052055, dated Jun. 10, 2014, pp. 1 to 13. |
Number | Date | Country | |
---|---|---|---|
20180071916 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14870527 | Sep 2015 | US |
Child | 15816651 | US | |
Parent | PCT/GB2014/052055 | Jul 2014 | US |
Child | 14870527 | US |