The present invention relates to apparatus, method and system for imaging at least a portion of a sample in n optical frequency domain, and more particularly for performing phase-resolved imaging of transparent and turbid samples using optical frequency domain imaging techniques.
Optical coherence tomography (“OCT”) is an imaging technique that measures the interference between a reference beam of light and a beam reflected back from a sample. A detailed system description of traditional time-domain OCT was first described in Huang et al. “Optical Coherence Tomography,” Science 254, 1178 (1991). Detailed system descriptions for spectral-domain OCT and Optical Frequency Domain Interferometry are given in International Patent Application No. PCT/US03/02349 and U.S. patent application No. 60/514,769, respectively. Polarization-sensitive OCT provides additional contrast by observing changes in the polarization state of reflected light. The first fiber-based implementation of polarization-sensitive time-domain OCT was described in Saxer et al., “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355 (2000).
In one exemplary technique of OCT, cross-sectional images of biological samples can be provided with a resolution on the scale of several to tens of microns. Contrast in the conventional OCT techniques can result from differences in the optical scattering properties of various tissues, and may permit imaging of tissue microstructures. Additional biological or functional information can be obtained by applying Doppler techniques to measure spatially-localized motion in the sample. These exemplary techniques, which can be referred to as Color Doppler OCT or Optical Doppler Tomography, have been used for imaging blood flow in skin, retina, esophagus, etc. Simultaneous imaging of tissue microstructure and blood flow can significantly enhance the diagnostic utility of OCT. Initial Doppler OCT measurements were performed with time-domain OCT (TD-OCT) systems, an example of which is shown in
Recently, it has been demonstrated that Fourier-Domain OCT (FD-OCT) provides significantly improved sensitivity, enabling high-speed imaging. FD-OCT has been implemented in two configurations, spectral-domain OCT (“SD-OCT”) and optical frequency domain imaging (“OFDI”). In SD-OCT, a spectrometer is used to record spectral fringes that result from the interference of a reference beam with light reflected from a sample. In OFDI, a narrowband wavelength-swept source and a single detector are used to record the same interferogram. Doppler imaging has been demonstrated recently in SD-OCT systems. An example of a Doppler SD-OCT system is shown in
Convention OCT systems and techniques create images based on the magnitude of the reflectivity as a function of depth. Additional information can be obtained by examining a phase of the reflectivity of the signal. Typically, a phase information of a signal can be meaningful when compared to another phase of the signal. This phase can be another measurement of the phase at a different depth or a measurement of phase at the same depth from a successive depth scan. Regardless of the exact implementation, the sensitivity of the image constructed from the phase measurements can be a function of the noise on the individual phase measurements and the repeatability of phase measurements.
In phase-resolved Doppler OFDI, it is possible for synchronization errors to induce spurious measurements of the interference fringe phases, resulting in a reduced performance. These synchronization errors can be referred to hereafter as timing-induced phase errors.
To address and/or overcome the above-described problems and/or deficiencies, exemplary systems, methods and apparatus are provided for reducing the effect of the timing-induced phase errors. For example, in certain conventional methods, additional optical signals are generated and used to measure timing-induced errors so that they can be removed from the measured image. In other techniques, improved synchronization schemes can be presented to reduce the magnitude of the timing-induced phase noise directly.
According to the present invention, exemplary systems, methods and apparatus are provided for facilitating high-sensitivity depth-resolved phase measurements using an exemplary OFDI system. For example, a measurement of the phase can be used to measure blood flow and other motion in a turbid or scattering media, and can also be used to monitor optical thickness of materials over time or as a function of transverse location. Exemplary methods for achieving high-sensitivity in accordance with the exemplary embodiments of the present invention are also described herein. In one such exemplary method, a calibration signals can be generated and utilized to correct, modify and/or otherwise address timing-induced phase measurement errors. According to another exemplary embodiment of the present invention, the exemplary OFDI system may be modified to allow a simultaneous measurement of a calibration signal with the sample signal, and can also provide an exemplary procedure for correcting, modifying and/or otherwise addressing timing-induced phase measurements in the sample signal, e.g., by using such calibration signal. In still another exemplary embodiment of the present invention, the calibration signal can be generated on a separate channel and acquired independently of the sample signal. For example, the calibration signal can be similarly used to correct errors in the sample signal. Additionally, according to a further exemplary embodiment of the present invention, method, apparatus and system can be provided for reducing, adjusting and/or minimizing timing-induced phase errors.
Thus, in accordance with -one exemplary embodiment of the present invention, apparatus, system and method are provided which utilize signals received from a reference and a sample. In particular, a radiation is provided which includes at least one first electro-magnetic radiation directed to the sample and at least one second electro-magnetic radiation directed to the reference. A frequency of the radiation varies over time. An interference can be detected between at least one third radiation associated with the first radiation and at least one fourth radiation associated with the second radiation. It is possible to obtain a particular signal associated with at least one phase of at least one frequency component of the interference, and compare the particular signal to at least one particular information. Further, it is possible to receive at least one portion of the radiation and provide a further radiation, such that the particular signal can be calibrated based on the further signal.
For example, the particular information can include predetermined data. It is also possible to determine a further signal associated with at least one further phase of at least one further frequency component of the interference, and the at least one particular information can be the further signal. It is also possible to determine a further signal associated with at least one further phase of at least one further frequency component of a further interference, the further interference being different from the interference.
In another exemplary embodiment of the present invention, the further interference may be based on the radiation and the second radiation. The interference and the further interference may also be obtained at different times and/or at different locations of the sample. It is further possible to generate a further signal associated with the radiation, such that the particular information can be provided based on the further signal. In addition, it is possible to receive at least one portion of the radiation and provide a further radiation, and the particular signal and/or the particular information may be associated with the further radiation. In addition, it is possible to calibrate the particular signal based on the further signal. The calibration may be based on an actual distance and/or an optical distance between the sample and a particular arrangement. Further, it is possible to calibrate the particular signal based on an actual distance and/or an optical distance between the sample and the particular arrangement.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
FIGS. 7 is a schematic diagram of yet another exemplary embodiment of the phase-resolved OFDI system in accordance with the present invention which can use an optical generation of the sample clock to synchronize the source wavelength-sweep and acquisition electronics;
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
It should be understood that the exemplary embodiments of systems, software arrangements and methods in accordance with the present invention can be implemented in a variety of OCT systems and other systems in which signals from reference arm and sample arm can be interfered with one another ;to produce useful signals.
Exemplary Principle of Phase-Resolved Doppler FD-OCT
Exemplary Phase-resolved OCT techniques are described hereafter in the context of Fourier-Domain OCT, which is a category of OCT which is associated with the exemplary embodiments of the OFDI system according to the present invention. Fourier-Domain OCT can use an interference between two arms of an interferometer (e.g., a sample arm and a reference arm) to measure depth-dependent reflections in a turbid, semi-turbid and/or transparent medium. For example, an input light source is split into the reference arm and the sample arm. The light in the sample arm is directed to the sample to be imaged, and reflections from the sample are directed to a first port of an output coupler. The reference arm light is directed to the second port of the same output coupler. Spectral interference between the beams is measured by recording the interferometer output power as a function of wavelength. For a single reflection in the sample at position z where z denotes the total path-mismatch between the sample arm light and the reference arm light, the interferometer output can provided as follows:
S(k=2π/λ)˜P(k)√{square root over (R(z))}cos(k2z+φz) (1)
where S(k) is the output signal (optical power), P(k) is the source power at k, R(z) is the power reflectivity of the scatterer at position z, and φz is the phase of this reflection.
The reflectivity of the scatterer at position z is provided by the magnitude of the signal at frequency 2 kz. Typically, the detected signal is discretely sample, meaning that the measured signal is recorded in n discrete samples of the continuous output S(k). The discrete sampled output, S1, is given by
Sl˜Pl√{square root over (R(z))}cos(kl2z+φz), l=0 . . . (n−1) (2)
The signal from the scatter at position z is contained in the complex reflectivity profile coefficient am, where m is the depth index corresponding to position z. For example, each measurement of the discrete sampled output, Sl, can yield a single measurement of the complex reflectivity profile as a function of depth (A-line). The motion of the scatterer at depth index i results in a change in the phase, Φi, of the complex reflectivity profile coefficient ai (Φi=angle(ai)). If the complex reflectivity profile is provided with depth index i for A-line j as ai,j, then a displacement of δz between A-lines j and j-1 can yield a phase change given by:
Δφi,j=(φi,j−φi,j-1)=2n<k>δz. (4)
The phase-resolved FD-OCT can measure motion in the scattering medium by calculating these phase differences at the sample depth for successive A-lines.
Phase-Resolved Doppler OFDI Technique
FD-OCT techniques of SD-OCT and OFDI systems and methods can both measure the discrete spectral interference Sl. However, these techniques generally differ in the implementation of this measurement. The OFDI systems and methods can use a wavelength-swept source and a single-element photoreceiver (and/or a set of single-element photoreceivers) to record SI as a function of time.
The laser output at a port 132 can therefore be wavelength swept in time. This output is input to an interferometer which includes an interferometer coupler 135 which splits the light into a reference arm port 135a and sample arm port 135b. The reference arm light is split by a coupler 165. The light from an output port 165a of the coupler 165 is directed to a second circulator 145 which passes the light to a fiber Bragg grating (“FBG”) 150. The FBG 150 has a narrowband reflection at a discrete wavelength within the wavelength-sweep range of the source. As the source 85 tunes past this reflection wavelength, a reflected optical pulse is generated. This pulse can be directed by a circulator 145 to a photoreceiver 155, and such directed pulse is converted into a TTL pulse by a TTL pulse generator 160. This TTL pulse can be used as a trigger signal for data acquisition electronics 200. The light from another output port 165b of the coupler is directed to a third circulator 170 which directs the light to a variable optical delay 210. This variable optical delay is used to path-match the interferometer 90. The return light is directed by the circulator 170 to a polarization controller 175, followed by a polarizer 180, and finally to a first port 185a of an output coupler 185. The sample arm light at the sample arm port 135b is directed to a fourth circulator 205, which in turn directs the light on fiber 206 to the sample to be imaged. Imaging optics 215 can focus the light on the sample, and allow for a beam translation. The light reflected from the sample is collected by the same fiber 206, and returned to the fourth circulator 205 which directs the light to a second port 185b of the output coupler 185.
The reference arm light and the sample arm light interfere at the output coupler 185. This interference signal is detected by a photoreceiver 190a on an output port 185c and a photoreceiver 190b on another output port 185d. The signals from these photoreceivers 190a, 190b are subtracted in a unit 195, and directed toward an analog-to-digital (A-D) input port of a data acquisition (DAQ) board 200.
The DAQ board 200 can acquires n samples at a clock rate ∫cl, where n is predetermined. The clock signal can be internally generated in the DAQ board 200. The trigger signal from the TTL pulse generator 160 may originate from the optical pulse produced by the FBG 150. A lack of synchronization between the trigger pulse and the internal DAQ sample clock may cause a variable delay between the arrival of the trigger pulse and the first analog-to-digital conversion. This delay can be effected by one full sample clock period. Thus, if the sweep of the source is identified by kl=ko+akl, the sampled fringe for A-line j, Sl,j, can be given by
Sl,j˜Pl√{square root over (R(z))}cos((ko+ak(l+Δj)2z+φz), l=0 . . . (n−1) (5)
where Δj can vary between 0 and 1 depending on the relative timing of the sample clock and the trigger pulse. The measured phase difference between successive A-lines for a stationary scatterer at position z can be given by:
Δφi,j=ak2z(ΔjΔj-1) (6)
The phase difference results from timing variations in the acquisition time (described by Δj) and masks phase differences resulting from sample motion, degrading the system sensitivity. Writing the Nyquist limited making imaging depth as zNy=¶/(2ak) and using the normalized depth factor Γz=z/zNy, the timing-induced phase errors can be described by:
Δφi,j<Γzπ. (7)
The above-described procedure in accordance with the present invention indicates that timing-induced phase errors increase linearly with depth up to, e.g., a maximum value of ¶ at Γ.z=1.
Correction of Timing-Induced Phase Errors through a Generation of a calibration Signal
According to one exemplary embodiment of the present invention, an additional signal can be generated by the exemplary system described herein and utilized to measure and subsequently correct for the timing-induced phase errors. For example,
In a further embodiment, existing reflections from the optical probe are used as the calibration signal.
In a further exemplary embodiment of the system according to the present invention shown in
In a further exemplary embodiment of the system according to the present invention which is shown in
Correction of Timing-Induced Phase Errors through Post-Processing
In still another exemplary embodiment of the system, arrangement and method according to the present invention, phase measurements can be corrected without the use of a calibration mirror. In this exemplary technique, a intensity-weighted linear fit can be applied to each measured phase difference line, ΔΦi,j, as a function of depth index i, yi,j=mji+bj. The corrected phase differences can be given by Δφi,j=Δφi,j−mji−bj.
Correction of Timing-Induced Phase Errors through the Improved Acquisition/Source Synchronization
In a further embodiment, the timing-induced phase errors are reduced by improving the synchronization between the swept source and the DAQ board. The rotational speed of the polygon mirror 100 of
In a still further exemplary embodiment of the system according to the present invention that is shown in
Applications of Phase-Resolved OFDI
In still another exemplary embodiment of the present invention, the phase-resolved OFDI system can be used to image blood flow distributions during an intravascular OFDI imaging. An exemplary device capable of imaging blood flow is shown in
In yet another exemplary embodiment of a phase-resolved OFDI system of the present invention which is shown in
In a further exemplary embodiment of the phase-resolved OFDI system of the present invention, such system can be used to determine variations in the optical-path length between two points in depth as a function of time. For example,
A further exemplary illustration of an exemplary use of the exemplary embodiment of the phase-resolved OFDI system to measure depth-resolved changes in an optical path length as a function of transverse displacement. An imaging beam 850 is directed toward a sample object located between a first reflective surface 855 and a second reflective surface 865. The optical path length difference between these reflective surfaces 855, 865 is known by the design of the system and/or a prior measurement before an object 860 is inserted. The phase of the reflective surfaces 855, 865 can be measured as a function of a transverse displacement of the imaging beam 850, and the variations in the transverse optical path length of the object 860 can be found by comparing the phase difference between the two signals with the phase difference as measured and/or known previously without the object being present. For example, if the system is has enough stability, the first surface reflectance at z1 may not be needed.
It can be appreciated by those skilled in the art that one of the embodiments can be used in combination with other exemplary embodiments described herein to provide various phase-resolved OFDI systems with reduced timing-induced phase noise in accordance with the present invention.
The exemplary embodiment(s) of the system, apparatus and method according to the present invention have been verified as follows:
The phase differences between successive A-lines were measured in the exemplary configuration of
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
This application is based upon and claims the benefit of priority from U.S. patent application Ser. No. 60/686,790, filed Jun. 1, 2005, the entire disclosure of which is incorporated herein by reference.
The research leading to the present invention was supported, at least in part, by National Institute of Health, Grant numbers R33 CA110130 and R01 HL70039. Thus, the U.S. government may have certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60686790 | Jun 2005 | US |