Separators are used to separate solids from liquids in oil-based and/or water-based drilling fluids, referred to as “muds,” that are retrieved from oilfield drilling operations. For example, such separators may have sifting and/or filtering screens to remove solids from a slurry. One type of apparatus used to separate solids from the muds is referred to in the industry as a “shale shaker.” The shale shaker, also known to as a vibratory separator, uses a sieve to accept used drilling mud to clean the mud for further use in drilling operations.
Mud serves multiple purposes in the industry. Drilling mud acts as a lubricant to cool rotary drill bits and facilitate faster cutting rates. Further, dispersion of the drilling mud around, for example, a drill bit, may assist in counterbalancing various pressures encountered in subterranean formations. Various weighting and lubrication agents are mixed into the drilling mud to obtain the correct mixture for the type and construction of the formation to be drilled. Because the mud evaluation and/or mixture process may be time consuming and expensive, drillers and service companies typically reclaim and reuse drilling mud. Another purpose of the drilling mud is to carry rocks and/or cuttings from the drill bit to the surface. For example, in a wellbore, the cuttings and/or solids may enter into the drilling mud and may be removed before the drilling mud may be reused.
Typically, shale shakers use sifting and/or filtration screens to separate cuttings from drilling fluid in on-shore and off-shore oilfield drilling operations. The separating screens have a mesh and/or a lattice stretched across a frame. The mesh allows fluid and/or particles smaller than a predetermined size to pass through the separating screen.
To accommodate larger drilling operations and/or drilling operations with a faster through-put of drilling fluid, high-capacity sifting and/or filtering screens have been developed. High-capacity filtering screens are typically made by assembling several separate parts to create a single structure. Further, the additional assembly and/or construction that may be associated with the high-capacity filtration screen may involve additional cost. In contrast, regular-capacity filtering screens typically are fabricated as a single part, and thus are not assembled from multiple separate components. The vibratory separator may demand a regular-capacity screen and/or a high-capacity screen depending on the specific demands of a given drilling operation.
Accordingly, a desire exists for an adapter device that connects and/or attaches a high-capacity filtration screen to a regular-capacity filtration screen to accommodate increased drilling fluid capacity in vibratory separators.
Embodiments disclosed herein are applicable to separation devices that may be utilized in numerous industries. While specific embodiments may be described as utilized in the oilfield services and related industries, such as use with shale shakers, the device may be applicable in other industries where separation of liquid-solid, solid-solid and other mixtures may be separated. The embodiments, for example, may be utilized in the mining, pharmaceutical, food, medical or other industries to separate such mixtures.
In the following detailed description, reference is made to accompanying figures, which form a part hereof. In the figures, similar symbols or identifiers typically identify similar components, unless context dictates otherwise. The illustrative embodiments described herein are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, may be arranged, substituted, combined and designed in a wide variety of different configurations, which are explicitly contemplated and form part of this disclosure.
Referring now to
Cross-members 31 may be oriented, for example, perpendicular relative to the first side 14 and extend lengthwise across a top surface 12 as shown in
The adapter 10 may have a first end 64 that may be positioned opposite to a second end 66. The first end 64 may be identified by, for example, a first tapered portion 68 that may lead toward the lip 26 of the adapter 10. In contrast, the second end 66 may have an end piece 72 with a cross-section as shown in
The first end 64 and the second end 66 may have the cavities 28 that may interconnect with the top surface 12. The cavities 28 may be formed generally to have a shape of a chevron pattern as shown in
In an embodiment as shown in
Referring now to
The high-capacity filtration screen 32 may be constructed from the connection, attachment and/or assembly of several separate components and/or parts, such as, for example, a side grate 34, a beam 42, a grid 48 and a substructure 50. Each part may be constructed from a rigid material, such as, for example, metal, plastic, composite and/or any combination thereof. The side grate 34 may have angled cross-hatch pieces 36 that may be distributed along the length of the side grate 34. Open regions 38 may be formed throughout the side grate 34 and may be defined by the angled cross-hatch pieces 36. The side grate 34 may be fixed and/or may be attached at an edge 80 of the side grate 34 to the beams 42 and/or the substructure 50 by, for example, screws, bolts and/or fasteners (not shown). The beams 42 and/or the side grate 34, the grid 48 and the substructure 50 may be moved and/or adjusted to accommodate separators of various shapes and sizes.
In an embodiment shown in
As shown in
The adapter 10 may connect to a frame 92 via the barbs 60 as described above. The frame 92 may generally define the periphery of the regular-capacity filtration screen 52. The frame 92 may have a side grate 54 that may be similar in design, shape and/or function to the side grate 34 of the high-capacity filtration screen 32. The side grate 54 of the regular-capacity filtration screen 52 may have openings 94 that may be similar in shape, form and/or function to the open regions 38 of the high-capacity filtration screen 32. The side grate 54 may be attached at either side of a lattice 58 in, for example, the configuration shown in
Similar to the operation and/or function of the high-capacity filtration screen 32, the lattice 58 of the regular-capacity filtration screen 52 may separate solids from liquids in the slurry using the vibratory separator. In the embodiment shown in
In contrast, the high-capacity filtration screen 32 may be assembled from several individual parts, such as, for example, the beams 42 and/or the side grate 34, the grid 48, and the substructure 50. The parts may be configured as needed to accommodate a maximum flow rate of the slurry and/or the drilling fluids supplied through the high-capacity filtration screen 32. Accordingly, the high-capacity filtration screen 32, with several independent parts as described above, may have additional manufacturing and/or assembly in comparison to the regular-capacity filtration screen 52, which may, for example, be fabricated as a single part. To accommodate the needs and/or demands of oilfield drilling operations, vibratory separators may use either the high-capacity filtration screen 32 or the regular-capacity filtration screen 52, or may use both the high-capacity filtration screen 32 and the regular-capacity filtration screen 52 in combination. Further, the adapter 10 may connect two high-capacity filtration screens 32 and/or two regular-capacity filtration screens 52.
The drilling fluid and/or the slurry having solids dispersed in and/or suspended in a liquid, such as, rocks, cuttings and/or mud, may be flowed through the high-capacity filtration screen 32 and/or the regular-capacity filtration screen 52 to separate the solids from the liquids. The high-capacity filtration screen 32 and/or the regular-capacity filtration screen 52 may be installed in, for example, a screening deck of the separator. Further, the drilling fluid and/or the slurry may be categorized, for example, as either a “pool” or a “beach.” The “pool” may be defined as an area of the screening deck of the separator that may have drilling fluid with drill cuttings that may be suspended within the drilling fluid. The “beach” may be defined as an area where the drilling fluid and/or the slurry has been mostly removed and/or separated from the cuttings. Accordingly, the “beach” may resemble, for example, a pile of solids.
The high-capacity filtration screen 32 and/or the regular-capacity filtration screen 52 may be oriented, positioned and/or mounted at, for example, an inlet end, an outlet end and/or a discharge end of the vibratory separator. Further, the high-capacity filtration screen 32 may be interchangeable with the regular-capacity filtration screen 52 at, for example, the discharge end of the vibratory separator without affecting the rate at which the vibratory separator may process the drilling fluid.
The ratio of the “pool” to the “beach” of the slurry may be approximately eighty percent “pool” to twenty percent “beach” in traditional oilfield drilling operations. The ratio may be altered to accommodate various needs and/or requirements of cutting dryness and/or flow rates as associated with oilfield drilling operations. In an embodiment, the high-capacity filtration screen 32 and/or the regular-capacity filtration screen 52 may be fixed in, mounted on and/or positioned in the discharge end of the separator. During oilfield drilling operations involving the separator, a conveyance rate of the drilling fluid through the separator may be slowed. Slowing the flow of the drilling fluid through the separator may allow for an extended drying time of solids to produce dried cuttings, i.e. “beach”, and/or to recover the drilling fluid.
Referring now to
In the embodiment shown in
The adapter 10 may be positioned lengthwise between the high-capacity filtration screen 32 and the regular-capacity filtration screen 52, as shown in
The regular-capacity filtration screen 52, as shown in
As shown in
Referring now to
A method, an apparatus and a system may connect the high-capacity filtration screen 32 to the regular-capacity filtration screen 52 through the adapter 10. The adapter 10 may be positioned adjacent to the high-capacity filtration screen 32. The barbs 60 may protrude from the high-capacity filtration screen 32 to interlock with the adapter 10. Barbs 60 may extend from the adapter 10 and may insert into corresponding orifices 98 in a regular-capacity filtration screen 52. The combined filtration screens 32, 52 and the adapter 10 may be installed in the separator (not shown). The tapered edges 24, 68 of the adapter 10 may align with the filtration screens 32, 52. The cross-members 31 may extend from the first side 14 to the second side 76 of the adapter 10. The rib 99 may be positioned lengthwise along the underside 74 of the adapter 10.
Although the preceding description has been described herein with reference to particular means, materials, and embodiments, it is not intended to be limited to the particulars disclosed herein; rather, it extends to all functionally equivalent structures, methods, and uses, such as are within the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 14/890,607, filed Nov. 12, 2015, which is a National Stage of International Patent Application No. PCT/US2015/060133, filed Nov. 11, 2015, which claims the benefit of, and priority to, U.S. Provisional Patent Application No. 62/078,801, filed Nov. 12, 2014, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62078801 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14890607 | Nov 2015 | US |
Child | 16784188 | US |