The present invention generally relates to apparatus, systems and methods for processing and treating biological fluids, such as blood and blood components. More particularly, the present invention relates to improved apparatus, systems and methods for the light treatment of a biological fluid that contains a light activated photochemical agent, for the purpose of inactivating pathogens that may be present in such biological fluid.
Apparatus, methods and systems for treating biological fluids, such as blood and blood components, with light are well known. For example, U.S. Pat. No. 4,952,812, incorporated by reference herein, discloses an apparatus for treating unwanted white blood cells in platelet concentrate with ultraviolet radiation to limit the white cells' ability to trigger an immune reaction in a patient. To treat containers of platelet concentrate, the containers are placed on a slidable drawer that is introduced into a housing between facing arrays of lamps for irradiation from both sides of the container. During irradiation, the drawer (or a portion of the drawer) nay be pivoted in a rocking motion to agitate the platelet concentrate.
U.S. Pat. No. 5,557,098, also incorporated by reference herein, discloses a system and apparatus for treating a biological fluid with light for the purpose of inactivating pathogens that may be present in the biological fluid. A slidable drawer is used to position the containers of biological fluid between facing arrays of light emitting diodes. Extended flaps on the containers, located outside the light field, are automatically punched to indicate different stages of the light treatment.
U.S. patent application Ser. No. 08/121,820, filed Sep. 15, 1993, which is also incorporated by reference herein, discloses apparatus and methods for treating a container of a blood product between two facing arrays of light. The container includes a light sensitive tape which changes color when exposed to ultraviolet light, thereby indicating when the treatment process is complete.
Still other apparatus and systems for treating biological fluid are disclosed in U.S. Pat. No. 5,709,991, and U.S. patent application Ser. No. 09/081,168, filed May 18, 1998, both of which are incorporated by reference herein.
While the prior art apparatus, systems and methods have generally worked satisfactorily, work continues to develop new and improved apparatus, systems and methods that provide, for example, improved reliability, greater flexibility and efficiency, improved ease of use and serviceability, as well as enhanced tracking, record keeping and the like.
The following summary is intended as an overview of certain aspects of the present invention. It is not intended by this summary to limit or expand the scope of the claims, which define the scope of the present invention. The mention of certain features or elements in this summary does not mean that such elements or features are necessary to the use or practice of the invention in its broader or other aspects, or that such should be read into claims that do not expressly recite such feature or element. Conversely, the absence of any mention of certain elements or features is not intended to detract from the significance of such elements or features in those claims in which they are expressly included.
In one aspect, the present invention is embodied in an apparatus for treating a biological fluid that includes a first drawer for carrying the biological fluid and a readily accessible light source directed at the biological fluid when the first drawer is closed.
In another aspect, the present invention is embodied in a modular apparatus that includes a fluid treatment module and control module. The fluid treatment module and control module are readily electrically connectable and separable.
In another aspect, the present invention is embodied in an apparatus for treating a biological fluid that includes a fluid treatment chamber and at least one light source disposed either above or below the fluid treatment chamber. The apparatus includes a tray adapted for placement within the fluid treatment chamber. The tray includes a first compartment and a second compartment. The apparatus includes an indicator for indicating whether or not the first compartment is substantially within the fluid treatment chamber.
In another aspect, the present invention is embodied in an apparatus for treating a biological fluid. The apparatus includes a housing including a top and bottom surface and a fluid treatment chamber within the housing. A light source is disposed either above the housing, below the housing, or above and below the housing. The apparatus includes a drawer for introducing and removing the biological fluid into and out of the chamber. The drawer may be pivotally movable relative to the housing to allow for downward pivoting movement of the drawer outside of the chamber.
The present invention is also directed to methods for treating a biological fluid. In one aspect, the present invention is directed to treating a biological fluid that includes providing an apparatus that includes a fluid treatment chamber and at least one light source directed at the fluid treatment chamber. The method includes providing a first container of biological fluid that is integrally connected to a second container and locating the first container within the fluid treatment chamber. The method further includes contacting the biological fluid with light from the light source, agitating the biological fluid during the contacting and indicating the status of the contacting on the second container.
For purposes of illustration, the various aspects of the present invention will be described, in large part, in connection with their preferred embodiments. However, it should be recognized that the apparatus, systems are methods embodying the different aspects of the present invention are not limited to the specific details described herein.
An apparatus for treating a biological fluid is generally shown in
Light box 10 is particularly useful in the treatment of biological fluids. As used herein, biological fluid refers to any fluid that is found in or that may be introduced into the body including, but not limited to, blood and blood products. As used herein “blood product” refers to whole blood or a component of whole blood such as red blood cells, white blood cells, platelets, plasma or a combination of one or more of such components that have been separated from whole blood.
One specific, non-limiting use of light box 10 is in the treatment of a blood product that has been combined with a photochemical agent for activation when subjected to light. Such photochemical agents are used, for example, in the inactivation of viruses, bacteria, where blood cells and other contaminants (collectively referred to herein as “pathogens”). In pathogen inactivation applications, the activated agent inactivates pathogens that may be present in a blood product.
Typically, the biological fluid to be treated is introduced into a fluid treatment chamber within light box 10 in flexible, plastic, sterilizable, translucent, biologically compatible containers. In accordance with aspects of the present invention, the containers may be integrally connected to other containers and plastic tubing useful in the processing of the biological fluid both before and after the treatment provided by light box 10. Examples of the disposable processing set and its components are shown in
As shown in
For convenience and efficiency, it is preferred that light box 10 be fairly compact. In one, non-limiting example, light box 10 may be approximately 100 cm wide, 20-40 cm deep and between approximately 30-40 cm high. A compact instrument allows, for example, for placement of a greater number of instruments per treatment center and/or may allow two or more instruments to be stacked on top of each other (as shown in FIG. 13), resulting in greater throughput of biological fluid per horizontal area or space (i.e. bench space, shelf space).
Light box 10 may include a control module 26 and a fluid treatment module 28. As described in more detail below, control module 26 may include and/or house the command and control elements for the treatment of biological fluid. Fluid treatment module 28 houses the elements and components where fluid processing takes place.
Control module 26 and fluid treatment module 28 may be contained in the same housing but in a preferred embodiment, as shown in
Providing light box 10 in two readily separable modules 26 and 28 allows for easier access to the control and fluid treatment modules 26 and 28 and, generally, provides for easier serviceability of light box 10. For example, if off-site service is required for control module 26 only, that module can be removed without requiring removal and transport of the entire light box 10.
As shown in
The interior components of control module 26 are generally shown in FIG. 4. Control module 26 will typically include a programmable microprocessor for operation of light box 10 including central processing unit 27 and memory devices such as random access memory (RAM) and EPROMS for the system program storage and non-volatile memory for back-up data storage. Control module 26 may further include an isolation transformer 29 for converting an AC input voltage to a DC control system voltage and for maintaining leakage current within acceptable limits for medical devices. Other components within control module 26 may include power supply 167, input/output board 33 and a power inlet module 34, filtered pass through 34b for use with an external light intensity sensing device and filtered output pass through 34a.
Control module 26 may be adapted for connection to external components such as a printer 500 (
Turning now to the fluid treatment module 28, as shown in
Returning to
As shown in
Turning more specifically to a description of fluid carrying drawer 50, as shown in
For ease of loading and unloading containers of biological fluid, fluid carrying drawer 50 preferably includes a pivot mount that permits the drawer to be tilted downwardly when fully withdrawn. The ability to tilt drawer 50 downwardly may be particularly useful for loading containers of fluid in the upper light boxes where two or more light boxes are stacked on top of each other, as shown in FIG. 13. In one embodiment, fluid carrying drawer 50 may be hingedly attached to framework 38 so that when fluid carrying drawer 50 is fully opened and is outside of housing 12, front edge of drawer 50 may be tilted downwardly at, for example, a 45° angle. To allow tilting of fluid carrying drawer, light box 10 may include spring loaded tilt knob 83 which, when pulled, releases fluid carrying drawer 50 and allows it to be tilted in the manner described above. More specifically, as shown in
As shown in
During treatment of the biological fluid, it may be desirable that the fluid within fluid carrying drawer 50 be continuously or periodically agitated to provide mixing of the biological fluid and ensure that substantially all of the biological fluid is sufficiently and uniformly exposed to light and/or any photochemical agent. Accordingly, fluid carrying drawer 50 may be attached to means for agitating the biological fluid.
As shown in
Light box 10 may include one or more light sources, preferably disposed above and below fluid treatment chamber 50. For ease of serviceability, such as lamp replacement, it is preferable that the light source(s) be readily accessible. As used herein, “readily accessible” means that access to the light source can be quickly and easily had without the use of, for example, a screwdriver or other tools. For example, in one embodiment, it may be desirable that the light source be either partially or completely removable from the housing 12 and/or fluid treatment module 28. The light source(s) may be accessible through any one of the front, side, top or bottom panels. In one embodiment, the light sources are housed in light drawers 60 and 70. As shown in
As shown in
Each of light chambers 101 and 103 of light drawer 60 or 70 is generally defined by four side walls 105a-d and a bottom wall 107. Walls 105a-d and 107 may be made of or coated with a reflective material to maximize the amount of light delivered to the biological fluid. In one specific embodiment, where the light source provides light in the ultraviolet A (UVA) range, walls 105a-d and 107 may be made of a highly reflective aluminum to provide substantial reflection of UVA light. Such a material is sold under the name 1500 G-2 and is available from ALANOD of Ennepetal, Germany.
The light sources suitable for use in the present invention may include any light source that is capable of providing light of a particular wavelength and intensity for treating a particular biological fluid. For example, light sources capable of providing white light, red light, infrared, ultraviolet A and/or B light may be used. Light drawers 60 and 70 may include a single lamp or an array of multiple lamps 100. In one embodiment, light source may include standard fluorescent lamps or bulbs capable of providing light of a wavelength in the UVA (ultraviolet A) range. Such lamps may be obtained from Sagyo Denkai of Japan under the product code BL352. Light drawers 60 and 70 further include fans 109 for cooling lamps 100 and, more specifically, ends of lamps 100 at or near the lamp filaments.
As shown in
As shown in
As set forth above, fluid treatment module 28 further includes marker assembly 74. Marker assembly 74 may include one or more markers 76a-76d for marking containers within fluid treatment chamber. One or more markers 76 may be provided to mark containers at different stages of the treatment. Markers 76a-d may be punches for punching holes into a portion of the container such as the container flap as described in U.S. Pat. No. 5,557,098, which is incorporated by reference. Alternatively, and more preferably, markers may be stampers for stamping designated portions of a container with ink. Such markers are commercially available from Trodat of Wels, Austria under the product name Printy 4911.
As shown in
As shown in
Fluid treatment module 28 includes blower 134 which provides air flow into fluid treatment chamber 40 and fluid containers and thus, provides for temperature control of fluid treatment chamber 40 (FIG. 5). Blower 134 receives ambient air through an opening in bottom wall 16 located below blower 134. In addition to providing air to fluid treatment chamber 50, air from blower 134 may also pass through opening 136 of fluid treatment module 28 and a perforation or opening 136a in control module 26, as seen, for example in
Returning to the fluid treatment module 28 and more specifically fluid carrying drawer 50, as shown in
Where one or more containers are to be treated, tray 90 may be divided into a first portion 180 and a second portion 182 separated by dividing wall 184. As shown in
Where the biological container is part of an integrated fluid processing set, tray 90 may be compartmentalized to provide separate compartments for the container undergoing treatment on the one hand, and the remainder or a portion of the remainder of the disposable processing set, on the other hand. As shown for example, in
When the tray 90 with disposable processing set is introduced into fluid treatment chamber 50, container 206 within a first compartment 188 is positioned substantially within the field of light provided by the light source. The remainder of the disposable processing set and/or containers within a second compartment 190 are aligned substantially with marker assembly 74 as shown in
Light box 10 may include sensors for detecting different conditions during the pretreatment and treatment process. The sensors relay signals to the microprocessor of the light box 10 which is housed within control module 26. As shown for example in
For example, light box 10 may include internal light intensity sensors 404 for measuring the intensity of light provided by the lamps 100 to fluid treatment chamber 50. In the event that the light intensity provided by lamps 100 is insufficient for the desired treatment, sensor 404 sends a signal through input/output board 170 (
In one embodiment, light intensity sensors 404 may be located within the light chambers 101 and 103 of light drawers 60 and 70 (FIG. 6). In one embodiment, light drawer 60 and/or 70 include a light intensity sensor subassembly 402 on the underside of drawer 60 and/or 70. As shown in
A fluid carrying drawer sensor 144 may be included for monitoring the position of fluid carrying drawer within fluid treatment chamber 40. Fluid carrying drawer positioning sensor 144 ensures that the drawer 50 is in a fully closed position and therefore, that containers of biological fluid are substantially within the field of light provided by lamps 100. If the drawer is not in a fully closed position, sensor 144 sends a signal to the microprocessor, alerting the operator and preventing treatment from proceeding.
Light box 10 may further include temperature sensors 145 for either directly or indirectly monitoring and measuring the temperature within fluid treatment chamber 40. Temperature sensor may be disposed within the fluid treatment chamber 40 or, as shown in
Additional sensors may be provided, including a sensor for monitoring the agitation provided by the agitation assembly. Sensor 430 may be attached to marker subassembly 74, as shown in
Light box 10 may also include a sensor 440 to detect whether the front door of the light box is closed during treatment. Door sensor may be a magnetic switch which detects contact between door 36 and magnetic plate 441 shown in FIG. 3. Also, plunger switch 36a (
Light box 10 may also include sensors 450 for determining whether containers are in position for marking by markers 76. As shown in
In addition, a portable and attachable light intensity sensing, verification and calibration device or radiometer 460 may be provided to verify light intensity provided by light box 10 and for calibration of light box 10. Radiometer 460 may be adapted for placement within fluid treatment chamber 40 for measuring the energy dose delivered to the biological fluid. More specifically, radiometer 460 may be adapted for placement within the fluid container carrying tray 90. In one embodiment, radiometer 460 may be adapted for placement within a compartment of tray 90 such as first compartment 188 of tray 90.
As shown in
It is known that a light source may not always uniformly emit light. For example, depending on the age of the lamp, the intensity of light emitted from one part of the lamp may not be the same as the intensity emitted from another part of the lamp. Accordingly, in a preferred embodiment, as shown in
An electrical cord (not shown) is attached to radiometer 460 for electrical connection to light box 10 and, for example, port 461 (FIG. 5). This allows radiometer 460 to transmit data to the computer-based control system of light box 10, which system provides information to the operator and/or automatically takes action based on the transmitted data. Radiometer 460 may also include a slit 472 for placement over tab 186 in tray 90 of light box 10.
Sensors 469 may typically be photodiodes capable of detecting light of selected wavelengths. Sensors 469 may also include or be used with filters to filter out unwanted light as substantially described above.
When used in connection with light box 10, it is preferred that the dimensions of radiometer 460 be substantially equivalent to the dimensions of the fluid-filled containers used with light box 10. Accordingly, it is preferred that the light sensing area of radiometer 460 have a height, a width and a thickness substantially equal to such filled containers. A radiometer with dimensions substantially equal to the fluid-filled container provides a reliable approximation of the energy being delivered to the fluid and of the effectiveness of the treatment.
As set forth above, radiometer 460 may be used for light intensity verification by, for example, the operator and for calibration of light box 10 generally and more specifically, of internal sensors 404. In accordance with the method of using radiometer 460 for light intensity verification, the operator may place radiometer 460 in first compartment 188 of tray 90. Cord may be pressed into strain relief tabs 474 within light box 10 (FIG. 8). The fluid carrying drawer 50 is inserted into fluid treatment chamber 40 and door 36 is closed. Lamps 100 are turned on and the light delivered is measured by sensors 469. Specifically, the light measured by sensors 469 is processed by the system's microprocessor to provide a reading of the energy being provided to the fluid treatment chamber 40. The operator can monitor the output of lamps 100 and determine any diminishment in the lamp output by comparing the reading to a pre-set acceptable energy dose range. In addition, the readings provided by sensors 469 are also compared to the readings provided by sensors 404 to detect any diminished sensing capability of sensors 404.
Thus, for example if the energy dose measured by radiometer 460 is substantially equal to the energy dose detected by sensors 404, but is outside the pre-set dose range, this may be an indication that the output of lamps 100 has diminished and that lamps 100 may have to be replaced. Alternatively, if the energy dose as measured by radiometer 460 is substantially equal to the expected pre-set dose of the instrument, but both are different from the energy dose as measured by sensors 404, this may be an indication that sensing capability of sensors 404 has diminished. Finally, if the dose as measured by sensors 404 is substantially equal to the expected pre-set dose, but different than the energy dose as measured by radiometer 460, this may indicate that the sensing capability of radiometer 460 has diminished. Radiometer may also be used to calibrate light box 10. Radiometer 460 itself may be calibrated against a standard (e.g. a standard from the National Institute for Standards and Technology or NIST).
Of course, it will be appreciated that radiometer 460 may have utility in other applications and is not limited to use in the apparatus or methods of the present invention. Indeed, radiometer 460 may be used whenever light is to be measured over an extended surface area.
The components of the fluid treatment module 28 including the agitator assembly, the light sources, the blower, the marker subassembly are powered by power supplies a shown in FIG. 14. (In
Finally, light box 10 includes a programmable computer software-based control system to control the operation of light box. The control system is generally and diagrammatically depicted in
Disposable processing sets useful with light box 10 are shown in
One embodiment of a disposable fluid processing set 200 is shown in FIG. 15. Processing set 200 includes a container 202, a container 206, a container 210 and a container 214. The containers may be integrally interconnected with tubing segments as generally shown and described in detail below. The sizes and internal volumes of containers 202, 206, 210 and 214 may vary depending on the biological fluid being processed. In non-limiting example, container 202 may be capable of holding approximately 15-30 ml of fluid, containers 202 and 210 approximately 1000 ml and container 214 between approximately 1000-1500 ml. Of course, other desirable sizes and volumes may be used and are within the scope of the present invention.
Where the disposable processing set is used in or as part of a pathogen inactivation treatment, container 202 may include, for example, a photochemical agent which is mixed with the biological fluid. Examples of such photochemical agents include psoralen compounds described in U.S. Pat. No. 5,709,991 and compounds from the family of phenothiazine dyes such as, but not limited to, methylene blue. Container 202 may be made of any material suitable for holding such photochemical agents. One such material may be a blend of ethylene polypropylene, polyamide and a block copolymer of ethylene and butylene with terminal blocks of polystyrene. Containers made of such material are available from Baxter Healthcare Corporation under the name PL2411. Container 202 includes a tubing segment 203 extending therefrom and having a sealed end 204. A second tubing 205 extending from container 202 is integrally connected to container 206. In another embodiment, the photochemical agent may be contained or predisposed within container 206, thereby eliminating the need for a separate container 202 for holding the photochemical agent. In still another embodiment, the photochemical agent may be combined with the biological fluid prior to joinder to the disposable processing set. For example, the photochemical agent may be included in a container 201 used to hold the biological fluid collected from a donor (FIG. 17).
Container 206 is preferably a container suitable for holding the biological fluid during light treatment. Accordingly, it is desirable that container 206 be made of a clear, durable, thermoplastic material that is translucent to light of the selected wavelength and sterilizable by known forms of sterilization including steam sterilization, gamma and electron beam radiation. For example, where the blood product to be treated includes blood platelets or blood plasma and the treatment is to be with light in the UVA range, container is made of a material that is substantially translucent to UVA light and remains stable after sterilization. Such materials may include polyvinyl chloride, but more preferably, may be blends of thermoplastic polymers and copolymers, including general purpose polymers, elastomers and the like. One such material includes the block copolymer described above which includes a central block of ethylene and butylene and terminal blocks of polystyrene. Block copolymers of the type described above are available from the Shell Chemical Company under the name KRATON. The block copolymer may be blended with other polymers such as ultra low density polyethylene (ULDPE) and ethylene vinyl acetate (EVA). Containers made of the blended material are available from Baxter Healthcare Corporation of Deerfield, Ill. under the name PL-2410. Other thermoplastic materials may also be suitable for container 206, including materials including KRATON, EVA, and polypropylene. A container made from such material is also available from Baxter Healthcare Corporation under the name PL-732. Still other suitable materials for container 206 include fluoropolymers such as polytetrafluoroethylene (PTFE), PFA or copolymers including such fluoropolymers.
Container 206 further includes a slit 207 which, as described above, may be placed over retaining tab 186 in tray 90. Container 206 includes a tubing segment 208 which may be integrally connected to a container 210.
In the pathogen inactivation of biological fluid, container 210 may, for example, include an adsorbent material 211 for removing excess photochemical agent or the byproducts of the photoactivation process. The adsorbent material may be contained in a semi-permeable pouch, preferably affixed to the container walls or portions thereof within the interior chamber of container 210. The interior chamber of container 210 has a volume sufficient to hold the biological fluid from container 206. Such a container and the adsorbent material are disclosed in more detail in copending patent application entitled “Plastic Containers Having Inner Pouches and Methods for Making Such Containers” which is being filed simultaneously herewith in the names of Mahmood Mohiuddin, George D. Cimino and Derek J. Hei, and is incorporated by reference in its entirety. Materials such as those used in the PL-2410 and PL-732 containers described above are suitable for use in container 210.
Container 210 may also include a time-sensitive tape 209. Tape 209 changes color with time, thus informing the operator if the biological fluid has contacted the adsorbent material for a sufficient period of time. Container 210 may be integrally connected by tubing segment 211 to another container 214 which may be suitable for storage of the biological fluid. As shown in
Container 214 may include and/or be capable of receiving a label 216 which may carry bar codes 222 or other indicia which provide information about the biological fluid. For example, bar codes 222 may identify the donor, the product, the lot number of the biological fluid, expiration date and the like. Container 214 may include additional bar codes or indicia 224 which are used to provide information regarding the status or progress of the fluid treatment (described in more detail below). Container 214 may also include a slit 226 and/or apertures 228, 230 for placement over corresponding pegs (193) on tray 90. Materials such as those described above are suitable for use in container 214. Container 214 may also include sampling pouches 214a and access ports 214b to allow for fluid access during later transfusion, as will be recognized by those of ordinary skill.
In an alternative embodiment, disposable processing set may include a single container for housing the adsorbent material of container 210 and for storing the biological fluid, thereby combining the functions of container 210 and 214 described above.
The disposable processing set 200 described herein may further include frangible members 230(a-c) disposed within tubing segments as shown in FIG. 15. Frangible members 230 are broken at the appropriate time to establish fluid communication between the containers of the processing set 200. Such frangible connectors are described in detail in U.S. Pat. No. 4,294,297 which is incorporated by reference herein. Tubing segments of disposable processing set 200 may further include indicators 234a and 234b on the tubing to indicate proper positioning of the disposable processing set within the tray 90 (as will be described more detail below) and/or to serve as indicators of where tubing is to be severed and sealed. In one embodiment, indicators 234 may be plastic rings disposed around tubing segments. Of course, other tubing indicating means may be used.
Another embodiment of a fluid processing set is shown in FIG. 16. In
In contrast to the container 210 of the earlier described embodiment, container 246 is a flow through device which includes adsorbent material 212 but does not include a chamber for holding the biological fluid for any significant period of time. Such flow through devices are described in International Publication No. WO 96/40857 which is incorporated by reference herein. Disposable processing set 240 may further include an air reservoir 256 and air sink 258. Air reservoir 256 provides air to help expel biological fluid from container 244 and air sink 258 receives excess air expelled from storage container 248 after processing. Air reservoir 256 and air sink 258 may be made of any suitable biocompatible material, including the materials described above. Likewise, the containers of disposable processing set 240 may also be made from the materials generally described above. Preferably, container 256 is substantially impermeable to air.
As in the embodiment of
Disposable processing set 200 (or 240) is typically provided to the user in a sealed package in a manner that is easy for the user to unpack and use. For example, upon opening the package, it is preferred that the container to be used first in the fluid processing be located near the top of the package. For example, in the processing set 200 shown in
In a preferred embodiment, containers 210 and 214 may be contained within or held together by a holder. Holder may be any device such as a clamp that holds together containers 210 and 214. The holder may be integral with the disposable processing set or may be provided separately.
More preferably, holder 260, shown in
Alternative embodiments of holder 260 are shown in
In one embodiment, container 210 is placed in the front portion of holder 260, such that a label to be applied to the container 210 and other indicia on the container itself are exposed to the outside environment through the open portion of holder 260 as shown in FIG. 17. For purposes of illustration, in
The method of processing fluid using disposable processing set 200 (or 240) and treating a biological fluid with light in, for example, light box 10 will now be described. Although the following description will be provided in the context of processing the biological fluid for subsequent inactivation of pathogens in the biological fluid, it should be understood that many of the steps described below may also be carried out in other fluid processing and treating methods that do not involve pathogen inactivation. The following description will be provided using the disposable processing set of
In accordance with the method of processing a biological fluid such as blood using the processing set 200, a container of collected blood or biological fluid is provided. Although the method of collection is beyond the scope of the present application, representative methods of collecting blood products include the automated and manual centrifugal processing, separation and collection of blood products, membrane separation of blood products and the like. One example of a centrifugal blood processing system is the AMICUS® Separator sold by Baxter Healthcare Corporation.
Regardless of the collection method, containers of the collected blood product will typically bear a label that includes information identifying the donor, the blood product and lot numbers. Most typically, such information is presented in the form of one or more bar codes on the label which can be scanned and read by bar code reader, such as bar code reader 41 of light box 10. Such labels may be removable and transferable to container 214 of the disposable processing set 200.
Typically, the collection container will include a tubing segment extending therefrom. Accordingly, tubing from the collection container 201 and tubing segment 203 from the disposable processing set 200 are brought together and joined in a sterile manner, as shown generally in
Once tubing segments have been joined, frangible member 230a is broken to provide an open flow path from the collection container 201 to the container 206 (FIG. 15). Photochemical agent from container 202 is also allowed to flow into container 206. After fluid transfer to container 206, tubing segment may be severed and sealed and the portion of the disposable processing set that included container 202 and the collection container(s) 201 are discarded. Indicator 234a provides a reference point as to where the tubing is to be severed. It is preferable that the indicator be placed as close as possible to the container 206 so that most of the biological fluid is retained within container 206 where it is most likely to be mixed and treated.
Before or after placement of the disposable processing set in tray 90, operator may scan the label and other container indicia with bar code reader 41. Bar codes 222 on the main container label 216 or the container itself provide the instrument with information regarding the biological fluid to be treated. Based on the data, the light treating instrument or operator prescribes the light dosage and then calculates the duration of the treatment.
Container 206 of disposable processing set 200 is typically placed in first compartment of tray 90. Slit 207 in container 206 is placed over retaining tab 186 in first compartment 188 and holder 260 with containers placed therein are placed within the second compartment 190 of tray 90. Slits and/or apertures in container 216 are likewise placed over retaining tabs or pegs 193 in second compartment 190. Tubing connecting container 2 with container 210 (and/or 214) may be pressed into a slot in wall 192. It is preferable that the tubing positioned parallel to the direction of the side-to-side oscillation provided by the agitator assembly described above. This further ensures that any fluid within tubing segment 208 is also mixed. Indicator 234b not shown serves as a reference point for severance of the tubing but also serves as a reference point for container placement by ensuring that substantially the entire container and biological fluid therein is within the field of light. The indicator has a diameter greater than the width of the slot.
Once the containers are in their respective compartments of tray 90, fluid carrying drawer 50 is closed. As set forth above, plunger switch 36a (
Light box 10 includes a programmable computer software-based control system to control the operation of light box 10. The control system is generally and diagrammatically depicted in
For example as shown in
If the treatment function 306 is selected, the control system, through the programmed software will automatically determine if treatment is appropriate and more particularly, if the light box 10 is prepared for treatment as shown in FIG. 20A. Thus, for example, if the system detects a failure in the light source, or a failure in one of the sensors or other equipment, treatment will not be enabled and would not proceed until the condition is remedied. If treatment is enabled however, the system will prompt the operator to input his or her unique identifier 314 and then request the input of container (i.e. biological fluid) information 316. Container information may be input manually or by scanning bar codes 222 on, for example, container 214 shown in FIG. 15. If treatment is appropriate, the system proceeds to the next function or phase as generally shown in FIG. 20B.
As shown in
After containers have been placed into tray 90, to commence treatment the system activates the light source(s) 100, shaker motor 92 and fans as shown in step 328 of FIG. 21. The instrument may display, for verification by the operator, information regarding the fluid to be treated and the treatment process generally. For example, in one embodiment, the instrument may display, the predetermined target dose of energy to be applied to containers, the selected treatment time and a running value of the dosage percent being applied to the biological fluid during the treatment as shown in 330. Treatment will continue unless terminated by the operator or automatically terminated by the instrument in response to an alarm condition.
In one embodiment, container may be marked by markers 76 at the beginning of treatment and after treatment is completed. The marks made by marker 76 obliterate or otherwise masks the bar code, making it unreadable. Thus, a container with two masked bar codes 224 indicates that treatment has been successfully completed. On the other hand, if only one of the bar codes 224 has been masked, this serves as an indication that treatment was not successfully completed and the container may have to be discarded. Masking of bar codes 224 by markers 76 also ensures that a treated container will not be treated again.
During treatment, the system performs an energy calculation 332 which is computed by multiplying the light intensity sensor readings by preselected calibration factors, averaging the readings across the sensors in the same chamber and plane and adding the reading received for planes in the same chamber. The control system further verifies the treatment status 334. If treatment is completed, the system will automatically turn off lamps 100 as shown in 336.
The system may automatically update information on the lamp life as shown in 337 and update container records 338. Control system may continue to power shaker motor 92 until terminated. The results may be transmitted to a central computer 502 (FIG. 14). After treatment, the system will prompt the operator to unload containers 342 and may prompt the user to perform another treatment, if desired, as shown in 325 in FIG. 20B. The process may be repeated as generally described above.
Treatment time and energy dosage will vary depending on the biological fluid to be treated. For example, the treatment time may be at least one minute but may also be less than one minute. Where light box 10 is used for the pathogen inactivation of biological fluid, the treatment may typically be anywhere between 1-30 minutes. For example, for the pathogen inactivation of blood platelets, treatment is typically between 1-10 minutes, but more typically approximately 3-4 minutes. For the pathogen inactivation of blood plasma, treatment may also preferably be approximately 3-4 minutes.
Energy per unit area, or energy flux, is the product of power per unit area or, in the case of radiant flux, at the target, and the time of exposure. Accordingly, the amount of energy per unit area delivered to the target (for example, in one embodiment, the biological fluid) will vary with the duration of exposure and the irradiance—the radiant power per unit area incident on the target. In one embodiment the total radiant energy flux delivered may be between approximately 1-100 J/cm2 measured across a wavelength range of between approximately 400-700 nm. In another embodiment, where the light source provides light generally in the ultraviolet range, the total radiant energy flux delivered to the biological fluid may preferably be between 1-20 Joules/cm2 measured across a wavelength range of between approximately 320-400 nm. In one specific embodiment, the total radiant energy flux delivered to blood platelets or blood plasma may be between approximately 1-5 J/cm2 and more typically approximately 3-4 J/cm2 measured across a wavelength range of between approximately 320-400 nm. Preferably, the energy should not be outside the predetermined range in that excess heat generated within fluid treatment chamber 40 is to be avoided. For light treatment of blood platelets and blood plasma, for example, temperature within chamber 40 should typically not exceed 37° C. If an external temperature sensor of the type described above is used, the ambient temperature should be between 18°-30° C.
During treatment, tray 90 is preferably agitated at a preset frequency. Of course, the frequency should not be so great so as to harm the biological fluid or components thereof. Typically, the tray 90 may be agitated between approximately 50-100 cycles/min and for blood platelets, more preferably, between approximately 55-80 cycles/per minute. A cycle is defined as one complete back and forth oscillation of drawer 80.
Once treatment has been successfully completed, fluid from container 206 may be transferred to container 210 by breaking frangible number 230b and opening the flow path between the containers 206 and 210 (FIG. 15). Once inside container 210, the biological fluid is allowed to contact the adsorbent material for a selected period of time. As noted above, in one embodiment, container 210 may also include time-sensitive tabs 209 which change color over time. This way, the operator will know if the container has been in contact with the adsorbent material for the appropriate period of time. The adsorbent material is selected to remove any residual photochemical agent or any by products of the photochemical process that may have been included in the biological fluid. The adsorbent material may include polystyrene beads or activated charcoal or other adsorbent material. Such materials are described in greater detail in International Publication No. WO 96/40857, incorporated by reference herein.
Alternatively, in the disposable processing set 240 shown in
The residence time, if any, of the biological fluid in container 210 (or 246) will be anywhere between approximately 30 seconds and 7 days. In addition, during contact of the biological fluid with the adsorbent material of container 210, it may be desirable to shake or otherwise agitate container 210 to ensure maximum contact with the adsorbent material.
Regardless of which disposable set is used, after the required residence time, if any, the biological fluid may be transferred to container 214 (or 248 in
In addition to the treatment function generally described above, the control system may prompt the operator to perform other functions such as the maintenance function 336 which may include printing a maintenance log 338, resetting lamp hours 340 resetting bag marker count 342. The operator may also select a system settings function 343 which allows the operator to set dates, times, languages 344, 346, 348. Finally, the control system may allow the operator to perform certain container management functions such as transmitting or printing container records or overwriting container records 350, 352, 354 as generally depicted in FIG. 22.
Alternatively, the diagnostics function shown in general in
It will be appreciated that various modifications of the embodiments and methods described herein are possible in accordance with the scope of the present invention which are set forth in the appended claims.
This is a continuation of U.S. patent application Ser. No. 09/325,325, filed Jun. 3, 1999, now U.S. Pat. No. 6,565,802.
Number | Name | Date | Kind |
---|---|---|---|
2937279 | Artandi et al. | May 1960 | A |
3078182 | Crone, Jr. et al. | Feb 1963 | A |
3221741 | LeVeen | Dec 1965 | A |
3346464 | Ernst | Oct 1967 | A |
3692493 | Terasaki | Sep 1972 | A |
3698494 | Gaudin | Oct 1972 | A |
3924700 | Lindsey et al. | Dec 1975 | A |
4035304 | Watanabe | Jul 1977 | A |
4066556 | Vaillancourt | Jan 1978 | A |
4073723 | Swank et al. | Feb 1978 | A |
4092246 | Kummer | May 1978 | A |
4121714 | Daly et al. | Oct 1978 | A |
4162676 | Talcott | Jul 1979 | A |
4194622 | Lewis | Mar 1980 | A |
4235233 | Mouwen | Nov 1980 | A |
4294247 | Carter et al. | Oct 1981 | A |
4321232 | Bithell | Mar 1982 | A |
4348357 | Bithell | Sep 1982 | A |
4396383 | Hart | Aug 1983 | A |
4411866 | Kanno | Oct 1983 | A |
4437472 | Naftulin | Mar 1984 | A |
4458733 | Lyons | Jul 1984 | A |
4484920 | Kaufman et al. | Nov 1984 | A |
4507114 | Bohman et al. | Mar 1985 | A |
4608255 | Kahn et al. | Aug 1986 | A |
4726949 | Miripol et al. | Feb 1988 | A |
4776455 | Anderson et al. | Oct 1988 | A |
4816221 | Harvey et al. | Mar 1989 | A |
4834743 | Valerio | May 1989 | A |
4866282 | Miripol et al. | Sep 1989 | A |
4877964 | Tanaka et al. | Oct 1989 | A |
4878891 | Judy et al. | Nov 1989 | A |
4880425 | Kuhlemann et al. | Nov 1989 | A |
4900321 | Kaufman et al. | Feb 1990 | A |
4921473 | Lee et al. | May 1990 | A |
4952812 | Miripol et al. | Aug 1990 | A |
4976707 | Bodicky et al. | Dec 1990 | A |
4976851 | Tanokura et al. | Dec 1990 | A |
4997083 | Loretti et al. | Mar 1991 | A |
5019256 | Ifill et al. | May 1991 | A |
5024536 | Hill | Jun 1991 | A |
5030200 | Judy et al. | Jul 1991 | A |
5049146 | Bringham et al. | Sep 1991 | A |
5057429 | Watanabe et al. | Oct 1991 | A |
5080747 | Veix | Jan 1992 | A |
5087636 | Jamieson et al. | Feb 1992 | A |
5096813 | Krumhar et al. | Mar 1992 | A |
5100401 | Patel | Mar 1992 | A |
5120499 | Baron | Jun 1992 | A |
5120649 | Horowitz et al. | Jun 1992 | A |
5133932 | Gunn et al. | Jul 1992 | A |
5147330 | Kogel | Sep 1992 | A |
5176634 | Smith et al. | Jan 1993 | A |
5184020 | Hearst et al. | Feb 1993 | A |
5269946 | Goldhaber et al. | Dec 1993 | A |
5288605 | Lin et al. | Feb 1994 | A |
5288647 | Zimlich, Jr. et al. | Feb 1994 | A |
5290221 | Wolf, Jr. et al. | Mar 1994 | A |
5300019 | Bischof et al. | Apr 1994 | A |
5304113 | Sieber et al. | Apr 1994 | A |
5354262 | Boehringer et al. | Oct 1994 | A |
5373966 | O'Reilly et al. | Dec 1994 | A |
5395591 | Zimlich, Jr. et al. | Mar 1995 | A |
5405343 | Mohr | Apr 1995 | A |
5427695 | Brown | Jun 1995 | A |
5443987 | DeCicco et al. | Aug 1995 | A |
5446289 | Shodeen et al. | Aug 1995 | A |
5459030 | Lin et al. | Oct 1995 | A |
5459322 | Warkentin | Oct 1995 | A |
5462526 | Barney et al. | Oct 1995 | A |
5476634 | Bridges et al. | Dec 1995 | A |
5482828 | Lin et al. | Jan 1996 | A |
5503721 | Hearst et al. | Apr 1996 | A |
5507525 | Leuenberger | Apr 1996 | A |
5514106 | D 'Silva | May 1996 | A |
5527704 | Wolf, Jr. et al. | Jun 1996 | A |
5536238 | Bischof | Jul 1996 | A |
5543062 | Nishimura | Aug 1996 | A |
5545516 | Wagner | Aug 1996 | A |
5557098 | D 'Silva | Sep 1996 | A |
5560403 | Balteau et al. | Oct 1996 | A |
5562836 | Joie et al. | Oct 1996 | A |
5569928 | Lee et al. | Oct 1996 | A |
5571666 | Floyd et al. | Nov 1996 | A |
5593823 | Wollowitz et al. | Jan 1997 | A |
5606169 | Hiller et al. | Feb 1997 | A |
5609820 | Bridges et al. | Mar 1997 | A |
5627426 | Whitman et al. | May 1997 | A |
5637451 | Ben-Hur et al. | Jun 1997 | A |
5658722 | Margolis-Nunno et al. | Aug 1997 | A |
5683661 | Hearst et al. | Nov 1997 | A |
5691132 | Wollowitz et al. | Nov 1997 | A |
5695489 | Japuntich | Dec 1997 | A |
5709991 | Lin et al. | Jan 1998 | A |
5724988 | Dennehey et al. | Mar 1998 | A |
5762867 | D'Silva | Jun 1998 | A |
5772644 | Bark et al. | Jun 1998 | A |
5772880 | Lynn et al. | Jun 1998 | A |
5785700 | Olson | Jul 1998 | A |
5786598 | Clark et al. | Jul 1998 | A |
5789150 | Margolis-Nunno et al. | Aug 1998 | A |
5792133 | Rochat | Aug 1998 | A |
5814523 | Zimlich, Jr. et al. | Sep 1998 | A |
5824216 | Joie et al. | Oct 1998 | A |
5843049 | Heilmann et al. | Dec 1998 | A |
5858015 | Fini | Jan 1999 | A |
5858641 | Shanbrom | Jan 1999 | A |
5868695 | Wolf, Jr. et al. | Feb 1999 | A |
5869341 | Woodaman | Feb 1999 | A |
5908742 | Lin et al. | Jun 1999 | A |
5910138 | Sperko et al. | Jun 1999 | A |
5922278 | Chapman et al. | Jul 1999 | A |
5925885 | Clark et al. | Jul 1999 | A |
5928213 | Barney et al. | Jul 1999 | A |
5935092 | Sun et al. | Aug 1999 | A |
5951509 | Morris | Sep 1999 | A |
5954527 | Jhuboo et al. | Sep 1999 | A |
5965349 | Lin et al. | Oct 1999 | A |
6158319 | D'Silva | Dec 2000 | A |
6190609 | Chapman et al. | Feb 2001 | B1 |
6245570 | Grimm et al. | Jun 2001 | B1 |
6433343 | Cimino et al. | Aug 2002 | B1 |
6663829 | Kjellstrand | Dec 2003 | B1 |
Number | Date | Country |
---|---|---|
B-6339190 | Apr 1991 | AU |
0 047 462 | Mar 1982 | EP |
184 331 | Jun 1986 | EP |
0 196 515 | Oct 1986 | EP |
0 422 007 | Apr 1991 | EP |
0 425 593 | May 1991 | EP |
0 491 757 | Jul 1992 | EP |
0 516 836 | Dec 1992 | EP |
0 517 899 | Dec 1992 | EP |
0526 678 | Feb 1993 | EP |
0 580 176 | Jan 1994 | EP |
0 658 355 | Jun 1995 | EP |
0 660 665 | Jul 1995 | EP |
0 664 134 | Jul 1995 | EP |
0 683 671 | Nov 1995 | EP |
0 762 893 | Mar 1997 | EP |
PCTUS0014924 | Jul 2001 | EP |
WO 9206696 | Apr 1992 | WO |
WO 9219284 | Apr 1992 | WO |
WO 0211057 | Jul 1992 | WO |
WO 0213621 | Aug 1992 | WO |
WO 9600091 | Jan 1996 | WO |
WO 9640857 | Dec 1996 | WO |
WO 9718844 | May 1997 | WO |
WO 9743915 | Nov 1997 | WO |
WO 9822150 | May 1998 | WO |
WO 9822163 | May 1998 | WO |
WO 9828607 | Jul 1998 | WO |
WO 9830327 | Jul 1998 | WO |
WO 9906529 | Feb 1999 | WO |
WO 0025581 | May 2000 | WO |
WO 0047240 | Aug 2000 | WO |
WO 0059551 | Oct 2000 | WO |
WO 0074806 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030035751 A1 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09325325 | Jun 1999 | US |
Child | 10207744 | US |