This disclosure relates generally to semiconductor devices, and more specifically to semiconductor memory devices. In particular, the disclosure relates to volatile memory, such as dynamic random access memory (DRAM). Information may be stored on individual memory cells of the memory as a physical signal (e.g., a charge on a capacitive element). The memory may be a volatile memory, and the physical signal may decay over time (which may degrade or destroy the information stored in the memory cells). It may be necessary to periodically refresh the information in the memory cells by, for example, rewriting the information to restore the physical signal to an initial value.
As memory components have decreased in size, the density of memory cells has greatly increased. Typically, memory cells are arranged in an array that includes a series of rows referred to as word lines and columns referred to as bit lines. An auto-refresh operation may be carried out where the memory cells of one or more word lines are periodically refreshed to preserve data stored in the memory cells. Repeated access to a particular memory cell or group of memory cells, such as a word line, may cause an increased rate of data degradation in nearby memory cells (e.g., adjacent word lines). This repeated access is often referred to as a ‘row hammer.’ To preserve the data in nearby memory cells, the word lines of the nearby memory cells may need to be refreshed at a rate higher than a rate of the auto-refresh operations. However, extra refresh operations increase power consumption and may interfere with other memory operations. Accordingly, reducing extra refresh operations is desired.
The following description of certain embodiments is merely exemplary in nature and is in no way intended to limit the scope of the disclosure or its applications or uses. In the following detailed description of embodiments of the present systems and methods, reference is made to the accompanying drawings which form a part hereof, and which are shown by way of illustration specific embodiments in which the described systems and methods may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice presently disclosed systems and methods, and it is to be understood that other embodiments may be utilized and that structural and logical changes may be made without departing from the spirit and scope of the disclosure. Moreover, for the purpose of clarity, detailed descriptions of certain features will not be discussed when they would be apparent to those with skill in the art so as not to obscure the description of embodiments of the disclosure. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the disclosure is defined only by the appended claims.
A memory device may include a plurality of memory cells. The memory cells may store information (e.g., as one or more bits), and may be organized at the intersection of word lines (rows) and bit lines (columns). A number of word lines and bit lines may be organized into a memory bank. The memory device may include a number of different memory banks. The memory device may receive one or more command signals which may indicate operations in one or more of the banks of one or more memory packages. For example, the memory device may enter a refresh mode, in which word lines in one or more of the memory banks are refreshed.
Information in the memory cells may decay over time. The memory cells may be refreshed on a row-by-row (e.g., word line-by-word line) basis to preserve information in the memory cells. During a refresh operation, the information in one or more rows may be rewritten back to the respective word line to restore an initial value of the information. Repeated access to a given word line (e.g., an aggressor word line) may cause an increased rate of information decay in one or more neighboring word lines (e.g., victim word lines). In some applications, victim word lines may be considered to be the word lines which are physically adjacent to the aggressor word line. For example, victim word lines may be physically adjacent to the aggressor word line, that is, the victim word lines may be physically on either side of the aggressor word line (e.g., R+1 and R−1). In some embodiments, the word lines which are physically adjacent to the adjacent word lines (e.g., R+2 and R−2) may also be treated as victim word lines. In some applications, such as memories where word lines are densely spaced, more distant word lines may also be considered as victim word lines (e.g., R+3, R−3, R+4, R−4, etc.). Other relationships between victim and aggressor word lines may be used in other example embodiments.
Accesses to different word lines of the memory may be tracked in order to determine if a word line is an aggressor word line. For example, the row address of the accessed word lines and/or aggressor word lines may be stored in a register (e.g., file) or other storage device in the memory. If a word line is determined to be an aggressor word line, victim addresses associated with the victim word lines may be determined based, at least in part, on a row address of the aggressor word line. In some embodiments, the victim word lines (e.g., R+1, R−1, R+2, and R−2) may be refreshed as part of a targeted (or ‘row hammer’) refresh operation and thus there may be, for example, four victim addresses refreshed for each determined aggressor row address. A row address for a victim word line refreshed during a targeted refresh operation may be referred to as a targeted refresh address.
In some embodiments, some time slots for refresh operations may be reserved for auto-refresh operations and some time slots may be reserved for targeted refresh operations. In some embodiments, a targeted refresh address may be issued in a time slot which would otherwise have been assigned to an auto-refresh address (e.g., “steal”) if no row hammer management was needed. In some embodiments, certain refresh time slots may be reserved for targeted refresh addresses. These time slots may be referred to as targeted refresh time slots. The time period between time slots reserved for targeted refresh addresses may be referred to as the targeted refresh rate or steal rate.
Different victim word lines of an aggressor word line may not be affected in the same manner by a row hammer. For example, victim word lines closer to the aggressor word line (e.g., adjacent victim word lines, R+/−1) may suffer a higher rate of data degradation than more distant victim word lines (e.g., R+/−2). Accordingly, it may be desirable to perform targeted refresh operations on different victim word lines at different rates. For example, the R+/−1 victim word lines may be refreshed at four times the rate of the refreshing of R+/−2 victim word lines. In another example, the R+/−1 victim word lines may be refreshed at eight times the rate of the refreshing of R+/−2 victim word lines. In some applications, it may be desirable to be able to adjust the targeted refresh rate of the different victim word lines independently from one another. That is, the targeted refresh rate of R+/−2 may not depend on the targeted refresh rate of R+/−1. This may allow the targeted refresh rates for each type of victim word line to be optimized, which may reduce over-refreshing of the word lines.
The present disclosure is drawn to apparatuses and methods for controlling targeted refresh rates (e.g., steal rates). More specifically, the present disclosure is drawn to apparatuses and methods for independently controlling the steal rates for different victim word lines, such as victim word lines that have different physical distances from an aggressor word line. In some embodiments, a refresh control circuit may include two or more timing circuits to allow independent control of the steal rates for different victim word lines.
The semiconductor device 100 includes a memory array 112. In some embodiments, the memory array 112 may include of a plurality of memory banks. Each memory bank includes a plurality of word lines WL, a plurality of bit lines BL and /BL, and a plurality of memory cells MC arranged at intersections of the plurality of word lines WL and the plurality of bit lines BL and /BL. The selection of the word line WL is performed by a row control circuit 108 and the selection of the bit lines BL and /BL is performed by a column control circuit 110. In some embodiments, there may be a row control circuit 108 and column control circuit 110 for each of the memory banks.
The bit lines BL and /BL are coupled to a respective sense amplifier (SAMP) 117. Read data from the bit line BL or /BL is amplified by the sense amplifier SAMP 117, and transferred to read/write amplifiers 120 over complementary local data lines (LIOT/B), transfer gate (TG) 118, and complementary main data lines (MIO). Conversely, write data outputted from the read/write amplifiers 120 is transferred to the sense amplifier 117 over the complementary main data lines MIO, the transfer gate 118, and the complementary local data lines LIOT/B, and written in the memory cell MC coupled to the bit line BL or /BL.
The semiconductor device 100 may employ a plurality of external terminals that include command and address (C/A) terminals coupled to a command and address bus to receive commands and addresses, clock terminals to receive clocks CK and /CK, data terminals DQ to provide data, and power supply terminals to receive power supply potentials VDD, VSS, VDDQ, and VSSQ.
The clock terminals are supplied with external clocks CK and /CK that are provided to a clock input circuit 122. The external clocks may be complementary. The clock input circuit 122 generates an internal clock ICLK based on the CK and /CK clocks. The ICLK clock is provided to the command control circuit 106 and to an internal clock generator circuit 124. The internal clock generator circuit 124 provides various internal clocks LCLK based on the ICLK clock. The LCLK clocks may be used for timing operation of various internal circuits. The internal data clocks LCLK are provided to the input/output circuit 126 to time operation of circuits included in the input/output circuit 126, for example, to data receivers to time the receipt of write data.
The C/A terminals may be supplied with memory addresses. The memory addresses supplied to the C/A terminals are transferred, via a command/address input circuit 102, to an address decoder circuit 104. The address decoder circuit 104 receives the address and supplies a decoded row address XADD to the row control circuit 108 and supplies a decoded column address YADD to the column control circuit 110. The row address XADD may be used to specify one or more word lines WL of the memory array 112 and the column address YADD may specify one or more bit lines BL of the memory array 112. The address decoder circuit 104 may also provide a bank address BADD, which specifies a particular bank of the memory. The bank address BADD may be provided to the row control circuit 108 and/or column control circuit 110 to direct access operations to one or more of the banks. The C/A terminals may be supplied with commands. Examples of commands include timing commands for controlling the timing of various operations, access commands for accessing the memory, such as read commands for performing read operations and write commands for performing write operations, as well as other commands and operations. The access commands may be associated with one or more row address XADD, column address YADD, and/or bank address BADD to indicate the memory cell(s) to be accessed.
The commands may be provided as internal command signals to a command control circuit 106 via the command/address input circuit 102. The command control circuit 106 includes circuits to decode the internal command signals to generate various internal signals and commands for performing operations. For example, the command control circuit 106 may provide a row command signal to select a word line and a column command signal to select a bit line.
The device 100 may receive an access command which is a row activation command ACT. When the row activation command ACT is received, a row address XADD is timely supplied with the row activation command ACT.
The device 100 may receive an access command which is a read command. When a read command is received, a bank address BADD and a column YADD address are timely supplied with the read command, read data is read from memory cells in the memory array 112 corresponding to the row address XADD and column address YADD. The read command is received by the command control circuit 106, which provides internal commands so that read data from the memory array 112 is provided to the read/write amplifiers 120. The read data is output to outside from the data terminals DQ via the input/output circuit 126.
The device 100 may receive an access command which is a write command. When the write command is received, a bank address and a column address are timely supplied with the write command, write data supplied to the data terminals DQ is written to a memory cells in the memory array 112 corresponding to the row address and column address. The write command is received by the command control circuit 106, which provides internal commands so that the write data is received by data receivers in the input/output circuit 126. Write clocks may also be provided to the external clock terminals for timing the receipt of the write data by the data receivers of the input/output circuit 126. The write data is supplied via the input/output circuit 126 to the read/write amplifiers 120, and by the read/write amplifiers 120 to the memory array 112 to be written into the memory cell MC.
The device 100 may also receive commands causing it to carry out refresh operations. A refresh signal AREF may be a pulse signal which is activated when the command control circuit 106 receives a signal which indicates a refresh command. In some embodiments, the refresh command may be externally issued to the memory device 100. In some embodiments, the refresh command may be periodically generated by a component of the device. In some embodiments, when an external signal indicates a self-refresh entry command, the refresh signal AREF may also be activated. The refresh signal AREF may be activated once immediately after command input, and thereafter may be cyclically activated at a desired internal timing. Thus, refresh operations may continue automatically. A self-refresh exit command may cause the automatic activation of the refresh signal AREF to stop and return to an IDLE state.
The refresh control circuit 116 supplies a refresh row address RXADD to the row control circuit 108, which may refresh one or more word lines WL indicated by the refresh row address RXADD. The refresh control circuit 116 may control a timing of the refresh operation based on the refresh signal AREF. In some embodiments, responsive to an activation of AREF, the refresh control circuit 116 may generate one or more activations of a pump signal, and may generate and provide a refresh address RXADD for each activation of the pump signal (e.g., each pump).
One type of refresh operation may be an auto-refresh operation. Responsive to an auto-refresh operation the memory bank may refresh a word line or a group of word lines of the memory, and then may refresh a next word line or group of word lines of the memory bank responsive to a next auto-refresh operation. The refresh control circuit 116 may provide an auto-refresh address as the refresh address RXADD which indicates a word line or a group of word lines in the memory bank. The refresh control circuit 116 may generate a sequence of refresh addresses RXADD such that over time the auto-refresh operation may cycle through all the word lines WL of the memory bank. The timing of refresh operations may be such that each word line is refreshed with a frequency based, at least in part, on a normal rate of data degradation in the memory cells (e.g., auto-refresh rate).
Another type of refresh operation may be a targeted refresh operation. As mentioned previously, repeated access to a particular word line of memory (e.g., an aggressor word line) may cause an increased rate of decay in neighboring word lines (e.g., victim word lines) due, for example, to electromagnetic coupling between the word lines. In some embodiments, the victim word lines may include word lines which are physically adjacent to the aggressor word line. In some embodiments, the victim word lines may include word lines further away from the aggressor word line. Information in the victim word line may decay at a rate such that data may be lost if they are not refreshed before the next auto-refresh operation of that word line. In order to prevent information from being lost, it may be necessary to identify aggressor word lines and then carry out a targeted refresh operation where a refresh address RXADD associated with one or more associated victim word lines is refreshed.
The refresh control circuit 116 may selectively output a targeted refresh address (e.g., a victim row address) or an automatic refresh address (e.g., auto-refresh address) as the refresh address RXADD. The auto-refresh addresses may be from a sequence of addresses which are provided based on activations of the auto-refresh signal AREF. The refresh control circuit 116 may cycle through the sequence of auto-refresh addresses at a rate determined by AREF. In some embodiments, the sequence of auto-refresh addresses may be generated by updating (e.g., incrementing) one or more portions of the previous auto-refresh address.
The refresh control circuit 116 may also determine targeted refresh addresses which are addresses that require refreshing (e.g., victim row addresses corresponding to victim word lines) based on the access pattern of nearby addresses (e.g., aggressor row addresses corresponding to aggressor word lines) in the memory array 112. The refresh control circuit 116 may selectively use one or more signals of the device 100 to calculate the refresh address RXADD. For example, the refresh address RXADD may be calculated based on the row addresses XADD provided by the address decoder circuit 104. The refresh control circuit 116 may receive the current value of the row address XADD provided by the address decoder circuit 104 and determine a targeted refresh address based on one or more of the received addresses XADD.
The refresh address RXADD may be provided with a timing based on a timing of the refresh signal AREF. The refresh control circuit 116 may have time slots corresponding to the timing of AREF, and may provide one or more refresh addresses RXADD during each time slot. A targeted refresh address may be issued in a time slot which would otherwise have been assigned to an auto-refresh address (e.g., “steal”). In some embodiments, certain time slots may be reserved for targeted refresh addresses. These time slots may be referred to as a targeted refresh intervals or targeted refresh time slots. The time period between time slots reserved for targeted refresh addresses may be referred to as the targeted refresh rate or steal rate.
In some embodiments, certain targeted refresh time slots may be reserved for refreshing a type of victim word line while other targeted refresh time slots may be reserved for refreshing another type of victim word lines. For example, certain targeted refresh time slots may be reserved for refreshing R+/−1 victim word lines and other targeted refresh time slots may be reserved for refreshing R+/−2 victim word lines. In some embodiments, the steal rates for the targeted refresh time slots for the different types of victim word lines may be different. In some embodiments, the steal rates for the targeted refresh time slots for the different types of victim word lines may be independent of one another.
The refresh control circuit 116 may receive the row addresses XADD provided by the address decoder circuit 104 and may determine which word lines are being hammered based on the row addresses XADD. For example, the refresh control circuit 116 may count accesses to the word lines and may determine which word lines are aggressors based on the count of the accesses (e.g., reach a threshold value). The row addresses XADD and access count values may be stored by the refresh control circuit 116. When an aggressor word line is determined, the refresh control circuit 116 may calculate victim word lines associated with the aggressor word line and perform targeted refresh operations as previously described.
The power supply terminals are supplied with power supply potentials VDD and VSS. The power supply potentials VDD and VSS are supplied to an internal voltage generator circuit 128. The internal voltage generator circuit 128 generates various internal potentials VPP, VOD, VARY, VPERI, and the like based on the power supply potentials VDD and VSS supplied to the power supply terminals. The internal potential VPP is mainly used in the row decoder circuit 108, the internal potentials VOD and VARY are mainly used in the sense amplifiers SAMP included in the memory array 112, and the internal potential VPERI is used in many peripheral circuit blocks.
The power supply terminals are also supplied with power supply potentials VDDQ and VSSQ. The power supply potentials VDDQ and VSSQ are supplied to the input/output circuit 126. The power supply potentials VDDQ and VSSQ supplied to the power supply terminals may be the same potentials as the power supply potentials VDD and VSS supplied to the power supply terminals in an embodiment of the disclosure. The power supply potentials VDDQ and VSSQ supplied to the power supply terminals may be different potentials from the power supply potentials VDD and VSS supplied to the power supply terminals in another embodiment of the disclosure. The power supply potentials VDDQ and VSSQ supplied to the power supply terminals are used for the input/output circuit 122 so that power supply noise generated by the input/output circuit 126 does not propagate to the other circuit blocks.
A DRAM interface 226 may provide one or more signals to an address refresh control circuit 216 and row decoder circuit 208. The refresh control circuit 216 may include an aggressor row detector circuit 230, a first victim address generator 232, a second victim address generator 234, an auto-refresh (AREF) address generator 236, a first victim steal rate timing circuit 238, a second victim steal rate timing circuit 240, a multiplexer 242, and a targeted refresh address controller circuit 244. The DRAM interface 226 may provide one or more control signals, such as an auto-refresh signal AREF, an activation/precharge signal ACT/Pre, and a row address XADD.
The DRAM interface 226 may represent one or more components which provides signals to components of a memory bank, such as refresh control circuit 216 and row decoder circuit 208. In some embodiments, the DRAM interface 226 may represent a memory controller coupled to the semiconductor memory device (e.g., device 100 of
During a memory operation, the aggressor row detector circuit 230 may receive the current row address XADD. In some embodiments, the aggressor row detector circuit 230 may store the current value of the row address XADD. The aggressor row detector circuit 230 may further store a count value associated with each stored row address. The count value for a row address may be adjusted (e.g., incremented) each time the row address stored in the aggressor row detector circuit 230 is received as XADD.
For each row address XADD stored in the aggressor row detector circuit 230, the aggressor row detector circuit 230 may determine if the current row address XADD is an aggressor row address based on one or more previously stored row addresses. For example, in some embodiments, the aggressor row detector circuit 230 may determine a row address is an aggressor row address based on a number of times the row address XADD is received (e.g., the count value of the stored row address exceeds a threshold value). The aggressor row detector circuit 230 may then reset the count value associated with the aggressor row address. Other aggressor row detection methods may be used in other embodiments. When an aggressor row address is identified, the aggressor row detector circuit 230 may provide the matched address HitXADD to the first victim address generator 232 and the second victim address generator 234 in some embodiments.
The row address XADD may change as the DRAM interface 226 directs access operations (e.g., read and write operations) to different rows of the memory cell array (e.g., memory cell array 118 of
The first victim address generator 232 and the second victim address generator 234 calculate one or more row addresses to be refreshed based on aggressor row addresses identified by the aggressor row detector circuit 230 (e.g. row addresses XADD associated with count values above a threshold value). The row addresses calculated by the first victim address generator 232 and the second victim address generator 234 may be victim row addresses corresponding to victim word lines of an aggressor word line associated with HitXADD. The first victim address generator 232 and the second victim address generator 234 may be provided the match address HitXADD as input. The first victim address generator 232 may provide a targeted refresh address V1ADD and the second victim address generator 234 may provide targeted refresh address V2ADD in response to these inputs. The targeted refresh addresses may be an addresses for a memory location (e.g., a word line) that may be affected by repeated activation of the memory location corresponding to the match address HitXADD. In other words, the match address HitXADD may be an ‘aggressor’ row address, and the targeted refresh address V1ADD and V2ADD may be a ‘victim’ addresses. Different calculations may be used for generating different victim addresses as the targeted refresh addresses V1ADD and V2ADD.
The first victim address generator 232 and the second victim address generator 234 may employ different calculations for generating victim row addresses. In one example, a first calculation may be used by the first victim address generator 232, and a second calculation may be used by the second victim address generator 234. The calculations may provide targeted refresh addresses V1ADD or V2ADD corresponding to word lines which have a known physical relationship (e.g., a spatial relationship) with a word line corresponding to the match address HitXADD. In some embodiments, the different calculations may be based on different physical relationships between the victim word line and the aggressor word line. The calculations may result in a single targeted refresh address for V1ADD and/or V2ADD in some embodiments of the disclosure. The calculations may result in a sequence of targeted refresh addresses for V1ADD and/or V2ADD in other embodiments of the disclosure.
In one embodiment, the first calculation may cause the first victim address generator 232 to output a pair of addresses which correspond to word lines that are adjacent to the word line corresponding to the match address HitXADD (e.g., V1ADD=HitXADD+/−1). The second calculation may cause the second victim address generator 234 to output a pair of addresses which correspond to word lines that are adjacent to word lines corresponding to the addresses HitXADD+/−1 (e.g., V2ADD=HitXADD+/−2). In other words, the second calculation may output a pair of addresses that correspond to victim word lines adjacent to the victim word lines corresponding to the addresses VADD. Other calculations are possible in other example embodiments. For example, the first calculation may be based on a physical relationship with the match address HitXADD, while the second calculation may be based on a physical relationship with the address(es) provided by the first calculation. The targeted addresses V1ADD and V2ADD calculated by the first victim address generator 232 and the second victim address generator 234 may be provided to a multiplexer 242 in some embodiments. In some embodiments, the first victim address generator 232 and the second victim address generator 234 may include buffers (not shown) for storing victim row addresses to be provided to the multiplexer 242 during subsequent targeted refresh operations.
The AREF address generator 236 generates an auto-refresh address Pre_RXADD in response to the refresh signal AREF. The auto-refresh address Pre_RXADD may be part of a sequence of addresses to be refreshed as part of an auto-refresh operation. The AREF address generator 236 may update the current auto-refresh address Pre_RXADD to a next address in the sequence in response to an active refresh signal AREF. The AREF address generator 236 is also provided the command signal RHR from targeted refresh address controller circuit 244. In some embodiments, when the command signal RHR is active, the AREF address generator 236 may be controlled to stop updating the automatic refresh address Pre_RXADD even if the automatic refresh signal AREF is active. As described herein, since the active command signal RHR indicates that a targeted refresh operation is to be conducted instead of an automatic refresh operation, this allows the automatic refresh operation to be suspended while the targeted refresh is carried out, and resumed when the command signal RHR is not active.
The multiplexer 242 accepts the automatic refresh address Pre_RXADD provided by the AREF address generator 236, V1ADD provided by first victim address generator 232, V2ADD provided by second victim address generator 234, and outputs one of them as the refresh address RXADD. The multiplexer 242 may select between the refresh addresses based on the command signal RHR. Targeted refresh address controller circuit 244 provides an output RHR to the multiplexer 242 to control selection of providing the Pre_RXADD, V1ADD, or V2ADD addresses as the refresh address RXADD.
First victim steal rate timing circuit 238 may provide a timing signal V1Time that may determine a rate at which victim row address V1ADD is provided as RXADD. Second victim steal rate timing circuit 240 may provide a timing signal V2Time that may determine a rate at which victim row address V2ADD is provided as RXADD. Timing signals V1Time and V2Time may be periodic signals that alternate between active and inactive states (e.g., between high and low logic levels). The timing signals V1Time and V2Time may operate at different frequencies in some embodiments. For example, in some embodiments, V1Time may have a higher frequency than V2Time. In these embodiments, this may cause victim row address V1ADD to be provided as RXADD at a higher frequency than V2ADD. The first victim steal rate timing circuit 238 and the second victim steal rate timing circuit 240 may be independent. That is, neither timing circuit requires an input from the other timing circuit to generate its output. In some embodiments, the timing circuits may each receive at least one input unique to the timing circuit such that the timing circuits do not receive completely identical inputs.
The first victim steal rate timing circuit 238 and/or the second victim steal rate timing circuit 240 may include a square wave generating circuit for generating the outputs V1Time and V2Time, respectively. For example, a Schmitt waveform generator, a 555 timer (not shown), and/or a ring-type waveform generator may be included in the first victim steal rate timing circuit 238 and/or the second victim steal rate timing circuit 240. As indicted by Set(1) and Set(2) in
Optionally, in some embodiments, the first victim steal rate timing circuit 238 and/or the second victim steal rate timing circuit 240 may receive the AREF signal to synchronize the activation of the V1Time and/or V2Time with the AREF signal. This may help ensure that the V1Time and/or V2Time signals are activated during refresh operations rather than between refresh operations when the timing signals may be ignored.
The targeted refresh address controller circuit 244 may receive V1Time, V2Time, and AREF as inputs and provide control signal RHR based on these inputs. Targeted refresh address controller circuit 244 may include logic gates and/or other circuitry to generate control signal RHR. Control signal RHR may have multiple states in some embodiments. In some embodiments, control signal RHR may be a multi-bit signal with multiple states (e.g., ‘00’, ‘01,’ ‘10,’ ‘11’). For example, RHR may have a first state when AREF is inactive, regardless of the states of V1Time and V2Time, a second state when AREF is active and V1Time is active, a third state when AREF is active and V2Time is active, and a fourth state when AREF is active and neither V1Time nor V2Time are inactive. In some embodiments, V1Time and V2Time may be prohibited from being active at the same time. In some embodiments, the targeted refresh address controller circuit 244 may favor one timing signal over another. For example, if both V1Time and V2Time are active, targeted refresh address control circuit 244 may favor V1Time and provide RHR in the second state.
In some embodiments, the multiplexer 242 may provide V1ADD as RXADD when RHR is in a state indicating AREF and V1Time are active, provide V2ADD as RXADD when RHR is in a state indicating AREF and V2Time are active, and provide Pre_RXADD when RHR is in a state indicating only AREF is active. When AREF is inactive, no address may be provided as RXADD and/or the row decoder circuit 208 may ignore RXADD when AREF is inactive.
The row decoder circuit 208 may perform one or more operations on the memory array (not shown) based on the received signals and addresses. For example, responsive to the activation signal ACT and the row address XADD (and AREF being at a low logic level), the row decoder circuit 208 may direct one or more access operations (for example, a read operation) on the specified row address XADD. Responsive to the AREF signal being active, the row decoder circuit 208 may refresh the refresh address RXADD.
Although the example illustrated in
The targeted refresh address controller circuit 300 may receive refresh signal AREF, a first timing signal V1Time, and a second timing signal V2Time. In some embodiments, the refresh signal AREF may be provided by a command control circuit such as command control circuit 106 shown in
The multiplexer 302 may provide a first victim row address V1ADD, a second victim row address V2ADD, or an auto-refresh address Pre-RXADD as RXADD depending on the state of the RHR signal. In some embodiments, the first victim row address V1ADD and/or second victim row address V2ADD may be provided by victim row address generators, such as first victim row address generator 232 and second victim row address generator 234 shown in
In some embodiments, the targeted refresh address controller circuit 300 may include a first AND gate 304 that receives the AREF signal at a first input and an inverted V2Time signal at a second input. The V2Time signal may be inverted by inverter 306. A second AND gate 308 may receive the AREF signal and the V1Time signal at its inputs. The outputs of the first AND gate 304 and the second AND gate 308 may be provided to a first OR gate 310. Based on the inputs, the first OR gate 310 may output RHR_LSB. The targeted refresh address controller circuit 300 may include a third AND gate 312 that receives AREF and V2Time signals as inputs. A fourth AND gate 314 may receive the AREF and V1Time signals as inputs. The outputs of the third AND gate 312 and the fourth AND gate 314 may be provided to a second OR gate 316. The OR gate 316 may provide RHR_MSB as an output.
In the example shown in
In the example shown in
Although not shown in
The timing diagram 400 as shown displays the state of the signals for a refresh control circuit which refreshes first victim word lines at a first rate based off of the rate of timing signal V1Time, and second victim word lines refreshed at a second rate based off of the rate of timing signal V2Time. In this example, the first victim word lines are a pair of word lines adjacent to an aggressor word line. The first victim word lines may be associated with a victim row address V1ADD. The second victim word lines are a pair of word lines which are each adjacent to one of the first victim word lines. The second victim word lines may be associated with a victim row address V2ADD. Other circuits may employ other operations wherein, for example, neither set of word lines are adjacent to the aggressor word line.
The first two line of
The second line of
The third line of
Each time a row address XADD is provided to the registers 502, the row address XADD may be compared to the fields 504. If the current row address XADD is already stored in one of the registers 502, then the count value in field 506 associated with the matching row address in field 504 may be adjusted (e.g., increased). If the current row address XADD is not already stored in one of the registers 502, it may be added to the registers 502. If there is an open register (e.g., a register without a row address) then the row address XADD may be stored in the open register. If there is not an open register, then the register 502 associated with the count value which has the lowest value (as indicated by the pointers 512) may have its row address replaced with the current row address XADD and count value reset.
The comparator 508 may compare the count values in fields 506 to a threshold value to determine if a count value for a row address has matched or exceeded the threshold value (e.g., 2,000, 3,000, 5,000). In some embodiments, the comparator 508 may further compare the count values to determine which row address is associated with the lowest count value. The fields 506 corresponding to the minimum count value and count values that meet or exceed the threshold value may be provided to a counter scrambler 510, which may match the above threshold value fields and minimum count value field to their respective associated row address fields 504. The pointers 512 may point to the row addresses in fields 504 associated with count values at or above the threshold value and may point to the fields 504 associated with the minimum count value in fields 506. The threshold value pointer(s) may be used to reset the counts of the row addresses determined to be aggressors. In some embodiments, the threshold value pointer(s) may be used to provide the corresponding row address(es) to the victim address generators as HitXADD. The minimum count value pointer may be used to overwrite a register 502 when a new row address XADD is received and there is no open register 502 to store it in.
In some embodiments, the method shown in flow chart 600 may further include generating a control signal based, at least in part, on the first signal and the second signal. In some embodiments, the control signal may be generated by a targeted refresh address controller circuit, such as targeted refresh address controller circuit 244 shown in
The apparatuses and methods described herein may allow for independently controlling the steal rates for different victim word lines, such as victim word lines that have different physical distances from an aggressor word line. In some embodiments, a refresh control circuit may include two or more timing circuits to allow independent control of the steal rates for different victim word lines. This may allow the targeted refresh rates for each type of victim word line to be optimized, which may reduce over-refreshing of the word lines.
Of course, it is to be appreciated that any one of the examples, embodiments or processes described herein may be combined with one or more other examples, embodiments and/or processes or be separated and/or performed amongst separate devices or device portions in accordance with the present systems, devices and methods.
Finally, the above-discussion is intended to be merely illustrative of the present system and should not be construed as limiting the appended claims to any particular embodiment or group of embodiments. Thus, while the present system has been described in particular detail with reference to exemplary embodiments, it should also be appreciated that numerous modifications and alternative embodiments may be devised by those having ordinary skill in the art without departing from the broader and intended spirit and scope of the present system as set forth in the claims that follow. Accordingly, the specification and drawings are to be regarded in an illustrative manner and are not intended to limit the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5299159 | Balistreri et al. | Mar 1994 | A |
5654929 | Mote, Jr. | Aug 1997 | A |
5699297 | Yamazaki et al. | Dec 1997 | A |
5933377 | Hidaka | Aug 1999 | A |
5943283 | Wong et al. | Aug 1999 | A |
5956288 | Bermingham et al. | Sep 1999 | A |
5959923 | Matteson et al. | Sep 1999 | A |
5970507 | Kato et al. | Oct 1999 | A |
5999471 | Choi | Dec 1999 | A |
6002629 | Kim et al. | Dec 1999 | A |
6011734 | Pappert | Jan 2000 | A |
6061290 | Shirley | May 2000 | A |
6212118 | Fujita | Apr 2001 | B1 |
6306721 | Teo et al. | Oct 2001 | B1 |
6310806 | Higashi et al. | Oct 2001 | B1 |
6363024 | Fibranz | Mar 2002 | B1 |
6392952 | Chen et al. | May 2002 | B1 |
6424582 | Ooishi | Jul 2002 | B1 |
6434064 | Nagai | Aug 2002 | B2 |
6452868 | Fister | Sep 2002 | B1 |
6515928 | Sato et al. | Feb 2003 | B2 |
6567340 | Nataraj et al. | May 2003 | B1 |
6950364 | Kim | Sep 2005 | B2 |
7002868 | Takahashi | Feb 2006 | B2 |
7057960 | Fiscus et al. | Jun 2006 | B1 |
7082070 | Hong | Jul 2006 | B2 |
7187607 | Koshikawa et al. | Mar 2007 | B2 |
7203113 | Takahashi et al. | Apr 2007 | B2 |
7203115 | Eto et al. | Apr 2007 | B2 |
7209402 | Shinozaki et al. | Apr 2007 | B2 |
7215588 | Lee | May 2007 | B2 |
7444577 | Best et al. | Oct 2008 | B2 |
7551502 | Dono et al. | Jun 2009 | B2 |
7830742 | Han | Nov 2010 | B2 |
8174921 | Kim et al. | May 2012 | B2 |
8400805 | Yoko | Mar 2013 | B2 |
8572423 | Isachar et al. | Oct 2013 | B1 |
8625360 | Iwamoto et al. | Jan 2014 | B2 |
8681578 | Narui | Mar 2014 | B2 |
8811100 | Ku | Aug 2014 | B2 |
8862973 | Zimmerman et al. | Oct 2014 | B2 |
8938573 | Greenfield et al. | Jan 2015 | B2 |
9032141 | Bains et al. | May 2015 | B2 |
9047978 | Bell et al. | Jun 2015 | B2 |
9076499 | Schoenborn et al. | Jul 2015 | B2 |
9087602 | Youn et al. | Jul 2015 | B2 |
9117544 | Bains et al. | Aug 2015 | B2 |
9123447 | Lee et al. | Sep 2015 | B2 |
9153294 | Kang | Oct 2015 | B2 |
9190139 | Jung et al. | Nov 2015 | B2 |
9236110 | Bains et al. | Jan 2016 | B2 |
9251885 | Greenfield et al. | Feb 2016 | B2 |
9286964 | Halbert et al. | Mar 2016 | B2 |
9299400 | Bains et al. | Mar 2016 | B2 |
9311985 | Lee et al. | Apr 2016 | B2 |
9324398 | Jones et al. | Apr 2016 | B2 |
9384821 | Bains et al. | Jul 2016 | B2 |
9406358 | Lee | Aug 2016 | B1 |
9412432 | Narui et al. | Aug 2016 | B2 |
9424907 | Fujishiro | Aug 2016 | B2 |
9484079 | Lee | Nov 2016 | B2 |
9514850 | Kim | Dec 2016 | B2 |
9570143 | Lim et al. | Feb 2017 | B2 |
9646672 | Kim et al. | May 2017 | B1 |
9653139 | Park | May 2017 | B1 |
9672889 | Lee et al. | Jun 2017 | B2 |
9691466 | Kim | Jun 2017 | B1 |
9697913 | Mariani et al. | Jul 2017 | B1 |
9734887 | Tavva | Aug 2017 | B1 |
9741409 | Jones et al. | Aug 2017 | B2 |
9741447 | Akamatsu | Aug 2017 | B2 |
9747971 | Bains et al. | Aug 2017 | B2 |
9786351 | Lee et al. | Oct 2017 | B2 |
9799391 | Wei | Oct 2017 | B1 |
9805782 | Liou | Oct 2017 | B1 |
9805783 | Ito et al. | Oct 2017 | B2 |
9812185 | Fisch et al. | Nov 2017 | B2 |
9818469 | Kim et al. | Nov 2017 | B1 |
9865326 | Bains et al. | Jan 2018 | B2 |
9865328 | Desimone et al. | Jan 2018 | B1 |
9922694 | Akamatsu | Mar 2018 | B2 |
9934143 | Bains et al. | Apr 2018 | B2 |
9953696 | Kim | Apr 2018 | B2 |
10020045 | Riho | Jul 2018 | B2 |
10020046 | Uemura | Jul 2018 | B1 |
10032501 | Ito et al. | Jul 2018 | B2 |
10049716 | Proebsting | Aug 2018 | B2 |
10083737 | Bains et al. | Sep 2018 | B2 |
10090038 | Shin | Oct 2018 | B2 |
10134461 | Bell et al. | Nov 2018 | B2 |
10147472 | Jones et al. | Dec 2018 | B2 |
10153031 | Akamatsu | Dec 2018 | B2 |
10170174 | Ito et al. | Jan 2019 | B1 |
10192608 | Morgan | Jan 2019 | B2 |
10210925 | Bains et al. | Feb 2019 | B2 |
10297305 | Moon et al. | May 2019 | B1 |
10339994 | Ito et al. | Jul 2019 | B2 |
10381327 | Ramachandra et al. | Aug 2019 | B2 |
10490250 | Ito et al. | Nov 2019 | B1 |
10510396 | Notani et al. | Dec 2019 | B1 |
10572377 | Zhang | Feb 2020 | B1 |
10573370 | Ito et al. | Feb 2020 | B2 |
10685696 | Brown et al. | Jun 2020 | B2 |
10790005 | He et al. | Sep 2020 | B1 |
10943636 | Wu et al. | Mar 2021 | B1 |
10957377 | Noguchi | Mar 2021 | B2 |
20010008498 | Ooishi | Jul 2001 | A1 |
20020026613 | Niiro | Feb 2002 | A1 |
20020181301 | Takahashi et al. | Dec 2002 | A1 |
20020191467 | Matsumoto | Dec 2002 | A1 |
20030026161 | Yamaguchi et al. | Feb 2003 | A1 |
20030063512 | Takahashi et al. | Apr 2003 | A1 |
20030067825 | Shimano et al. | Apr 2003 | A1 |
20030081483 | De Paor et al. | May 2003 | A1 |
20030123301 | Jang et al. | Jul 2003 | A1 |
20030161208 | Nakashima et al. | Aug 2003 | A1 |
20030193829 | Morgan et al. | Oct 2003 | A1 |
20030231540 | Lazar et al. | Dec 2003 | A1 |
20040004856 | Sakimura et al. | Jan 2004 | A1 |
20040008544 | Shinozaki et al. | Jan 2004 | A1 |
20040022093 | Lee | Feb 2004 | A1 |
20040024955 | Patel | Feb 2004 | A1 |
20040114446 | Takahashi et al. | Jun 2004 | A1 |
20040130959 | Kawaguchi | Jul 2004 | A1 |
20040184323 | Mori et al. | Sep 2004 | A1 |
20040218431 | Chung et al. | Nov 2004 | A1 |
20050002268 | Otsuka et al. | Jan 2005 | A1 |
20050041502 | Perner | Feb 2005 | A1 |
20050105362 | Choi et al. | May 2005 | A1 |
20050108460 | David | May 2005 | A1 |
20050213408 | Shieh | Sep 2005 | A1 |
20050243627 | Lee et al. | Nov 2005 | A1 |
20060018174 | Park et al. | Jan 2006 | A1 |
20060083099 | Bae et al. | Apr 2006 | A1 |
20060087903 | Riho et al. | Apr 2006 | A1 |
20060104139 | Hur et al. | May 2006 | A1 |
20060176744 | Stave | Aug 2006 | A1 |
20060215474 | Hokenmaier | Sep 2006 | A1 |
20060233012 | Sekiguchi et al. | Oct 2006 | A1 |
20060262616 | Chen | Nov 2006 | A1 |
20060262617 | Lee | Nov 2006 | A1 |
20060268643 | Schreck et al. | Nov 2006 | A1 |
20070002651 | Lee | Jan 2007 | A1 |
20070008799 | Dono et al. | Jan 2007 | A1 |
20070028068 | Golding et al. | Feb 2007 | A1 |
20070030746 | Best et al. | Feb 2007 | A1 |
20070147154 | Lee | Jun 2007 | A1 |
20070237016 | Miyamoto et al. | Oct 2007 | A1 |
20070263442 | Cornwell et al. | Nov 2007 | A1 |
20070297252 | Singh | Dec 2007 | A1 |
20080028260 | Oyagi et al. | Jan 2008 | A1 |
20080031068 | Yoo et al. | Feb 2008 | A1 |
20080126893 | Harrand et al. | May 2008 | A1 |
20080130394 | Dono et al. | Jun 2008 | A1 |
20080181048 | Han | Jul 2008 | A1 |
20080212386 | Riho | Sep 2008 | A1 |
20080224742 | Pomichter | Sep 2008 | A1 |
20080266990 | Loeffler | Oct 2008 | A1 |
20080306723 | De Ambroggi et al. | Dec 2008 | A1 |
20080316845 | Wang et al. | Dec 2008 | A1 |
20090021999 | Tanimura et al. | Jan 2009 | A1 |
20090059641 | Jeddeloh | Mar 2009 | A1 |
20090073760 | Betser et al. | Mar 2009 | A1 |
20090161468 | Fujioka | Jun 2009 | A1 |
20090168571 | Pyo et al. | Jul 2009 | A1 |
20090185440 | Lee | Jul 2009 | A1 |
20090201752 | Riho et al. | Aug 2009 | A1 |
20090228739 | Cohen et al. | Sep 2009 | A1 |
20090251971 | Futatsuyama | Oct 2009 | A1 |
20090296510 | Lee et al. | Dec 2009 | A1 |
20100074042 | Fukuda et al. | Mar 2010 | A1 |
20100097870 | Kim et al. | Apr 2010 | A1 |
20100110809 | Kobayashi et al. | May 2010 | A1 |
20100110810 | Kobayashi | May 2010 | A1 |
20100131812 | Mohammad | May 2010 | A1 |
20100141309 | Lee | Jun 2010 | A1 |
20100157693 | Iwai et al. | Jun 2010 | A1 |
20100182863 | Fukiage | Jul 2010 | A1 |
20100329069 | Ito et al. | Dec 2010 | A1 |
20110026290 | Noda et al. | Feb 2011 | A1 |
20110069572 | Lee et al. | Mar 2011 | A1 |
20110122987 | Neyer | May 2011 | A1 |
20110216614 | Hosoe | Sep 2011 | A1 |
20110225355 | Kajigaya | Sep 2011 | A1 |
20110299352 | Fujishiro et al. | Dec 2011 | A1 |
20110310648 | Iwamoto et al. | Dec 2011 | A1 |
20120014199 | Narui | Jan 2012 | A1 |
20120059984 | Kang et al. | Mar 2012 | A1 |
20120151131 | Kilmer et al. | Jun 2012 | A1 |
20120155173 | Lee et al. | Jun 2012 | A1 |
20120155206 | Kodama et al. | Jun 2012 | A1 |
20120213021 | Riho et al. | Aug 2012 | A1 |
20120287727 | Wang | Nov 2012 | A1 |
20120307582 | Marumoto et al. | Dec 2012 | A1 |
20120327734 | Sato | Dec 2012 | A1 |
20130003467 | Klein | Jan 2013 | A1 |
20130003477 | Park et al. | Jan 2013 | A1 |
20130028034 | Fujisawa | Jan 2013 | A1 |
20130051157 | Park | Feb 2013 | A1 |
20130051171 | Porter et al. | Feb 2013 | A1 |
20140006700 | Schaefer et al. | Jan 2014 | A1 |
20140006703 | Bains et al. | Jan 2014 | A1 |
20140006704 | Greenfield et al. | Jan 2014 | A1 |
20140016422 | Kim et al. | Jan 2014 | A1 |
20140022858 | Chen et al. | Jan 2014 | A1 |
20140043888 | Chen et al. | Feb 2014 | A1 |
20140050004 | Mochida | Feb 2014 | A1 |
20140078841 | Chopra | Mar 2014 | A1 |
20140078842 | Oh et al. | Mar 2014 | A1 |
20140089576 | Bains et al. | Mar 2014 | A1 |
20140089758 | Kwok et al. | Mar 2014 | A1 |
20140095780 | Bains et al. | Apr 2014 | A1 |
20140095786 | Moon et al. | Apr 2014 | A1 |
20140119091 | You et al. | May 2014 | A1 |
20140143473 | Kim et al. | May 2014 | A1 |
20140177370 | Halbert et al. | Jun 2014 | A1 |
20140181453 | Jayasena et al. | Jun 2014 | A1 |
20140185403 | Lai | Jul 2014 | A1 |
20140189228 | Greenfield et al. | Jul 2014 | A1 |
20140219043 | Jones et al. | Aug 2014 | A1 |
20140237307 | Kobla et al. | Aug 2014 | A1 |
20140241099 | Seo et al. | Aug 2014 | A1 |
20140254298 | Dally | Sep 2014 | A1 |
20140281206 | Crawford et al. | Sep 2014 | A1 |
20140281207 | Mandava et al. | Sep 2014 | A1 |
20140321226 | Pyeon | Oct 2014 | A1 |
20150016203 | Sriramagiri et al. | Jan 2015 | A1 |
20150049566 | Lee et al. | Feb 2015 | A1 |
20150049567 | Chi | Feb 2015 | A1 |
20150055420 | Bell et al. | Feb 2015 | A1 |
20150078112 | Huang | Mar 2015 | A1 |
20150089326 | Joo et al. | Mar 2015 | A1 |
20150092508 | Bains | Apr 2015 | A1 |
20150109871 | Bains et al. | Apr 2015 | A1 |
20150170728 | Jung et al. | Jun 2015 | A1 |
20150213872 | Mazumder et al. | Jul 2015 | A1 |
20150243339 | Bell et al. | Aug 2015 | A1 |
20150255140 | Song | Sep 2015 | A1 |
20150279442 | Hwang | Oct 2015 | A1 |
20150294711 | Gaither et al. | Oct 2015 | A1 |
20150340077 | Akamatsu | Nov 2015 | A1 |
20150356048 | King | Dec 2015 | A1 |
20150380073 | Joo et al. | Dec 2015 | A1 |
20160019940 | Jang et al. | Jan 2016 | A1 |
20160027531 | Jones et al. | Jan 2016 | A1 |
20160027532 | Kim | Jan 2016 | A1 |
20160042782 | Narui et al. | Feb 2016 | A1 |
20160070483 | Yoon et al. | Mar 2016 | A1 |
20160078846 | Liu | Mar 2016 | A1 |
20160078911 | Fujiwara et al. | Mar 2016 | A1 |
20160086649 | Hong et al. | Mar 2016 | A1 |
20160093402 | Kitagawa et al. | Mar 2016 | A1 |
20160125931 | Doo et al. | May 2016 | A1 |
20160133314 | Hwang et al. | May 2016 | A1 |
20160155491 | Roberts et al. | Jun 2016 | A1 |
20160180917 | Chishti et al. | Jun 2016 | A1 |
20160180921 | Jeong | Jun 2016 | A1 |
20160196863 | Shin et al. | Jul 2016 | A1 |
20160202926 | Benedict | Jul 2016 | A1 |
20160225433 | Bains et al. | Aug 2016 | A1 |
20160343423 | Shido | Nov 2016 | A1 |
20170011792 | Oh et al. | Jan 2017 | A1 |
20170052722 | Ware et al. | Feb 2017 | A1 |
20170076779 | Bains et al. | Mar 2017 | A1 |
20170092350 | Halbert et al. | Mar 2017 | A1 |
20170111792 | Correia Fernandes et al. | Apr 2017 | A1 |
20170133085 | Kim et al. | May 2017 | A1 |
20170140807 | Sun et al. | May 2017 | A1 |
20170140810 | Choi et al. | May 2017 | A1 |
20170140811 | Joo | May 2017 | A1 |
20170146598 | Kim et al. | May 2017 | A1 |
20170148504 | Saifuddin et al. | May 2017 | A1 |
20170186481 | Oh et al. | Jun 2017 | A1 |
20170213586 | Kang et al. | Jul 2017 | A1 |
20170263305 | Cho | Sep 2017 | A1 |
20170269861 | Lu et al. | Sep 2017 | A1 |
20170287547 | Ito et al. | Oct 2017 | A1 |
20170323675 | Jones et al. | Nov 2017 | A1 |
20170345482 | Balakrishnan | Nov 2017 | A1 |
20170352404 | Lee et al. | Dec 2017 | A1 |
20180005690 | Morgan et al. | Jan 2018 | A1 |
20180025770 | Ito et al. | Jan 2018 | A1 |
20180025772 | Lee et al. | Jan 2018 | A1 |
20180025773 | Bains et al. | Jan 2018 | A1 |
20180047110 | Blackman et al. | Feb 2018 | A1 |
20180061476 | Kim | Mar 2018 | A1 |
20180075927 | Jeong et al. | Mar 2018 | A1 |
20180096719 | Tomishima et al. | Apr 2018 | A1 |
20180108401 | Choi et al. | Apr 2018 | A1 |
20180114561 | Fisch et al. | Apr 2018 | A1 |
20180114565 | Lee | Apr 2018 | A1 |
20180122454 | Lee et al. | May 2018 | A1 |
20180130506 | Kang et al. | May 2018 | A1 |
20180137005 | Wu et al. | May 2018 | A1 |
20180158504 | Akamatsu | Jun 2018 | A1 |
20180158507 | Bang | Jun 2018 | A1 |
20180182445 | Lee et al. | Jun 2018 | A1 |
20180190340 | Kim et al. | Jul 2018 | A1 |
20180218767 | Wolff | Aug 2018 | A1 |
20180226119 | Kim et al. | Aug 2018 | A1 |
20180233197 | Laurent | Aug 2018 | A1 |
20180240511 | Yoshida | Aug 2018 | A1 |
20180247676 | Kim et al. | Aug 2018 | A1 |
20180254078 | We | Sep 2018 | A1 |
20180261268 | Hyun et al. | Sep 2018 | A1 |
20180294028 | Lee et al. | Oct 2018 | A1 |
20180308539 | Ito et al. | Oct 2018 | A1 |
20190013059 | Akamatsu | Jan 2019 | A1 |
20190051344 | Bell et al. | Feb 2019 | A1 |
20190065087 | Li et al. | Feb 2019 | A1 |
20190066759 | Nale | Feb 2019 | A1 |
20190066766 | Lee | Feb 2019 | A1 |
20190088315 | Saenz et al. | Mar 2019 | A1 |
20190088316 | Inuzuka et al. | Mar 2019 | A1 |
20190103147 | Jones et al. | Apr 2019 | A1 |
20190122723 | Ito et al. | Apr 2019 | A1 |
20190129651 | Wuu et al. | May 2019 | A1 |
20190130961 | Bell et al. | May 2019 | A1 |
20190147964 | Yun et al. | May 2019 | A1 |
20190161341 | Howe | May 2019 | A1 |
20190190341 | Beisele et al. | Jun 2019 | A1 |
20190196730 | Imran | Jun 2019 | A1 |
20190198078 | Hoang et al. | Jun 2019 | A1 |
20190198099 | Mirichigni et al. | Jun 2019 | A1 |
20190205253 | Roberts | Jul 2019 | A1 |
20190228810 | Jones et al. | Jul 2019 | A1 |
20190228815 | Morohashi et al. | Jul 2019 | A1 |
20190252020 | Rios et al. | Aug 2019 | A1 |
20190267077 | Ito et al. | Aug 2019 | A1 |
20190279706 | Kim | Sep 2019 | A1 |
20190294348 | Ware et al. | Sep 2019 | A1 |
20190333573 | Shin et al. | Oct 2019 | A1 |
20190348100 | Smith et al. | Nov 2019 | A1 |
20190348103 | Jeong et al. | Nov 2019 | A1 |
20190362774 | Kuramori | Nov 2019 | A1 |
20190385661 | Koo et al. | Dec 2019 | A1 |
20190385667 | Morohashi | Dec 2019 | A1 |
20190385668 | Fujioka et al. | Dec 2019 | A1 |
20190385670 | Notani et al. | Dec 2019 | A1 |
20190386557 | Wang et al. | Dec 2019 | A1 |
20190391760 | Miura et al. | Dec 2019 | A1 |
20190392886 | Cox et al. | Dec 2019 | A1 |
20200051616 | Cho | Feb 2020 | A1 |
20200075086 | Hou et al. | Mar 2020 | A1 |
20200082873 | Wolff | Mar 2020 | A1 |
20200126611 | Riho et al. | Apr 2020 | A1 |
20200135263 | Brown et al. | Apr 2020 | A1 |
20200143871 | Kim et al. | May 2020 | A1 |
20200176050 | Ito et al. | Jun 2020 | A1 |
20200194056 | Sakurai et al. | Jun 2020 | A1 |
20200202921 | Morohashi et al. | Jun 2020 | A1 |
20200210278 | Rooney et al. | Jul 2020 | A1 |
20200211632 | Noguchi | Jul 2020 | A1 |
20200211633 | Okuma | Jul 2020 | A1 |
20200211634 | Ishikawa et al. | Jul 2020 | A1 |
20200219555 | Rehmeyer | Jul 2020 | A1 |
20200219556 | Ishikawa et al. | Jul 2020 | A1 |
20200265888 | Ito et al. | Aug 2020 | A1 |
20200273517 | Yamamoto | Aug 2020 | A1 |
20200273518 | Raad et al. | Aug 2020 | A1 |
20200279599 | Ware et al. | Sep 2020 | A1 |
20200294569 | Wu et al. | Sep 2020 | A1 |
20200294576 | Brown et al. | Sep 2020 | A1 |
20200321049 | Meier et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
101038785 | Sep 2007 | CN |
101067972 | Nov 2007 | CN |
104350546 | Feb 2015 | CN |
106710621 | May 2017 | CN |
107871516 | Apr 2018 | CN |
2005-216429 | Aug 2005 | JP |
2011-258259 | Dec 2011 | JP |
2011-258259 | Dec 2011 | JP |
4911510 | Jan 2012 | JP |
2013-004158 | Jan 2013 | JP |
6281030 | Jan 2018 | JP |
2014120477 | Aug 2014 | WO |
2015030991 | Mar 2015 | WO |
2017171927 | Oct 2017 | WO |
2020117686 | Jun 2020 | WO |
Entry |
---|
U.S. Appl. No. 15/881,256 entitled ‘Apparatuses and Methods for Detecting a Row Hammer Attack With a Bandpass Filter’ filed Jan. 26, 2018. |
U.S. Appl. No. 15/789,897, entitled “Apparatus and Methods for Refreshing Memory”, filed Oct. 20, 2017. |
U.S. Appl. No. 15/796,340, entitled: “Apparatus and Methods for Refreshing Memory” filed Oct. 27, 2017. |
U.S. Appl. No. 16/012,679, titled “Apparatuses and Methods for Multiple Row Hammer Refresh Address Sequences”, filed Jun. 19, 2018. |
U.S. Appl. No. 16/020,863, titled “Semiconductor Device”, filed Jun. 27, 2018. |
U.S. Appl. No. 16/025,844, titled “Apparatus and Methods for Triggering Row Hammer Address Sampling”, filed Jul. 2, 2018. |
U.S. Appl. No. 16/084,119, titled “Apparatuses and Methods for Pure-Time, Self Adopt Sampling for Row Hammer Refresh Sampling”, filed Sep. 11, 2018. |
U.S. Appl. No. 16/176,932, titled “Apparatuses and Methods for Access Based Refresh Timing”, filed Oct. 31, 2018. |
U.S. Appl. No. 16/230,300, titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Dec. 21, 2018. |
U.S. Appl. No. 16/232,837, titled “Apparatuses and Methods for Distributed Targeted Refresh Operations”, filed Dec. 26, 2018. |
U.S. Appl. No. No. 16/237,291, titled “Apparatus and Methods for Refreshing Memory”, filed Dec. 31, 2018. |
U.S. Appl. No. 16/286,187 titled “Apparatuses and Methods for Memory Mat Refresh Sequencing” filed Feb. 26, 2019. |
U.S. Appl. No. 16/290,730, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Mar. 1, 2019. |
U.S. Appl. No. 16/374,623, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Apr. 3, 2019. |
U.S. Appl. No. 16/375,716 titled “Stagger RHR Pumping Scheme Across Die Banks” filed Apr. 4, 2019. |
U.S. Appl. No. 15/876,566 entitled ‘Apparatuses and Methods for Calculating Row Hammer Refresh Addresses in a Semiconductor Device’ filed Jan. 22, 2018. |
PCT Application No. PCT/US18/55821 “Apparatus and Methods for Refreshing Memory” filed Oct. 15, 2018. |
U.S. Appl. No. 15/715,846, entitled “Semiconductor Device”, filed Sep. 26, 2017. |
U.S. Appl. No. 15/281,818, entitled: “Semiconductor Device” filed Sep. 30, 2016. |
Kim, et al., “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors”, IEEE, Jun. 2014, 12 pgs. |
U.S. Appl. No. 16/537,981 titled “Apparatuses and Methods for Controlling Targeted Refresh Rates” filed Aug. 12, 2019, pp. all. |
U.S. Appl. No. 16/655,110 titled “Apparatuses and Methods for Dynamic Targeted Refresh Steals” filed Oct. 16, 2019, pp. all. |
U.S. Appl. No. 16/682,606, titled “Apparatuses and Methods for Distributing Row Hammer Refresh Events Across a Memory Device”, filed Nov. 13, 2019, pp. all. |
International Application No. PCT/US19/40169 titled “Apparatus and Methods For Triggering Row Hammer Address Sampling” filed Jul. 1, 2019, pp. all. |
U.S. Appl. No. 16/549,411 titled “Apparatuses and Methods for Dynamic Refresh Allocation” filed Aug. 23, 2019, pp. all. |
U.S. Appl. No. 16/886,284 titled “Apparatuses and Methods for Access Based Refresh Timing” filed May 28, 2020, pp. all. |
International Search Report & Written Opinion dated Aug. 28, 2020 for PCT Application No. PCT/US2020/032931, pp. all. |
U.S. Appl. No. 17/008,396 titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Aug. 31, 2020; pp. all. |
International Application No. PCT/US19/64028, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, dated Dec. 2, 2019, pp. all. |
International Application No. PCT/US20/26689, titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations”, dated Apr. 3, 2020, pp. all. |
International Application No. PCT/US20/32931, titled “Apparatuses and Methods for Controlling Steal Rates”, dated May 14, 2020, pp. all. |
U.S. Appl. No. 16/788,657, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Feb. 12, 2020, pp. all. |
U.S. Appl. No. 16/818,989, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Mar. 13, 2020, pp. all. |
U.S. Appl. No. 16/818,981 titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Mar. 13, 2020, pp. all. |
U.S. Appl. No. 16/208,217, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Dec. 3, 2018, pp. all. |
U.S. Appl. No. 16/824,460, titled “Semiconductor Device Performing Row Hammer Refresh Operation”, filed Mar. 19, 2020, pp. all. |
International Search Report & Written Opinion dated Aug. 28, 2020 for PCT Application No. PCT/US2020/032931. |
U.S. Appl. No. 17/008,396 titled “Apparatuses and Methods for Staggered Timing of Targeted Refresh Operations” filed Aug. 31, 2020. |
U.S. Appl. No. 16/797,658, titles “Apparatuses and Methods for Controlling Refresh Operations”, filed Feb. 21, 2020, pp. all. |
U.S. Appl. No. 16/805,197, titled “Apparatuses and Methods for Calculating Row Hammer Refresh Addresses in a Semiconductor Device”, filed Feb. 28, 2020, pp. all. |
U.S. Appl. No. 16/268,818, titled “Apparatuses and Methods for Managing Row Access Counts”, filed Feb. 6, 2019, pp. all. |
U.S. Appl. No. 16/358,587, titled “Semiconductor Device Having Cam That Stores Address Signals”, filed Mar. 19, 2019, pp. all. |
U.S. Appl. No. 16/546,152 titled “Apparatuses and Methods for Analog Row Access Tracking” filed Aug. 20, 2019, pp. all. |
U.S. Appl. No. 16/548,027 titled “Apparatuses, Systems, and Methods for Analog Row Access Rate Determination” filed Aug. 22, 2019, pp. all. |
U.S. Appl. No. 16/549,942 titled “Apparatuses and Methods for Lossy Row Access Counting” filed Aug. 23, 2019, pp. all. |
U.S. Appl. No. 16/425,525 titled “Apparatuses and Methods for Tracking All Row Accesses” filed May 29, 2019, pp. all. |
U.S. Appl. No. 16/427,105 titled “Apparatuses and Methods for Priority Targeted Refresh Operations” filed May 30, 2019, pp. all. |
U.S. Appl. No. 16/427,140 titled “Apparatuses and Methods for Tracking Row Access Counts Between Multiple Register Stacks” filed May 30, 2019, pp. all. |
U.S. Appl. No. 16/437,811 titled “Apparatuses, Systems, and Methods for Determining Extremum Numerical Values” filed Jun. 11, 2019, pp. all. |
U.S. Appl. No. 16/513,400 titled “Apparatuses and Methods for Tracking Row Accesses” filed Jul. 16, 2019, pp. all. |
U.S. Appl. No. 16/997,766 titled “Refresh Logic Circuit Layouts Thereof” filed Aug. 19, 2020, pp. all. |
U.S. Appl. No. 17/095,978 titled “Apparatuses and Methods for Controlling Refresh Timing” filed Nov. 12, 2020, pp. all. |
U.S. Appl. No. 16/112,471 titled “Apparatuses and Methods for Controlling Refresh Operations” filed Aug. 24, 2018, pp. all. |
U.S. Appl. No. 16/160,801, titled “Apparatuses and Methods for Selective Row Refreshes” filed Oct. 15, 2018, pp. all. |
U.S. Appl. No. 16/231,327 titled “Apparatuses and Methods for Selective Row Refreshes”, filed Dec. 21, 2018, pp. all. |
U.S. Appl. No. 16/411,573 titled “Apparatuses, Systems, and Methods for a Content Addressable Memory Cell” filed May 14, 2019, pp. all. |
U.S. Appl. No. 16/411,698 title “Semiconductor Device” filed May 14, 2019, pp. all. |
U.S. Appl. No. 16/427,330 titled “Apparatuses and Methods for Storing Victim Row Data” filed May 30, 2019, pp. all. |
U.S. Appl. No. 16/428,625 titled “Apparatuses and Methods for Tracking Victim Rows” filed May 31, 2019, pp. all. |
U.S. Appl. No. 15/656,084, titled: Apparatuses and Methods for Targeted Refreshing of Memory, filed Jul. 21, 2017, pp. all. |
U.S. Appl. No. 15/888,993, entitled “Apparatuses and Methods for Controlling Refresh Operations”, filed Feb. 5, 2018, pp. all. |
U.S. Appl. No. 16/190,627 titled “Apparatuses and Methods for Targeted Refreshing of Memory” filed Nov. 11, 2018, pp. all. |
U.S. Appl. No. 16/459,520 titled “Apparatuses and Methods for Monitoring Word Line Accesses”, filed Jul. 1, 2019, pp. all. |
U.S. Appl. No. 17/030,018, titled “Apparatuses and Methods for Controlling Refresh Operations”, filed Sep. 23, 2020, pp. all. |
U.S. Appl. No. 16/994,338 titled “Apparatuses, Systems, and Methods for Memory Directed Access Pause” filed Aug. 14, 2020, pp. all. |
U.S. Appl. No. 16/997,659 titled “Apparatuses, Systems, and Methods for Refresh Modes” filed Aug. 19, 2020; pp. all. |
U.S. Appl. No. 17/127,654 titled “Apparatuses and Methods for Row Hammer Based Cache Lockdown” filed Dec. 18, 2020, pp. all. |
U.S. Appl. No. 17/324,621 titled “Apparatuses and Methods for Pure-Time, Self-Adopt Sampling for Row Hammer Refresh Sampling” filed May 19, 2021, pp. all. |
Number | Date | Country | |
---|---|---|---|
20200388325 A1 | Dec 2020 | US |