The present disclosure generally relates to a bulk hopper replacement unit that allows for a smaller portion, such as, a single-cup portion or an individual serving portion of a beverage (e.g., coffee) to be brewed after engaging the bulk hopper replacement unit with an existing bulk hopper slot of an automated bulk beverage preparation system (e.g., automated bulk coffee brewing system).
Many methods and systems for brewing beverages, such as coffee, are known. Existing commercial coffee brewing systems include multiple hopper slots each storing different coffee beans to facilitate bulk preparation of multiple different coffee beverages. Such beverage brewing systems are limited, however, to preparing coffee beverages that use the coffee beans stored in the hoppers.
Automated bulk coffee brewing systems (e.g., a Clover® automated brewing system provided by Starbucks Coffee Company) may be employed in a commercial coffee store or coffee house to improve the accuracy and repeatability of providing individual service portions, such as single-cup portions or traveler portions (e.g., multiple-cup portions) of commonly-ordered coffee beverages and do so in an efficient manner. For example, the same grinder assembly and brew assembly can advantageously be used to prepare individual serving (e.g., single-cup) portions of the coffee beverages using coffee beans stored in multiple different hoppers, or storage containers. However, if a store patron orders a coffee beverage that requires different coffee beans than those in one of the hoppers currently installed on the automated bulk coffee brewing system, a barista may be required to use a different coffee preparation machine (e.g., a French press coffee maker or a pour-over coffee brewer) to prepare an individual serving (e.g., single-cup) portion of the desired coffee beverage. This can result in inefficiency (e.g., reduced throughput, additional cleaning time, additional preparation time), additional required equipment (and thus additional space in a small beverage and/or food preparation area), and a reduction in customer satisfaction due to longer wait times and/or a lack of automation expectations.
Certain aspects of this disclosure are directed toward a bulk hopper replacement unit, or individual serving feed hopper adapter, that allows a barista or other user to brew individual serving portions of different beverages (e.g., coffee beverages) using a single automated bulk beverage preparation system (e.g., a Clover® automated brewing system used commercially in coffee stores operated by Starbucks Coffee Company). For example, the bulk hopper replacement unit, or individual serving feed hopper adapter, includes an adapter component, or module, that is configured to removably engage with (be installed on or within, be mated with, docked with, or coupled to) an open hopper slot of a bulk hopper assembly of the automated bulk beverage preparation system (e.g., automated bulk coffee brewing system). The adapter component may comprise, for example, a mounting dock that takes the place of a bulk hopper (e.g., fits within an existing bulk hopper slot and engages or interfaces with components or mechanisms that a conventional bulk hopper would, such as a hopper motor, a chute leading to a grinder assembly, a hopper selector assembly, etc.).
The bulk hopper replacement unit can also include a vessel component, or module, configured to removably mate or engage with the adapter component (e.g., mounting dock). The vessel component may be engaged, mated, or otherwise coupled with the adapter component prior to or after engagement of the adapter component with the bulk hopper slot. Multiple individual serving vessel components can be pre-loaded with appropriate coffee bean ingredients for a respective desired coffee beverage and then lined, or queued, up to be interchangeably engaged with the adapter component in order to prepare the various individual serving portions of the respective coffee beverages using the automated bulk beverage preparation system (e.g., automated bulk coffee brewing system). In accordance with several implementations, the bulk hopper replacement unit may obviate the need for French press or pour-over coffee makers in a coffee store.
The vessel component can include a slide gate or other retention mechanism that retains the contents (e.g., coffee beans) needed to prepare an individual serving portion of a desired beverage within an interior volume of a temporary storage vessel, or container, until the vessel component is engaged with the adapter component. Upon engagement of the vessel component with the adapter component, the slide gate or other retention mechanism is automatically moved or transitioned to a second configuration (e.g., open or unlocked configuration) in which the contents of the storage container of the vessel component are allowed to exit the storage vessel (e.g., are no longer retained by the slide gate or other retention mechanism). In other implementations, the slide gate or other retention mechanism is manually moved or transitioned between the first and second configurations.
The adapter component may include an opening configured to receive the contents of the storage vessel, or container, of the vessel component upon removal of the slide gate or other retention mechanism. The adapter component can include a feeding auger disposed at least partially within an interior volume of the adapter component to facilitate controlled metering of the contents (e.g., coffee beans) received from the vessel component into a grinding assembly of the automated beverage preparation system (e.g., bulk coffee brewing system). The components, or modules, of the bulk hopper replacement unit can be disassembled without any tools to facilitate cleaning. The adapter component may also include a hopper motor connected to the auger. The hopper motor can turn the auger in a clockwise direction and a counter-clockwise direction. In other implementations, the hopper motor is a component of the hopper assembly of the automated beverage preparation system (e.g., bulk coffee brewing system).
Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages, and features of the inventions have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.
As mentioned above, the coffee brewing system 2 allows a user to quickly and easily brew a variety of types of single-cup or traveler portions of a coffee beverage in bulk. To accommodate different types of coffee beverages, the bulk hopper assembly 8 of the coffee brewing system 2 is adapted to receive multiple hoppers 20, each of which can hold a different type of coffee beverage material (e.g., dark roast coffee beans, medium roast coffee beans, light roast coffee beans, and/or decaffeinated coffee beans). The bulk hopper assembly 8 of the coffee brewing system 2 may be configured to receive three bulk hoppers (as shown) or more or less than three hoppers.
The bulk hopper assembly 8 can be positioned above the upper portion 4 of the coffee brewing system 2. For example, the bulk hopper assembly 8 can include a hopper retainer 22 for retaining the hoppers 20. The hopper selector assembly 10 includes a number of paddles 24 that can be used to select one or more of the hoppers 20 based on the desired beverage materials (e.g., types of coffee beans). Further, the paddles 24 can mechanically reset to indicate completion of a brew cycle. Each paddle 24 corresponds to a separate hopper slot. The paddles 24 can be aligned with the hoppers 20. Alignment of the paddles 24 with the hoppers 20 can provide visual confirmation of the correspondence between each paddle 24 and a selected hopper slot.
Depression of one or more of the paddles 24 can initiate a brew cycle for the coffee beverage system 2. Depression of one or more of the paddles 24 activates a controlled feed assembly (e.g., auger 38) of one or more of the hoppers 20. The paddles 24 can end a brew cycle (e.g., before dispensing of a beverage) upon manual release (e.g., lifting) of one or more of the paddles 24. The paddles 24 and/or augers 38 can be configured to provide visual confirmation to a user of the device and/or to a customer when a specific hopper is selected. For example, selection of one or more paddles can initiate agitation of the contents of the respective hoppers which may be viewable from outside of the coffee beverage system 2.
The user interface assembly 12 can include a display screen 26 that can display data or information relating to the coffee brewing system 2, such as beverage parameters, settings, or maintenance reminders. The coffee brewing system 2 can also include a display control 28 to control the type of information being displayed or input specific parameters or settings. The display screen may comprise a touch screen display or multiple input buttons to scroll through and select menu options. The waste bin assembly 14 includes a receptacle to receive “spent” coffee grounds after brewing. The receptacle may be removable to facilitate emptying of its contents.
The dispensing assembly 16 facilitates dispensing of the brewed coffee beverage into a container 30 placed on the base portion 18. The base portion 18 can include a drip plate 32 to capture any spilled beverage. The base portion 18 can be in fluid communication with a drain.
With reference to
Each of the hoppers 20 or a subset of the hoppers 20 may be in communication with a single grinder assembly 34. Use of a single grinder assembly 34 for all of the hoppers collectively can reduce the cost of goods, reduce points of failure, and reduce the size of the coffee brewing system 2.
The grinder assembly 34 is configured to grind the coffee beans into grounds and may be configured to provide a controlled grind size. The grinder assembly 34 can include a grinder adjustment mechanism to automatically adjust the grind size based on the selected beverage. Further, the grinder assembly 34 can also include various safety features to undo jams or prevent operation when the grinder assembly 34 is not correctly positioned in the coffee brewing system 2.
The brewing assembly 36 is configured to brew the coffee beverage using hot water and the coffee grounds from the grinder assembly 34. The brewing assembly 36 then delivers the prepared coffee beverage to the dispensing assembly 16.
With reference to
Although the coffee brewing system 2 is described with certain features, one or more of the assemblies or components described above may be omitted, replaced, consolidated, or divided among multiple subassemblies. Additional structural and operational features described below in connection with
The beverage apparatus 1000 can include a water intake assembly 1002. The water intake assembly 1002 can include a water filter to filter the water that is used to brew the beverage. However, the water filter may not be necessary if the coffee brewing system 2 is installed in an establishment that has a water-purification system separate from the machine. The water intake assembly 1002 can include a heat sink through which water can flow. The heat sink can dissipate such conductive or radiant heat by transferring the heat to the water passing through the heat sink. Transfer of heat to the water can preheat the water before it enters a boiler 1004. Preheating the water before it enters the boiler 1004 can reduce the power requirements for the boiler 1004 and/or other components within the coffee brewing system 2. At least some water can flow directly to the boiler 1004 and bypass the water intake assembly 1002, if present.
The boiler 1004 can receive and store water from the water intake assembly 1002 and heat the stored water to a desired temperature, for example to a temperature in the range from 150° F. to just below the boiling point of water, such as between about 190° F. and about 200° F.
The beverage preparation apparatus 1000 can include one or more sensors to measure the water temperature in the boiler 1004 or flowing from the boiler 1004. For example, the beverage apparatus 1000 can include a water temperature control assembly 1006 that can alter the temperature of the water from the boiler 1004 to provide different brew temperatures from cup to cup. The water temperature control assembly 1006 can receive water from the boiler 1004 during a brewing cycle, and, in response to the controller 1026, can adjust the temperature of the water received from the boiler 1004. The water temperature control assembly 1006 can mix the heated water from the boiler 1004 with colder water from the water intake assembly 1002 or water inlet to lower the temperature of the water used to brew the beverage. The water temperature control assembly 1006 may include a heat exchanger that allows the cold water to cool the heated water without actually mixing with the heated water. The water temperature control assembly 1006 may also be able to heat the water used to brew the beverage above the temperature of the water in the boiler 1004.
The water temperature control assembly 1006 can sense the temperature of a fluid in the brew chamber. Based on the sensed temperature, the water temperature control assembly 1006 can control the temperature of water flowing into the brew chamber. For example, if the temperature of the fluid in the brew chamber is too high, cool water can be directed to the brewing assembly 1010. If the temperature of the fluid in the brew chamber is too low, hot water can be directed to the brewing assembly 1010.
Alternatively, the beverage apparatus 1000 may not include a water temperature control assembly 1006 and depend on the boiler 1004 to heat the water to the desired temperature.
The water measuring and transporting assembly 1008 transports a predetermined amount of water from the temperature control assembly 1006 to the brewing assembly 1010 during a brewing cycle. The brewing assembly 1010 can receive heated water from the water measuring and transporting assembly 1008, receive ground material from the grinder assembly 1024, brew a beverage, and then provide the brewed beverage to the dispensing assembly 1014 via the fluid transporting assembly 1012.
The water measuring and transporting assembly 1008 may not include a pump and may rely on gravity and/or external fluid line pressure to move fluid to the brewing chamber 1010. The controller 1026 can determine the amount of water provided to the brewing assembly 1010 based on a number of flow meters in the beverage apparatus 1000. However, the water measuring and transporting assembly 1008 can include a pump for directing water to the brewing assembly 1010. The controller 1026 can determine the amount of water that the provided to the brewing assembly 1010 based on the pump rate and the amount of time that the pump is active.
The water measuring and transporting assembly 1008 can also transport a predetermined amount of water to the brewing assembly 1010 during a cleaning cycle. The brewing assembly 1010 can also include a cleaning system, such as a plow assembly, to move spent ground material and residue from the brewing assembly 1010 to the solid waste disposal 1020. The solid waste disposal 1020 may include a receptacle that one periodically removes for emptying, or that is connected to an electronic garbage disposer or directly to the sewer line of the establishment in which the coffee brewing system 2 is installed. In addition, the solid waste disposal 1020 may be connected to receive tap water, and may use the tap water to flush “ground-through” and spent coffee from the disposal unit into the garbage disposer unit or directly into the sewer line. The solid waste disposal 1020 may periodically commence an automatic flushing sequence, e.g., after brewing each cup of coffee, or may commence the flushing sequence manually. In some implementations, the solid waste disposal 1020 is the same as the liquid waste disposal 1016.
The beverage apparatus 1000 can include a fluid transporting assembly 1012 to direct the beverage to the dispensing assembly 1014 and/or liquid waste to the liquid waste disposal 1016 (e.g., waste bin or drain). The fluid transporting assembly 1012 can include a valve or valve assembly that can transition between a first valve position wherein fluid communication is provided between the interior of the brewing assembly 1010 and the dispenser assembly 1014, and a second valve position wherein fluid communication is provided between the brewing assembly 1010 and the liquid waste disposal 1016. The fluid transporting assembly 1012 may respond to the controller 1026 to move between the first and second valve positions.
The dispensing assembly 1014 can include one or more dispensers. For example, the dispensing assembly 1014 can include a beverage dispenser that can dispense a selected beverage. The dispensing assembly 1014 can include a water dispenser. The water dispenser may include one or more fluid inlets connected to the boiler 1004 and/or a water source external to the apparatus 1000. The dispensing assembly 1014 can include one or more valve assemblies to control fluid inflow and outflow.
The base assembly 1018 can hold or receive a container while the dispenser assembly 1014 fills the container with the brewed beverage (or water as described below). The base assembly 1018 can include a drain portion to absorb, e.g., spillage from the cup and drippings from the dispenser assembly 1014. The drain portion may be removable for emptying, connected to the liquid waste disposal 1016, or connected directly to the sewer line of the establishment in which the coffee beverage system 2 is installed. The base assembly 1018 can include a container-sensing unit (not shown) to indicate to the controller 1026 whether a container is present in the base assembly 1018. If the container is not present after the brewing assembly 1010 has brewed the beverage, then the controller 1026 may deactivate or close the fluid transporting assembly 1012 to prevent the dispense of the brewed beverage. As another example, if the container is present during a cleaning cycle, then the controller 1026 may deactivate or close the fluid transporting assembly 1012 to prevent rinse water from dispensing into the container. The cup-sensing unit may include any type of sensor, such as an optical, mechanical, or ultrasonic sensor.
The beverage apparatus 1000 may include one or more hopper assemblies 1022 for holding beverage material, which are fed to the grinder assembly 1024. The controller 1026 may indicate the amount of beverage material to be delivered to the grinder assembly 1024. Where the coffee brewing system 2 includes multiple hopper assemblies 1022, then one can load different types of beverage material into each hopper assembly 1022.
In response to the controller 1026, the grinder assembly 1024 can grind beverage material from the hopper assembly 1022, and then provide to the brewing assembly 1010 a predetermined amount of ground material. The controller 1026 may indicate one of multiple grind sizes (e.g., coarse, normal, fine) to the grinder assembly 1024, as the grind size may affect the taste and other characteristics of the brewed coffee.
The beverage apparatus 1000 can include a barrier 1028 to separate the controller 1026 and associated circuitry from other components of the apparatus 1000. For example, steam from hot water and brewing the beverage may condense and damage or otherwise render inoperable the controller 1028. Furthermore, condensation on the conduits that carry cold tap water may cause similar problems. Therefore, a moisture barrier 1028 helps keep the controller 1026 and associated circuitry dry.
The controller 1026 controls the operation of some or all of the other components of the beverage apparatus 1000 as discussed above, and includes a processor 1032, a memory 1038, a control panel and display 1030, and a communications port 1036.
The processor 1032 executes a software program stored in the memory 1038 or in another memory (not shown), and controls the operations of the components of the beverage apparatus 1000 as described above and as described below.
In addition to storing one or more software programs, the memory 1038 may store sets of predetermined brew parameters or recipes as discussed in further detail below. The memory 1038 can also store data associated with machine activity (e.g., number of brewed beverages, types of brewed beverages or sizes of brewed beverages).
The control panel and display 1030 allows an operator to enter brewing options (e.g., coffee type, cup size, and brewing parameters) or to select brewing options from a menu that the processor 1032 may generate on the display. For example, the operator may select via the control panel and display 1030 individual brewing parameters (e.g., grind size, water temperature, brewing time, and the coffee-ground-to-water ratio), or a set of predetermined brewing parameters stored in the memory 1038. As an example of the latter, a coffee roaster may have determined preferred brewing parameters for its coffee. One may then store these preferred parameters in the memory 1038 as a set, and associate the set with an identifier, such as the name or type of the coffee. Therefore, instead of entering or selecting each brewing parameter individually, which may be tedious, the operator merely enters or selects from a menu the identifier, and the controller 1026 causes the beverage apparatus 1000 to brew coffee according to the set of parameters corresponding to the identifier.
In some embodiments, instead of or in addition to the control panel and display, the beverage apparatus 1000 can include a number of other input controls 1034 for selecting brewing options.
The communications port 1036 allows the processor 1032, memory 1038, and control panel and display 1030 to communicate with one or more devices external to the beverage apparatus 1000. For example, the port 1038 may be connected to a computer so that one can program or run diagnostics from the computer. The port 1038 may also be connected to another beverage apparatus 1000 to communicate information (e.g., brewing parameters or power supply information). As another example, the port 1036 may be connected to the internet, so that one can download into the memory 1038 data such as sets of brewing parameters or upload usage statistics from the beverage apparatus 1000. In addition, the port 1036 may receive data via a wireless channel, such as a set of brewing parameters from a RFID tag or a barcode on a container of coffee or on a coffee cup (the tag may hold the cup owner's preferred coffee type, cup size, or brew parameters). Furthermore, the port 1036 may allow the processor 1032 to download demographic information, such as coffee-drinker preferences and number of cups brewed, to a coffee roaster or supplier or to the manufacturer/supplier of the beverage apparatus 1000.
Many of the features described herein, including, but not limited to, grind size adjustment, the brewing assembly, the water input system, the beverage dispensing features, and the plow assembly, are designed to brew beverages quickly. Existing brew processes for individual serving portions (e.g., single-cup portions) of a beverage often take more than 60 seconds. In contrast, the coffee brewing system 2 described herein can grind, brew, and dispense an individual serving portion (e.g., single-cup portion) of a beverage in about 60 seconds or less, such as less than 40 seconds, less than about 35 seconds, or less than about 30 seconds. In some embodiments, the coffee brewing system 2 can dispense the individual serving portion (e.g., single-cup portion) portion in less than about 10 seconds or less than about 5 seconds. Further, in some embodiments, the reset process, including cleaning the brewing assembly can also take about 30 seconds or less.
Alternate embodiments of the beverage apparatus 1000 are contemplated. For example, one or more of the above-described units or components may be omitted, the function of multiple units may be consolidated into fewer units, or the function of a single unit may be divided among multiple units.
Turning to
The adapter component 301 is a mounting dock adapted to mount onto or into an open bulk hopper slot of an automated bulk brewing system (e.g., hopper retainer 22 of coffee brewing system 2) as a replacement for a bulk hopper. The adapter component 301 may include the same mating or engagement features as a bulk hopper. The adapter component 301 can include an outer housing 303 having a rear portion 304 and a front portion 305. The rear portion 304 may be generally vertical and the front portion may be generally horizontal to generally form an “L” shape. The rear portion 304 can include structural features sized and shaped to allow the adapter component 301 to mate or engage with corresponding structural features of a hopper slot of an automated bulk brewing system (e.g., hopper assembly 8 of coffee brewing system 2) so as to facilitate preparation of a beverage (e.g., brewing of a coffee beverage) using the automated bulk brewing system (e.g., coffee brewing system 2). For example, the rear portion 304 of the adapter component 301 can include an auger coupling 306 adapted to couple an adapter auger 307 (shown in
With reference to
With reference to
The vessel component 302 comprises the storage vessel 315, a handle 318, and a retention member 319. The storage vessel 315 comprises an upper opening 320 adapted to receive coffee beans (or other beverage contents) and a lower opening 321 adapted to align with the central opening 311 of the adapter component 301 to facilitate release of the coffee beans toward the feed auger 317 when the retention member 319 is moved so as not to be blocking or covering the lower opening 321. As shown, the upper opening 320 is larger than the lower opening 321 and there is a tapering of a cross-sectional dimension between the upper opening 320 and the lower opening 321 along a height of the storage vessel 315. The larger upper opening 320 may facilitate easier insertion of coffee beans without spilling. In other embodiments, the storage vessel 315 may have a uniform or generally uniform cross-sectional dimension along its height. The storage vessel 315 may define an interior volume that is sized to receive enough coffee beans to prepare an individual serving portion (e.g., single-cup portion) of coffee. In some implementations, the interior volume may be sized to receive enough coffee beans to prepare a traveler-size portion (e.g., multiple single-cup portions) of coffee. The handle 318 is adapted to facilitate easy grasping and transport of the vessel component 302 by a single hand of a barista or other user.
Although reference is made throughout this disclosure to “single-cup” portions or “individual serving” portions, the individual serving feed hopper adapter, or bulk hopper replacement unit, 300 may be adapted and used to prepare desired portions using storage containers (e.g., hoppers, vessels) sized to hold smaller portions of beverage contents (e.g., coffee beans) than the bulk hoppers 20. For example, the individual serving portions or single-cup portions may be a portion or serving size appropriate for consumption by a single individual that are more or less than an actual cup (i.e., 8 fluid ounces) of the beverage (e.g., 4 fluid ounces to 24 fluid ounces, 4 fluid ounces to 16 fluid ounces, 8 fluid ounces to 24 fluid ounces). The individual serving portions may be traveler portions (e.g., multiple-cup portions, such as 1 to 4 individual serving sizes, or up to 96 fluid ounces) in some implementations. In accordance with several implementations, the storage vessel 315 may define an interior volume (e.g., a maximum storage capacity) that is less than 20% (1:5 ratio), less than 15% (3:20 ratio), less than 10% (1:10 ratio), or less than 5% (1:20 ratio) of the interior volume of the bulk hopper 20 that the bulk hopper replacement unit, or individual serving feed hopper adapter 300, is replacing. The ratio of the interior volume of the storage vessel 315 to the interior volume of the bulk hopper 20 may be between 1:100 and 1:5 (e.g., between 1:100 and 1:20, between 1:50 and 1:20, between 1:50 and 1:10, between 1:20 and 1:10, between 3:20 and 1:20, between 1:10 and 1:5). The storage vessel 315 may be sized (e.g., have a maximum storage capacity) to receive less than 20%, less than 15%, less than 10%, or less than 5% of the amount of coffee beans that the bulk hopper 20 is sized to receive (e.g., maximum storage capacity). The storage vessel 315 may be sized to have a maximum storage capacity of between 15 grams and 250 grams (e.g., between 15 grams and 60 grams, 60 grams or less, 250 grams or less, between 20 grams and 60 grams, between 30 grams and 60 grams, between 15 grams and 100 grams, overlapping ranges thereof, or any value within the recited ranges) of coffee beans. “Maximum storage capacity” may have its plain and ordinary meaning and may include, for example, a capacity above which the coffee beans in the storage vessel 315 would be overflowing, or spill out, such that they cannot be contained within the storage vessel. In certain implementations, the storage vessel 315 may be sized to receive between 15 grams and no more than 250 grams (e.g., between 15 grams and no more than 60 grams, no more than 60 grams, no more than 250 grams, between 20 grams and no more than 60 grams, between 30 grams and no more than 60 grams, between 15 grams and no more than 100 grams, overlapping ranges thereof, or any value within the recited ranges) of coffee beans.
In some implementations, a bulk hopper having a first maximum storage capacity is replaced with the individual serving feed hopper adapter, or bulk hopper replacement unit, 300, wherein the storage vessel 315 of the individual serving feed hopper adapter 300 has a second maximum storage capacity. The second maximum storage capacity may be less than the first maximum storage capacity. For example, the second maximum storage capacity may have a maximum storage capacity as set forth in the preceding paragraph. A barista or other user may fill the storage vessel 314 with less than 20% (1:5 ratio), less than 15% (3:20 ratio), less than 10% (1:10 ratio), or less than 5% (1:20 ratio) of the amount of coffee beans that the bulk hopper is sized to store (e.g., maximum storage capacity of the bulk hopper). A barista or other user may fill or load the storage vessel 314 with between 15 grams and 250 grams (e.g., between 15 grams and 60 grams, 60 grams or less, 250 grams or less, between 20 grams and 60 grams, between 30 grams and 60 grams, between 15 grams and 100 grams, overlapping ranges thereof, or any value within the recited ranges) of coffee beans. The amount of coffee beans may be an amount sufficient to brew a coffee beverage of 3 fluid ounces to 96 fluid ounces (e.g., from 3 fluid ounces to 20 fluid ounces, from 3 fluid ounces to 30 fluid ounces, from 8 fluid ounces to 30 fluid ounces, from 8 fluid ounces to 64 fluid ounces, overlapping ranges thereof, or any value within the recited ranges such as 3 fluid ounces, 4 fluid ounces, 8 fluid ounces, 12 fluid ounces, 16 fluid ounces, 20 fluid ounces, 30 fluid ounces, 31 fluid ounces, 48 fluid ounces, 96 fluid ounces). The storage vessel 314 may be filled prior to or after docking or engaging of the individual serving feed hopper adapter, or bulk hopper replacement unit, 300 with the bulk hopper slot of the automated coffee brewing system. The automated coffee brewing system may then be activated (manually or automatically) to brew the individual serving portion of coffee using the amount of coffee beans inserted in the storage vessel 314 by the barista or other user.
With reference to
As shown in
In some implementations, there is no biasing member (e.g., spring) to cause the retention member 319 to automatically return to a closed (or locked) configuration in which the lower opening 321 of the storage vessel 315 is covered. In some implementations, there is no magnetic assembly or other actuation mechanism to controllably transition the retention member 319 between a closed and open configuration. Instead, the retention member 319 is transitioned between configurations by mechanical or physical contact brought about by manual force. Thus, the retention member 319 may not have a default configuration.
In other implementations, there may be a biasing member (e.g., spring) to cause the retention member 319 to automatically return to a closed (or locked) configuration in which the lower opening 321 of the storage vessel 315 is covered. Thus, the retention member 319 may have a default closed or locked configuration.
The blades or flutes 324 may be evenly distributed around a circumference of the inner core 323. The inner core 323 and blades 324 can include a same material or different materials. For example, the inner core 323 can include stainless steel and the blades 324 can be injection molded around the inner core 323 using nylon, PVC, polymers, ceramics, or any combination thereof. As another example, the inner core 323 and the blades 324 can each include nylon, PVC, polymers, ceramics, or any combination thereof.
Manufacturing the feed auger 317 can include a two-step injection molding process. First, the inner core 323 can be injection molded using nylon, PVC, polymers, ceramics, or any combination thereof. After the inner core 323 cools, the blades 324 can be injection molded over the inner core 323 using nylon, PVC, polymers, ceramics, or any combination thereof.
The bulk hopper replacement unit, or individual serving feed hopper adapter, 300′ may include similar structural and operational features as the bulk hopper replacement unit, or individual serving feed hopper adapter, 300 described in connection with
However, the vessel component 302′ may be adapted to engage, dock, or mate with the adapter component 301′ from a generally vertical direction instead of a generally horizontal direction (e.g., a top-load implementation instead of a side-load implementation).
A first end of the retention member 319′ may include a gripping member 334 extending substantially perpendicular to the first end of the retention member so as to facilitate insertion and removal of the retention member 319′ into and out of the slot. The gripping member 334 may also prevent over-insertion of the retention member 319′. The gripping member 334 may alternatively comprise a knob that does not necessarily extend perpendicular to the first end of the retention member. In accordance with several implementations, the retention member 319′ is manually inserted and removed from the slot (e.g., via pushing and pulling on the gripping member 334) and is not automatically transitioned between a closed configuration and open configuration upon docking or mating of the vessel component 302′ with the adapter component 301′. The retention member 319′ may not be automatically biased in a closed configuration.
In other implementations, operation of the retention member 319′ could be automated (in one or both directions). For example, a mechanical cam system (e.g., rotating and/or sliding cam mechanism and/or crank mechanism) could be operably coupled (e.g., mechanically attached) to the retention member 319′ and to the auger assembly (e.g., feed auger 317) of the adapter component 301′ such that as the feed auger 317 rotates, the cam system causes the retention member 319′ to transition between the closed configuration and the open configuration. The cam system may comprise a one-way cam system that is reset manually (e.g., retention member 319′ is manually transitioned to the closed configuration) at a time when coffee beans or other contents are loaded into the vessel component 302′. In some implementations, the cam system is automatically reset.
The bulk hopper replacement unit, or individual serving feed hopper adapter, 300 may be selected for use by selecting the appropriate hopper selector (e.g., paddle 24) of the automated coffee brewing system 2. In some configurations, when the individual serving feed hopper adapter 300 (e.g., the adapter component 301 and/or the vessel component 302) is coupled (e.g., docked, mated, engaged) with one of the bulk hopper slots of the coffee brewing system 2, the coffee brewing system 2 immediately and automatically detects or recognizes that an individual serving feed hopper adapter 300 has been docked and causes a menu screen corresponding to the individual serving feed hopper adapter 300 to be displayed on the display screen 26. The menu screen may enable selection by a barista or user of the type of beverage (e.g., coffee) and/or other beverage parameters. In some configurations, the various options for the type of beverage (e.g., coffee) are prepopulated on the menu screen for selection based on an inventory of the beverages (e.g., coffee types) available in the coffee store. After the automated coffee brewing system 2 is activated, the bulk hopper replacement unit, or individual serving feed hopper adapter, 300 can dispense the individual serving dose (e.g., single-cup dose) of beverage material to the grinder assembly 500.
The controlled dose can enter the grinder assembly 34 via the chute 39. The grinder assembly 34 can be set to a specific grind size based on the hopper selection. After the grinder assembly 34 grinds the beverage material, the beverage material can flow into the brewing assembly 36 and then from the brewing assembly to the dispensing assembly 16 and then into a beverage container 30 placed below a discharge spout of the dispensing assembly 16. Then the vessel component 302 may be removed from the adapter component 301 (as shown in
Using a single grinder assembly 34 for both bulk hoppers and the individual serving feed hopper adapter 300 can reduce the amount of space required for the grinder assemblies, reduce the cost of goods, reduce points of failure, and reduce the amount of necessary calibration. The grinder assembly 34 can grind the beverage material to a controlled ground size. The ground size can vary based on a number of factors, including, but not limit to, the type of beverage material or the type of drink.
For expository purposes, the term “horizontal” as used herein is defined as a plane parallel to the plane or surface on which the device being described is used or the method being described is performed, regardless of its orientation. The term “vertical” refers to a direction perpendicular to the horizontal as just defined. Terms such as “above,” “below,” “bottom,” “top,” “side,” “higher,” “lower,” “upper,” “over,” and “under,” are defined with respect to the horizontal plane.
As used herein, the relative terms “proximal”, “distal”, “front” and “rear” shall be defined from a user (e.g., barista) facing the controls. Thus, proximal refers to the side of the machine with the user-operable controls and distal refers to the opposite side of the machine.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of the stated amount, as the context may dictate. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 10 degrees, as the context may dictate.
Disjunctive language such as the phrase “at least one of X, Y, Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to present that an item, term, etc., may be either X, Y, or Z, or any combination thereof (e.g., X, Y, and/or Z). Thus, such disjunctive language is not generally intended to, and should not, imply that certain embodiments require at least one of X, at least one of Y, or at least one of Z to each be present.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 5 inches” includes “5 inches.”
Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the systems and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.
Some embodiments have been described in connection with the accompanying drawings. However, it should be understood that the figures are not drawn to scale. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, it will be recognized that any methods described herein may be practiced using any device suitable for performing the recited steps.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.
This application is related to U.S. Pat. No. 9,930,987, which is hereby incorporated by reference in its entirety.