This application claims priority to Indian Patent Application No. 628/CHE/2012, filed Feb. 20, 2012.
This invention relates generally to devices and methods for heating or cooling an object and, more particularly, to devices and methods that utilize a thermoelectric module to heat or cool a body part of a user.
Thermo-regulated apparel is apparel that includes a thermal device for adding or removing heat from a body of a wearer. Thermo-regulated apparel may be implemented in a wide-variety of products and has many uses. For example, a thermo-regulated jacket may keep a person warm on a cold day or cool on a hot day. Likewise, a thermo-regulated brace or bandage may be used to cool a body part (e.g., to reduce swelling after an injury) or heat a body part (e.g., to relieve muscle pain).
Thermo-regulated apparel may be categorized as either active or passive. Active thermo-regulated apparel may be used to maintain a temperature set by the wearer. Conventional thermal devices used in active thermo-regulated apparel include resistive heaters for heating and compressive coolers for cooling. By contrast, passive thermo-regulated apparel is capable of simply adding or removing heat, without maintaining a desired temperature. Conventional thermal devices used for passive thermo-regulated apparel include chemical reaction systems for heating and phase change materials for cooling. Conventional thermal devices for both active and passive thermo-regulated apparel are capable of either heating or cooling, but not both heating and cooling.
One type of thermal device for thermo-regulated apparel is a powered thermoelectric device. A thermoelectric device is a heat pump that transfers heat from a cold side of the device to a hot side of the device, with consumption of electrical energy. Thermoelectric devices are desirable, because they allow precise control over heat transfer rates, and they are capable of providing both heating and cooling. To maintain desired surface temperatures, however, heat must generally be dissipated from the hot side of the thermoelectric device.
Previous attempts to dissipate heat from thermoelectric devices in thermo-regulated apparel have been largely unsuccessful. One reason for this difficulty is that the insulating properties of apparel make it difficult to transfer heat through the apparel to the surroundings. Further, to achieve adequate heat dissipation by natural or forced convection, the thermoelectric module must generally placed on an exterior portion of the apparel, which may be unattractive, cumbersome, and unsuitable for active use. Achieving sufficient heat dissipation rates through radiative heat transfer, forced convection, and/or phase change materials may not be feasible.
There is a need for thermo-regulated apparel that is capable of providing sufficient rates of both heating and cooling. In particular there is a need for thermo-regulated apparel that includes a thermoelectric device and is capable of adequately dissipating heat from the hot side of the device, while remaining attractive and suitable for active use.
The devices and methods described herein provide thermo-regulated apparel for heating and/or cooling at least a portion of the body of a wearer. Compared to previous designs, the devices described herein include a heat sink that is amongst the lightest of its kind A thickness of the heat sink is optimized for very high lateral heat transfer, and surface textures on the heat sink provide optimized heat dissipation rates. A wetting material disposed on the heat sink is configured to hold a desired amount of cooling liquid (e.g., water), without adding an excessive heat transfer resistance or heat capacity. By optionally cycling the electrical power supplied to the thermoelectric device, desired rates of heating and/or cooling are achieved, and the user's perception of the heating and/or cooling is enhanced. The devices and methods described herein provide efficient heating and/or cooling for a wide variety of applications and items of apparel, including jackets, boots, helmets, bandages, and braces.
In one aspect, the invention relates to a device for heating or cooling a body of a user. The device includes a thermoelectric module, a heat sink thermally coupled to a surface of the thermoelectric module, a wetting material in thermal communication with the heat sink, and a controller for cycling the thermoelectric module in accordance with a duty cycle, for example, a duty cycle greater than about 10%.
In certain embodiments, the device includes a supply tank and a supply line connecting the wetting material and the supply tank. The supply line may include a wicking material to convey a liquid from the supply tank to the wetting material. A thickness of the heat sink may be from about 1 mm to about 15 mm. In one embodiment, the device includes a binding layer securing the wetting material to the heat sink (e.g., the wetting material may be disposed between the heat sink and the binding layer). The binding layer may be wrapped around an outer edge of the heat sink.
In certain embodiments, the heat sink includes an etched surface and/or a contoured surface. The contoured surface may form a bend having a bend angle in a range from about 0 degrees to about 90 degrees. In one embodiment, the wetting material includes an antimicrobial agent. In another embodiment, the wetting material includes a hydrophilic material. A thickness of the wetting material may be from about 1 mm to about 3 mm. The wetting material may include tissue and/or cotton.
In certain embodiments, the device includes a battery and a switched electrical connection. The device is typically integrated into apparel, such as a neck wrap, an elbow pack, a knee pack, a back pack, an ankle pack, a universal pack a heating jacket, a cooling jacket, a heating-cooling jacket, an anti-bleeding pack, a head band, an abdominal pad, a shoe insole, clothing, footwear, a car seat, and/or a helmet. In one embodiment, the thermoelectric module includes a heating surface area from about 100 mm2 to about 2000 mm2.
In another aspect, the invention relates to a method of heating or cooling a portion of a body of a user. The method includes the steps of: cycling electrical power to a thermoelectric module at a duty cycle of at least about 10%; transferring heat from the thermoelectric module to a heat sink; and evaporating a liquid from a wetting material disposed on the heat sink, wherein the evaporated liquid enters the surrounding atmosphere.
In certain embodiments, the method includes conveying the liquid from a supply tank to the wetting material by, for example, wicking the liquid through a wicking material disposed within a supply line. In one embodiment, the method includes applying the liquid to the wetting material (e.g., by spraying or dripping). In another embodiment, cycling electrical power includes a duty cycle from about 30% to about 100%. A cycle time for cycling electrical power may be from about 1 minute to about 10 minutes.
In certain embodiments, transferring heat from the thermoelectric module includes a heat transfer rate from about 0.2 W to about 200 W. Likewise, a heat transfer rate associated with evaporating the liquid from the wetting material may be from about 0.2 W to about 200 W. A cold side of the thermoelectric module may have a temperature from about −10 degrees C. to about 30 degrees C. In one embodiment, the heat sink temperature is at least about 30 degrees C.
In certain embodiments, the method includes treating a disorder such as arthritis, tennis elbow, golf elbow, a migraine headache, menstrual pain, back pain, and/or an ankle sprain. In one embodiment, the method includes providing electrical stimulation to a user. The liquid may include a fragrance to provide aromatherapy.
In another aspect, the invention relates to a method of manufacturing a device for heating or cooling at least a portion of a body of a user. The method includes the steps of: providing and etching a surface of a heat sink with an etching agent to increase an effective surface area thereof; attaching the heat sink to a thermoelectric module; disposing a wetting material over the heat sink; and securing the wetting material to the heat sink with a binding layer.
In certain embodiments, the wetting material is disposed between the heat sink and the binding layer. The method may include introducing into the heat sink a bend angle from about 10 degrees to about 90 degrees. Securing the wetting material may include wrapping the binding layer around an edge of the heat sink. In one embodiment, the method includes electrically connecting the thermoelectric module to a battery pack. The thermoelectric module is typically integrated into an item of apparel, such as a neck wrap, an elbow pack, a knee pack, a back pack, a heating jacket, a cooling jacket, a heating-cooling jacket, an anti-bleeding pack, a head band, an abdominal pad, a shoe insole, clothing, footwear, a car seat, and/or a helmet.
Other features and advantages of the present invention, as well as the invention itself, may be more fully understood from the following description of the various embodiments, when read together with the accompanying drawings, in which:
It is contemplated that systems, devices, methods, and processes of the claimed invention encompass variations and adaptations developed using information or the teachings from the embodiments described herein. Adaptation and/or modification of the devices, systems, methods, and processes described herein may be performed by those of ordinary skill in the relevant art and all are considered to be within the scope of the invention.
Throughout the description, where systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are systems of the present invention that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present invention that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain actions is immaterial, so long as the invention remains operable. Moreover, two or more steps or actions may be conducted simultaneously.
The mention herein of any publication is not an admission that the publication serves as prior art with respect to any of the claims presented herein. The Background section is presented for purposes of clarity and is not meant as a description of prior art with respect to any claim.
Apparel with heating and cooling capabilities is described in International Patent Application No. PCT/US2008/054438, filed Feb. 20, 2008, titled “Apparel with Heating and Cooling Capabilities,” and in International Patent Application No. PCT/IN2011/000438, filed Jul. 1, 2011, titled “Article of Clothing for Heating or Cooling Body of Wearer,” the disclosures of which are hereby incorporated by reference herein in their entireties.
Referring to
When the TEM 10 is used for cooling, heat is absorbed at the cold side 12 by electrons as they pass from a low energy level in a p-type semiconductor element 16 to a higher energy level in an n-type semiconductor element 18. A supplied voltage between a positive connector 20 and a negative connector 22 provides electrical potential to move the electrons through the TEM 10. At the hot side 14, energy is expelled to a heat sink as electrons move from the higher energy level n-type semiconductor element 18 to the low energy level p-type semiconductor element 16. As depicted, conductive layers 24 are placed above and below the semiconductor elements 16, 18. Electrical insulator layers 26 are placed outside of the conductive layers 24 and form the cold side 12 and the hot side 14.
TEMs have several advantages over other heating and cooling devices. For example, TEMs have a solid state construction with no moving parts and are therefore generally more reliable. TEMs are also capable of cooling to well below ambient temperature (e.g., as low as minus 100° C., using multistage TEMs). Further, TEMs may be switched from heating to cooling (or cooling to heating) by simply reversing the polarity of the electrical supply. TEMs also may enable temperatures to be controlled precisely (e.g., within ±0.01° C.) and maintained under steady-state conditions. In a heating mode, TEMs are generally more efficient than conventional resistance heaters, because they generate heat from the electrical power and from the heat pumping action that occurs.
A heat sink is an object that transfers thermal energy from a higher temperature to a lower temperature fluid medium. The fluid medium is frequently air, but may also include or be water and/or other liquids, such as refrigerants and/or oils. Well-known examples of heat sinks include car radiators and heat exchangers used in refrigeration and air conditioning systems. Heat sinks are often used to cool electronic and optoelectronic devices, such as higher-power lasers and light emitting diodes (LEDs).
Referring to
Referring to
Referring to
The heat sink 44 may be made of any material capable of providing the desired heat transfer to or from the TEM. In certain embodiments, the heat sink 44 includes a metal, carbon fiber, and/or a polymer. Examples of suitable metals include magnesium, aluminum, copper, aluminum alloys of various grades, bonded metals, and/or anodized materials. The heat sink 44 may include, for example, bonded aluminum with copper. In one embodiment, the heat sink 44 includes phase change materials and/or solid polymers having hydrogen bonds that break upon heating and reform upon removal of heat. The heat sink 44 may include one or more fins for heat removal. In certain embodiments, the heat sink 44 is filled with a liquid, such as water and/or alcohols.
Referring to
In general, the heat sink 44 is geometrically optimized to achieve a desired steady state rate of cooling, based on the size and power consumption of the TEM 42. For example, the heat sink thickness TH and bend angle θ are optimized to conduct heat in a lateral direction through the heat sink, away from the TEM 42, even when the TEM surface area AM is much smaller than the heat sink surface area AH. In certain embodiments, a high thermal conductivity of the heat sink 44 results in a temperature distribution within the heat sink 44 that is nearly uniform (i.e., less than about 1° C. of temperature variation). The heat sink 44 may be of any shape, such as square, rectangular, circular, triangular, hexagonal, etc., or combinations thereof. In one embodiment, the heat sink is shaped to conform generally to the body of the wearer.
In various embodiments, one or more surfaces of the TEM 42 and/or the heat sink 44 include a surface roughness that promotes heat transfer to and/or from the one or more surfaces of the TEM 42 and heat sink 44. For example, a surface roughness Ra of the TEM 42 and/or the heat sink 44 may be from about 10 microns to about 1000 microns. In one embodiment, the TEM 42 and heat sink 44 are treated with an etching agent, which may be alkaline or acidic (e.g., sodium hydroxide or sulfuric acid), to achieve the desired surface texture or roughness. The etching agent may also remove undesirable oxide layers from surfaces of the TEM 42 and/or heat sink 44. A pH of the etching agent may be, for example, from about 10 to about 12. The TEM 42 and/or the heat sink 44 may be exposed to the etching agent for, for example, about 15 minutes, or from about 1 minute to about 100 minutes. The etched surface of the heat sink 44 may improve bonding to the TEM 42, as well as enhance heat transfer to the liquid in the proximate wetting material 46.
In certain embodiments, the wetting material 46 is a material that absorbs or is wet by a cooling liquid, such as water, alcohol, or mixtures thereof. The wetting material 46 may be a hydrophilic material, such as tissue (e.g., a cellulose or paper-based facial tissue), cotton (e.g., a gauze pad or portion thereof for wound dressing), combinations of tissue and cotton, cellulosic materials, foam materials, polymer water soaking materials, and/or water soaking fabrics. For example, the wetting material may include about 10 layers of tissue and/or cotton, or from about 1 layer to about 20 layers of tissue and/or cotton. In certain embodiments, each layer of tissue and/or cotton has a thickness of about 1 mm, or from about 0.5 mm to about 3 mm. The wetting material is configured to hold an optimized amount of cooling liquid for evaporative cooling without acting as a significant thermal insulator or providing a substantial thermal mass or heat capacity. In one embodiment, the wetting material 46 is firmly attached to the heat sink using the binding layer 52.
To prevent the growth of mold or other microbes, the wetting material 46, binding layer 52, and/or other materials or surfaces of the device may include an antimicrobial agent. In one embodiment, the antimicrobial agent includes silver (e.g., silver particles) and/or a pyrithione salt (e.g., zinc pyrithione).
In certain embodiments, the controller 48 is used to adjust the amount of heating or cooling achieved by the TEM 42. In general, the controller 48 achieves this by increasing or decrease the electrical energy applied to the TEM 42. For example, the controller 48 may increase or decrease the applied electrical current and/or voltage. The electrical current applied to the TEM 42 may be, for example, about 1.7 Amps, or from about 0.2 Amps to about 5 Amps. The voltage applied to the TEM 42 may be, for example, about 7.4 V, or from about 2 V to about 35V. The power source may be batteries or line power conditioned with a suitable transformer.
In certain embodiments, the controller 48 achieves the desired heating or cooling by cycling the electrical current and/or voltage on and off (or between higher and lower values) at a desired duty cycle and period.
In addition to controlling the rate of heating and/or cooling, one advantage of cycling the electrical power, as described above, is that it may enhance the user's perception of the heating and/or cooling. For example, after a few minutes of steady heating or cooling without cycling the electrical power, the user may not be able to detect that he or she is being heated or cooled. By contrast, when the electrical power is cycled at the duty cycle D, the user is more likely to perceive the heating or cooling, thereby enhancing the user's experience with the device. For example, a period T of about 2-4 minutes has been found to provide optimal perception of heating and/or cooling by the user.
In various embodiments, the device 40 is incorporated into an item of apparel. The item of apparel may be, for example, an item that is worn by a user and/or an item that may be attached to the user or otherwise come into contact with the user. For example, the item of apparel may be a neck wrap (e.g., a scarf), an elbow pack, a knee pack, a back pack, an ankle pack, a universal pack, a heating jacket, a cooling jacket, a heating-cooling jacket, an anti-bleeding pack, a head band, a helmet, an abdominal pad, a shoe insole, clothing, footwear (e.g., athletic shoes, and/or boots), a chair, a seat (e.g., a car seat), a steering wheel, and/or an armrest. In certain embodiments, the item of apparel is a jacket, a pair of biking shorts, a biking shoe, a biking jersey, an exercise suit, a sports bra, spandex pants, under garments, a pair of shorts, a top, a shirt, a glove, a shoe, a boot, a ski boot, a roller skate, an ice skate, a roller blade, a sock, a wrist band, a heart monitor, a wrist watch, a uniform, a baseball cap, a golf cap, a visor, a head band, a hat, glasses, sunglasses, a pair of headphones, a medallion, a pendant, an item of jewelry, a necklace, a bracelet, an anklet, a chemical suit, a bio suit, a space suit, a space helmet, a bullet-proof vest, a fire protection suit, motorcycle leathers, goggles, a hard hat, a construction helmet, a welding mask, a motor racing helmet, a motor cycle helmet, a motor racing suit, motor racing under garments, a bicycle helmet, a sports helmet, a ski suit, long underwear, a riding helmet, an equestrian riding helmet, a fencing mask, a fencing tunic, a shin guard, a knee pad, a military equipment hat, a neck wrap, and a military helmet, among others.
The device 40 may be positioned at any location within the item of apparel. For example, the device 40 may be positioned in interior portions of the apparel and/or at one or more outer surfaces of the apparel. Referring to
Referring to
In alternative embodiments, the cooling liquid is introduced directly to the wetting material without the use of a supply tank and/or a supply line. For example, the cooling liquid may be introduced by spraying or dripping the cooling liquid onto the wetting material or initially dipping the wetting material into liquid. In an elbow pack or knee pack application, for example, the cooling liquid may be sprayed onto the wetting material about every 15 minutes.
In certain embodiments, when a supply tank and/or a supply line are not utilized, a thickness of the wetting material 46 may be increased so that it may hold an additional amount of cooling liquid. For example, the wetting material 46 may include extra layers of tissue paper and/or cotton. In one embodiment, the wetting material 46 includes a layer of cotton on top of layers of tissue paper. The cotton layer is configured to hold additional cooling liquid so that evaporative cooling may occur for a greater length of time after water has been applied to the device 40.
During operation of the device 40, electrical current is introduced to the TEM 42 using the controller 48 and/or a power supply. As electrical energy is consumed in the TEM 42, heat flows from the cold side 56 of the TEM 42 to the hot side 49 of the TEM 42, thereby creating a temperature difference between the cold and hot sides 56, 49. To provide cold side temperatures that are suitable for cooling applications, it is generally necessary or desirable to dissipate heat from the heat sink 44 attached to the hot side 49 of the TEM 42 using evaporative cooling techniques, rather than relying simply on convective heat transfer mechanisms.
In various embodiments, evaporative cooling is used to remove heat from the hot side 49 of the device 40 by evaporating the cooling liquid from the wetting material 46 disposed on the heat sink 44. For example, the wetting material 46 may be soaked with the cooling liquid, and the cooling liquid may evaporate from the wetting material 46. Rates of evaporation of the cooling liquid generally depend on the temperatures of the heat sink 44 and the cooling liquid, the concentration of evaporated cooling liquid in the surrounding air (e.g., relative humidity), and the amount of convection or air flow in the vicinity of the device 40. For example, the rate of evaporation generally increases as the temperature (and vapor pressure) of the cooling liquid increases. Likewise, the rate of evaporation generally increases when the humidity decreases and/or when the air flow in the vicinity of the device 40 increases.
The cooling liquid may be any liquid capable of providing the desired rate of evaporative cooling. For example, the cooling liquid may include or consist of water, alcohol (e.g., ethanol), and/or ammonia. In one embodiment, the cooling liquid includes DNA and/or a super polymer having hydrogen bonds that break with the application of heat, thereby absorbing the heat and cooling the device.
In certain embodiments, the cooling liquid includes a fragrance. As the cooling liquid evaporates from the wetting material 46, the fragrance may provide aromatherapy.
In certain embodiments, the hot side of the TEM is maintained well below 100° C., such that the cooling liquid does not boil and the corresponding rate of evaporation is not excessive. Typical evaporation rates for the cooling liquid are from about 1 ml/hour to about 120 ml/hour, or from about 2 ml/hour to about 60 ml/hour. With these rates of evaporation, the wetting material may hold enough cooling liquid for about 10 minutes to about eight hours of evaporative cooling, depending on the ambient temperature and vapor concentrations (e.g., humidity). For example, in one embodiment, a supply tank holding 8 ml of water provides four hours of continuous cooling for a single TEM device in a jacket. In another embodiment, a jacket includes multiple TEM devices (e.g., up to about 30). About 8 ml of cooling liquid may be stored in the wetting material and/or supply tank for each of the TEM devices (e.g., about 80 ml stored for 10 TEM devices). In certain embodiments, 20 ml of water provides about 20 minutes of cooling for a knee pack. The wetting material may be replenished with cooling liquid, as needed.
In certain embodiments, a heat transfer rate Q associated with heating or cooling the object is from about 0.2 W to about 200 W, or from about 0.5 W to about 50 W. A temperature of a cold side of the TEM may be, for example, from about −10° C. to about 30° C., or from about 0° C. to about 20° C. In one embodiment, the temperature of the cold side is about 11° C. For example, in an elbow pack application, a knee pack application, a cooling jacket application, and a neck wrap application, the cold side temperature may be maintained from about 10° C. to about 12° C., from about 4° C. to about 6° C., from about 16° C. to about 17° C., and from about 17° C. to about 18° C. A temperature of the hot side of the TEM may be, for example, from about 30° C. to about 80° C., or from about 40° C. to about 60° C. In one embodiment, the temperature of the hot side of the TEM is about 45° C. TEM surface temperatures may generally depend on the amount of electrical power, the heat sink geometry, and ambient conditions.
In certain embodiments, heat transfer rates due to evaporative cooling of the cooling liquid from the wetting material are equal to or greater than the heat transfer rates due to either radiative heat transfer or convective heat transfer. For example, in one embodiment, the rate of evaporative cooling with no forced air flow is equal to or greater than the rate of convective heat transfer with forced air flow.
In another implementation, the devices described herein are used to heat the body of the wearer. In this embodiment, the hot side of the TEM is positioned towards the body of the wearer, and heat generated by the TEM is transferred to the body of the wearer. Evaporative cooling at the heat sink may not be necessary with this implementation, though a flexible or padded heat transfer plate, mesh, foil or other material (wet or dry) may be used to increase the effective area of the thermal transfer to the body and permit contoured coupling to the body curvature to provide effective, comfortable heat distribution over a relatively large area, if desired. Similar structure may be provided to increase the heat transfer area from the body in a cooling application.
In various embodiments, the devices described herein are configured to provide electrical stimulation to the body part of the user. The electrical stimulation may be provided to the body part in addition to heating or cooling the body part, as described above. Alternatively, the electrical stimulation may be provided without heating or cooling the body part. In one embodiment, to provide the electrical stimulation, the device includes an electrode in electrical communication with the body part. The electrical stimulation may be delivered to the body part at a steady rate and/or it may be delivered intermittently. In certain embodiments, the electrical stimulation includes an electrical current from about 0.5 milliamps to about 500 milliamps, or from about 1 milliamp to about 100 milliamps. For example, the electrical current may be about 4 milliamps. In one embodiment, the electrical stimulation is cycled at a period of from about 0.1 minutes to about 60 minutes, or from about 5 minutes to about 10 minutes. In certain embodiments, the electrical stimulation includes electrical pulses having a frequency of about 100 Hz, or up to about 200 Hz. A pulse width for the electrical stimulation may be about 100 microseconds, or up to about 500 microseconds.
Values for various parameters associated with certain embodiments of the devices and methods described herein are summarized in Table 1, though values outside these ranges are contemplated and are to be considered within the scope of the invention.
In certain embodiments, the devices and methods described herein are used to treat a wide variety of ailments. Examples of ailments that may be treated include, for example, arthritis, tennis elbow, golf elbow, migraine headaches, menstrual pain, back pain, ankle sprains, sore muscles, and sore joints. The devices may also be used to improve the comfort level of the user. For example, the devices may be used to keep the user cool on a hot day, or keep the user warm on a cold day. Any combination of heating and/or cooling may be utilized. For example, the devices may be used to heat a body part for 30 minutes, and then cool the body part for 30 minutes.
To evaluate the cooling performance of the devices described herein, a device having a TEM, a heat sink, a wetting material, and a binding layer was mounted to a water-filled, insulated chamber, such that a cold side of the TEM was in contact with the water inside the chamber. The device and the chamber were placed inside a box in which the ambient temperature and humidity could be controlled, as desired. The temperature of the water in the water-filled chamber was used as an indication of the rate of cooling achieved by the device. For example, the greater the measured rate of decrease in water temperature, the greater the rate of cooling achieved by the device.
The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. The features and functions of the various embodiments may be arranged in various combinations and permutations, and all are considered to be within the scope of the disclosed invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive. Furthermore, the configurations, materials, and dimensions described herein are intended as illustrative and in no way limiting. Similarly, although physical explanations have been provided for explanatory purposes, there is no intent to be bound by any particular theory or mechanism, or to limit the claims in accordance therewith.
Number | Date | Country | Kind |
---|---|---|---|
628/CHE/2012 | Feb 2012 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
2938356 | McMahon | May 1960 | A |
3029438 | Henschel | Apr 1962 | A |
3132688 | Nowak | May 1964 | A |
3289748 | Jennings | Dec 1966 | A |
3314242 | Lefferts | Apr 1967 | A |
3498077 | Gerard et al. | Mar 1970 | A |
3776304 | Auerbach | Dec 1973 | A |
4130902 | Mackenroth et al. | Dec 1978 | A |
4131158 | Abhat et al. | Dec 1978 | A |
4483021 | McCall | Nov 1984 | A |
4735358 | Morita et al. | Apr 1988 | A |
D298458 | Margolin et al. | Nov 1988 | S |
4920899 | Blundy et al. | May 1990 | A |
5054936 | Fraden | Oct 1991 | A |
5092129 | Bayes et al. | Mar 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5269369 | Faghri | Dec 1993 | A |
5532468 | Scofield | Jul 1996 | A |
5720171 | Osterhoff et al. | Feb 1998 | A |
5800490 | Patz et al. | Sep 1998 | A |
5871526 | Gibbs et al. | Feb 1999 | A |
5970718 | Arnold | Oct 1999 | A |
6074414 | Haas et al. | Jun 2000 | A |
6082443 | Yamamoto et al. | Jul 2000 | A |
6097088 | Sakuragi | Aug 2000 | A |
6125636 | Taylor et al. | Oct 2000 | A |
6295819 | Mathiprakasam et al. | Oct 2001 | B1 |
6341491 | Paine et al. | Jan 2002 | B1 |
6393842 | Kim et al. | May 2002 | B2 |
6430956 | Haas et al. | Aug 2002 | B1 |
6495734 | Fields et al. | Dec 2002 | B1 |
RE38128 | Gallup et al. | Jun 2003 | E |
6739138 | Saunders et al. | May 2004 | B2 |
6823678 | Li | Nov 2004 | B1 |
6915641 | Harvie | Jul 2005 | B2 |
6927316 | Faries, Jr. et al. | Aug 2005 | B1 |
6932150 | Yeh et al. | Aug 2005 | B1 |
6948322 | Giblin | Sep 2005 | B1 |
7022093 | Smith et al. | Apr 2006 | B2 |
7117687 | Naaman | Oct 2006 | B2 |
7120938 | Ichigaya | Oct 2006 | B2 |
7272946 | Ichigaya | Sep 2007 | B2 |
7331183 | Askew | Feb 2008 | B2 |
7559907 | Krempel et al. | Jul 2009 | B2 |
7571615 | Bikes | Aug 2009 | B1 |
7610775 | Tonkovich et al. | Nov 2009 | B2 |
7650757 | Bhatti | Jan 2010 | B2 |
7721349 | Strauss | May 2010 | B1 |
7765811 | Hershberger et al. | Aug 2010 | B2 |
7771933 | Arciniegas et al. | Aug 2010 | B2 |
7921473 | Winters | Apr 2011 | B1 |
7996936 | Marquette et al. | Aug 2011 | B2 |
8001794 | Windisch | Aug 2011 | B2 |
20020026226 | Ein | Feb 2002 | A1 |
20020104319 | Paine et al. | Aug 2002 | A1 |
20020156509 | Cheung | Oct 2002 | A1 |
20020170309 | Strauss | Nov 2002 | A1 |
20030098143 | Winkle | May 2003 | A1 |
20030110779 | Otey et al. | Jun 2003 | A1 |
20030128511 | Nagashima et al. | Jul 2003 | A1 |
20050000231 | Lee | Jan 2005 | A1 |
20050011199 | Grisham et al. | Jan 2005 | A1 |
20050153271 | Wenrich | Jul 2005 | A1 |
20050174737 | Meir | Aug 2005 | A1 |
20060180466 | Dalmia et al. | Aug 2006 | A1 |
20060191270 | Warren | Aug 2006 | A1 |
20060260183 | Hockaday | Nov 2006 | A1 |
20070084496 | Edey | Apr 2007 | A1 |
20070123758 | Miesel et al. | May 2007 | A1 |
20070193278 | Polacek et al. | Aug 2007 | A1 |
20070253167 | Chiang | Nov 2007 | A1 |
20070271939 | Ichigaya | Nov 2007 | A1 |
20080033518 | Rousso et al. | Feb 2008 | A1 |
20080040831 | Nilforushan et al. | Feb 2008 | A1 |
20080125747 | Prokop | May 2008 | A1 |
20080141681 | Arnold | Jun 2008 | A1 |
20080161890 | Lafontaine | Jul 2008 | A1 |
20090179042 | Milan et al. | Jul 2009 | A1 |
20090306748 | Mollendorf et al. | Dec 2009 | A1 |
20090308082 | Monk | Dec 2009 | A1 |
20090312823 | Patience et al. | Dec 2009 | A1 |
20100005572 | Chaplin | Jan 2010 | A1 |
20100084125 | Goldstein et al. | Apr 2010 | A1 |
20100107657 | Vistakula | May 2010 | A1 |
20100132100 | Courtney et al. | Jun 2010 | A1 |
20100198322 | Joseph et al. | Aug 2010 | A1 |
20100281883 | Romano | Nov 2010 | A1 |
20100294455 | Yang et al. | Nov 2010 | A1 |
20110079022 | Ma et al. | Apr 2011 | A1 |
20110144723 | Streeter et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1411787 | Apr 2004 | EP |
1679984 | Jul 2006 | EP |
1737052 | Dec 2006 | EP |
2047327 | Feb 1990 | JP |
4209807 | Jul 1992 | JP |
9327614 | Dec 1997 | JP |
2001040512 | Feb 2001 | JP |
2009097106 | May 2009 | JP |
2010018938 | Jan 2010 | JP |
WO-0229348 | Apr 2002 | WO |
WO-2004014169 | Feb 2004 | WO |
WO-2004111741 | Dec 2004 | WO |
WO-2005081679 | Sep 2005 | WO |
WO-2006086618 | Aug 2006 | WO |
WO-2008103742 | Aug 2008 | WO |
Entry |
---|
http://ideas4all.com/ideas/17163-cooling—clothes—and—accessories—based—on—the—peltier—effect—translation—of—idea—n—2762. |
http://weightweenies.starbike.com/forum/viewtopic.php?f=3&t=61242&start=0. |
http://arbroath.blogspot.com/2011/05/indian-inventor-develops-clothes-to.html. |
International Search Report and Written Opinion for PCT/US2008/054438 mailed Jul. 17, 2008 (5 pages). |