This invention relates, generally, to mobility assistance. More specifically, it relates to an apparatus and method for capturing a movement (e.g., a muscle exertion) about at least one joint of a user and transferring the captured movement to at least one alternative joint of the user.
Ambulatory assistive devices, such as canes, walkers and crutches provide postural balance and reduce the weight-bearing load of the affected lower limbs. However, using these ambulatory assistive devices can lead to a significant reduction in lower limb muscle activations which is counterproductive to intervention and rehabilitation goals. While recent advances in technology have enabled the use of exoskeletons, these recent technologies also include extremely high cost, bulk, weight, and power demand (e.g., limited battery capacity and operation time) which limit their accessibility and usability for the general population.
To overcome these limitations in powered assistive devices, passive devices have been developed that can harness the kinetic energy during lower limb deceleration and utilize this harnessed energy to assist the movement of the leg, thus reducing the net energetic cost of the user during ambulatory movements. A passive lower-limb exoskeleton was developed to reduce the lower limb joint work by using artificial tendons acting parallel with the muscle tendons in the leg or to assist the functions of calf muscles and Achilles' tendon, or to provide walking assistance through the spring-damper mechanism by partially replacing the function of lower limb muscles, thus reducing the cost of transport. While these designs focus on exploiting the feasibility to use one of the muscle groups from agonist and antagonist muscle pairs to aid mobility, it is not applicable for people whose lower limb motor control and muscle functions are hindered by age, neuromuscular conditions, or injuries to the extent where external power is required to maintain mobility.
Bipedal locomotion allows upper limbs to be free, requiring minimal effort from the upper limb muscles during walking, primarily arm swing motions help maintain gait and postural stability. Human arms and legs exhibit resemblance in terms of the number of joints and degrees of freedom that each joint possesses. Besides the anatomical similarities, kinematic patterns of upper and lower body joints during ambulatory movements are cyclic and temporally aligned. Based on the nature of this kinematic coupling, harnessing the kinetic energy from upper limb joint motion and transferring it to lower limb joints could provide a self-regulated and self-powered means to assist lower limb work during ambulatory movements.
Such a strategy can also promote activations and exercise on the muscles in both upper and lower limbs, preventing many aging-related issues such as sarcopenia. There are several energy harvesting systems designed to capture energy from upper limb motions, employing the said concept; however, their functions are limited only for use as a supplementary energy source for low-power wearable devices. Just as how canes, walkers, crutches are prescribed and used, a work sharing device is one that has the potential to be used as an ambulatory assistive device.
Accordingly, what is needed is lightweight, self-regulated, self-powered appendage work sharing apparatus, which provides upper-limb assisted mobility without the need of an external power source. However, in view of the art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in the field of this invention how the shortcomings of the prior art could be overcome.
The long-standing but heretofore unfulfilled need, stated above, is now met by a novel and non-obvious invention disclosed and claimed herein. In an aspect, the present disclosure pertains to an appendage work sharing apparatus. In an embodiment, the appendage work sharing apparatus may comprise the following: (a) a linkage component comprising at least one pulley, at least two cables, or both, such that the at least two cables may be in mechanical communication with the at least one pulley, such that the linkage component may have a variable tension; and (b) a plurality of modules in mechanical communication with the linkage component, such that each of the plurality of modules may be disposed at a predetermined joint of a user. In addition, in this embodiment at least one module of the plurality of modules may be configured to transfer a force at the predetermined joint, via the linkage component, to at least one alternative module of the plurality of modules disposed about at least one alternative joint.
In some embodiments, the plurality of modules may further comprise: (i) a base; (ii) at least one cable drum temporarily affixed to the base, such that the linkage component may be disposed about at least a portion of the at least one cable drum; and (iii) at least one ratchet mechanism in mechanical communication with the at least one cable drum, such that the at least one ratchet mechanism may be configured to alternate the at least one cable drum from a disengaged stage to an engaged stage and/or an engaged state to a disengaged state, automatically adjusting the tension of the linkage component. Additionally, in these other embodiments, the plurality of modules may further comprise at least one assistance drum temporarily affixed to at least one alternative base, such that the at least one assistance drum may be disposed about at least a portion of a ball-and-socket joint of the user, such that a center of the at least one assistance drum may be positioned at a center of the ball-and-socket joint.
In some embodiments, when the at least one ratchet mechanism is in the engaged state, the linking component may comprise a tension, pairing at least one cable drum of at least one module of the plurality of module with the at least one cable drum of at least one alternative module of the plurality of modules. In this manner, when the at least one ratchet mechanism is in the disengaged state, the linking component may comprise a minimal tension, unpairing at least one cable drum of at least one module of the plurality of module with the at least one cable drum of at least one alternative module of the plurality of modules.
Moreover, in some embodiments, the at least one assistance drum may be configured capture abduction and/or adduction at the ball-and-socket joint of a user. As such, in these other embodiments, the at least one cable drum may also be configured to capture flexion, and/or extension at the predetermined joint of the user.
In some embodiments, the at least one cable drum and/or the at least one assistance drum of at least one module of the plurality of modules may be in mechanical communication with the at least one cable drum and/or the at least one assistance drum of at least one alternative module of the plurality of modules, via the linkage mechanism. In addition, the linkage component may comprise a motion coupling ratios may include but is not limited the following group comprising of 1:1, 1.5:1, and/or 2:1 between the at least one module in mechanical communication with the at least one alternative module.
In some embodiments, the work sharing apparatus may further comprise the following: (A) a computing device having at least one processor communicatively coupled to at least one sensor, such that the at least one sensor may be configured to detect an exertion by at least one muscle in mechanical communication with the predetermined joint, such that the at least one sensor may be disposed about at least one portion of each of the plurality of modules; and (B) at least one motor in mechanical communication with the linking component, such that the at least one motor may be disposed about at least portion of the base of each of the plurality of modules, such that the at least one motor may be communicatively coupled with the at least one processor of the computing device.
In some embodiments, subsequent to the at least one sensor detecting an exertion by at least one muscle mechanical communication the predetermined joint, the at least one processor may be configured to actuate the at least one motor at the predetermined joint, automatically reducing muscle exertion by the at least one muscle at the predetermined joint, in real-time, simultaneously with the movement of the user.
Moreover, another aspect of the present disclosure pertains to a system for capturing a movement of a targeted muscle group of a user and/or transferring it to at least one alternative muscle group of the user. In an embodiment, the system may comprise the following: (a) a linkage component comprising at least one pulley, at least two cables, or both, such that the at least two cables may be in mechanical communication with the at least one pulley, such that the linkage component may comprise a variable tension; (b) a plurality of modules in mechanical communication with the linkage component, such that each of the plurality of modules may be positioned at a predetermined joint of a user; (c) at least one arm brace; and (d) at least one leg brace. In this embodiment, at least one portion of at least one of plurality of modules associated with an upper appendage joint of the user may be disposed about at least one portion of a surface of the at least one arm brace. In this manner, int his embodiment, at least one portion of at least one alternative module of the plurality of modules associated with a lower appendage joint of the user may also be disposed about at least one portion of a surface of the at least one leg brace. As such, at least one module of the plurality of modules may be configured to transfer a force at the predetermined joint to at least one alternative module of the plurality of modules.
In some embodiments, the plurality of modules may further comprise: (i) a base; (ii) at least one cable drum temporarily affixed to the base, such that the linkage component may be disposed about at least a portion of the at least one cable drum; and (iii) at least one ratchet mechanism in mechanical communication with the at least one cable drum, such that the at least one ratchet mechanism may be configured to alternate the at least one cable drum from a disengaged stage to an engaged stage and/or an engaged state to a disengaged state, automatically adjusting the tension of the linkage component. Additionally, in these other embodiments, the plurality of modules may further comprise at least one assistance drum temporarily affixed to at least one alternative base, such that the at least one assistance drum may be disposed about at least a portion of a ball-and-socket joint of the user, such that a center of the at least one assistance drum may be positioned at a center of the ball-and-socket joint.
In some embodiments, the system may further comprise a shoulder harness, such that at least one additional alternative module of the plurality of modules associated with at least one alternative upper appendage joint of the user may be disposed about at least one portion of a surface of the shoulder harness. Additionally, in these other embodiments, the at least one cable drum and/or the at least one assistance drum of at least one module of the plurality of modules may be in mechanical communication with the at least one cable drum and/or the at least one assistance drum of at least one alternative module of the plurality of modules, via the linkage mechanism.
In some embodiments, the work sharing apparatus may further comprise the following: (A) a computing device having at least one processor communicatively coupled to at least one sensor, such that the at least one sensor may be configured to detect an exertion by at least one muscle mechanical communication with the predetermined joint, such that the at least one sensor may be disposed about at least one portion of each of the plurality of modules; and (B) at least one motor in mechanical communication with the linking component, such that the at least one motor may be disposed about at least portion of the base of each of the plurality of modules, such that the at least one motor may be communicatively coupled with the at least one processor of the computing device.
In some embodiments, subsequent to the at least one sensor detecting an exertion by at least one muscle mechanical communication with the predetermined joint, the at least one processor may be configured to actuate the at least one motor at the predetermined joint, automatically reducing muscle exertion by the at least one muscle at the predetermined joint, in real-time, simultaneously with the movement of the user.
Furthermore, an additional aspect of the present disclosure pertains to a method of capturing a movement of a targeted muscle group of a user and transferring it to at least one alternative muscle group of the user, via an appendage work sharing apparatus. In an embodiment the method may comprise the following: (a) affixing the appendage work sharing apparatus to the user, the appendage work sharing apparatus comprising: (i) a linkage component comprising at least one pulley and/or at least two cables, such that the at least two cables may be in mechanical communication with the at least one pulley, such that the linkage component may comprise a variable tension; and (ii) a plurality of modules in mechanical communication with the linkage component, such that each of the plurality of modules may be disposed at a predetermined joint of a user, such that at least one module of the plurality of modules may be configured to transfer a force at the predetermined joint, via the linkage component, to at least one alternative module of the plurality of modules disposed about at least one alternative joint; (b) engaging, via the at least one ratchet mechanism, the appendage work sharing apparatus; and (c) performing, via the appendage work sharing apparatus a plurality of exercises, activities, or both, such that the movement of the targeted muscle group may be transferred to at least one alternative muscle group of the user, reducing a total muscle exertion of the targeted muscle group during the plurality of exercises and/or activities.
In some embodiments, the method may further comprise the steps of: (A) transmitting, via at least one sensor communicatively coupled to a computing device associated with the appendage work sharing apparatus, the computing device having at least one processor, exertion data relating to the total muscle exertion of the targeted muscle group during the plurality of exercises, activities, or both; (B) actuating, via the at least one processor, at least one motor disposed about at least a portion of each of the plurality of modules, the at least one motor being in mechanical communication with the linking component, such that the at least one motor may be communicatively coupled to the at least one processor; and (C) assisting, via at least one motor, transfer of the movement of the targeted muscle group to at least one alternative muscle group of the user based on the transmitted exertion data, optimizing total muscle reduction of the targeted muscle group during the plurality of exercises, activities, or both.
In some embodiments, the appendage work sharing apparatus may be lightweight, self-regulated, and/or self-powered, such that, for example, upper-limb assisted mobility may be provided without the need of an external power source. Additionally, the appendage work sharing apparatus may be configured to capture the work from elbow joint and/or shoulder joint and transfer it to the knee joint and/or hip joint, respectively. As such, in these other embodiments, the appendage work sharing apparatus may be configured to create an external mechanical pathway to facilitate the use of alternative muscle groups to aid a targeted muscle group in performance of a plurality of exercises and/or a plurality of activities muscle efforts during walking, stair ascending/descending, and sit-to-stand.
In some embodiments, the appendage works sharing apparatus may offer an external mechanical pathway to transmit motion and force from the upper limb joints/muscles to the lower limb joints, allowing lower limb muscles to share the work with upper limb muscles. Accordingly, by creating an external mechanical pathway, the appendage work sharing apparatus may effectively reduce the work done by the lower limbs in ambulatory movements. In this manner, in these other embodiments, anyone with lower body conditions and/or gait-impairing disorders or diseases may potentially use this invention to gain ambulatory movement functions. Moreover, the appendage work sharing apparatus may be a cable-driven device, such that the appendage work sharing apparatus may be configured to capture the work from the elbow joint and/or the shoulder joint and/or transfer it to the knee joint and/or hip joint, respectively, of the user.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not restrictive.
The invention accordingly comprises the features of construction, combination of elements, and arrangement of parts that will be exemplified in the disclosure set forth hereinafter and the scope of the invention will be indicated in the claims.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings, which form a part thereof, and within which are shown by way of illustration specific embodiments by which the invention may be practiced. It is to be understood that one skilled in the art will recognize that other embodiments may be utilized, and it will be apparent to one skilled in the art that structural changes may be made without departing from the scope of the invention. Elements/components shown in diagrams are illustrative of exemplary embodiments of the disclosure and are meant to avoid obscuring the disclosure. Any headings, used herein, are for organizational purposes only and shall not be used to limit the scope of the description or the claims. Furthermore, the use of certain terms in various places in the specification, described herein, are for illustration and should not be construed as limiting.
Reference in the specification to “one embodiment,” “preferred embodiment,” “an embodiment,” or “embodiments” means that a particular feature, structure, characteristic, or function described in connection with the embodiment is included in at least one embodiment of the disclosure and may be in more than one embodiment. The appearances of the phrases “in one embodiment,” “in an embodiment,” “in embodiments,” “in alternative embodiments,” “in an alternative embodiment,” or “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment or embodiments. The terms “include,” “including,” “comprise,” and “comprising” shall be understood to be open terms and any lists that follow are examples and not meant to be limited to the listed items.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the context clearly dictates otherwise.
In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present technology. It will be apparent, however, to one skilled in the art that embodiments of the present technology may be practiced without some of these specific details. The techniques introduced here can be embodied as special-purpose hardware (e.g., circuitry), as programmable circuitry appropriately programmed with software and/or firmware, or as a combination of special-purpose and programmable circuitry. Hence, embodiments may include a machine-readable medium having stored thereon instructions which may be used to program a computer (or other electronic devices) to perform a process. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, compacts disc read-only memories (CD-ROMs), magneto-optical disks, ROMs, random access memories (RAMs), erasable programmable read-only memories (EPROMs), electrically erasable programmable read-only memories (EEPROMs), magnetic or optical cards, flash memory, or other type of media/machine-readable medium suitable for storing electronic instructions.
As used herein, the term “communicatively coupled” refers to any coupling mechanism known in the art, such that at least one electrical signal may be transmitted between one device and one alternative device. Communicatively coupled may refer to Wi-Fi, Bluetooth, wired connections, wireless connection, and/or magnets. For ease of reference, the exemplary embodiment described herein refers to Wi-Fi and/or Bluetooth, but this description should not be interpreted as exclusionary of other electrical coupling mechanisms.
As used herein, the term “about” or “roughly” means approximately or nearly and in the context of a numerical value or range set forth means±15% of the numerical.
All numerical designations, including ranges, are approximations which are varied up or down by increments of 1.0, 0.1, 0.01 or 0.001 as appropriate. It is to be understood, even if it is not always explicitly stated, that all numerical designations are preceded by the term “about”. It is also to be understood, even if it is not always explicitly stated, that the compounds and structures described herein are merely exemplary and that equivalents of such are known in the art and can be substituted for the compounds and structures explicitly stated herein.
Wherever the term “at least,” “greater than,” or “greater than or equal to” precedes the first numerical value in a series of two or more numerical values, the term “at least,” “greater than” or “greater than or equal to” applies to each of the numerical values in that series of numerical values. For example, greater than or equal to 1, 2, or 3 is equivalent to greater than or equal to 1, greater than or equal to 2, or greater than or equal to 3.
Wherever the term “no more than,” “less than,” or “less than or equal to” precedes the first numerical value in a series of two or more numerical values, the term “no more than,” “less than” or “less than or equal to” applies to each of the numerical values in that series of numerical values. For example, less than or equal to 1, 2, or 3 is equivalent to less than or equal to 1, less than or equal to 2, or less than or equal to 3.
The present disclosure pertains to an apparatus and method for appendage work-sharing, such that a movement of a targeted appendage may be captured and/or may be transferred to at least one alternative appendage of the user. For example, an appendage movement may include but is not limited to elbow joint motion, shoulder joint motion, hip joint motion, and/or knee joint motion. In an embodiment, the work sharing apparatus may be configured to capture movement of the elbow and/or shoulder joint motions and subsequently transfer them to the knee and/or hip joints, and/or vice versa, respectively. In some embodiments, the work sharing apparatus may include a cable system, optimizing the weight and/or wearability of the work sharing apparatus.
Additionally, as shown in
As shown in
Accordingly, in an embodiment, as shown in
As such, as shown in
In this manner, in some embodiments, the linkage component of appendage work sharing apparatus 100 may be configured to capture the hip flexion and/or extension of the hip joint of the user, via the direct drive, as well. Accordingly, assistance drum 116 may be disposed about at least one portion of a leg brace 138, such that the linkage component may allow for unrestricted abduction and/or adduction of the hip joint, enabling appendage work sharing apparatus 100 to capture flexion and/or extension of the hip joint, while also allowing free motion in the other two degrees of freedom of the hip joint.
Moreover,
In an embodiment, pulley system 144 of appendage work sharing apparatus 100 may have a plurality of motion coupling ratios comprising a range of at least 1:1 to at most 10:1, encompassing every integer in between. For example, in some embodiments, appendage work sharing apparatus 100 may comprise three motion coupling ratios of 1:1, 1.5:1 and/or 2:1, between the paired upper module and the lower module (e.g., elbow module 104 and knee module 108 and/or shoulder module 106 and hip module 110, respectively). Additionally, in this embodiment, pulley system 144 and/or the at least two cables 112, as shown in
Another aspect of the present disclosure is that appendage work sharing apparatus 100 may comprise at least one lower module (i.e., knee module 108 and/or hip module 110). In an embodiment, the at least one lower module may comprise at least one cable drum 102 disposed about at least a portion of the knee joint of the user and/or at least one assistance drum 116 disposed about at least a portion of the hip joint of the user to assist knee flexion and/or extension and/or hip flexion and/or extension, respectively.
Furthermore, as shown in
In an embodiment, as shown in
In addition, in an embodiment, the at least two pulley cables 112 and/or pulley system 144 may be routed and/or connected between the at least one upper module (i.e., elbow module 104 and/or shoulder module 106) and/or the at least one lower module, such that appendage work sharing apparatus may be configured to transfer a movement and/or force of the at least one lower appendage module to the at least one upper appendage module, and/or vice versa. Moreover, in some embodiments, the at least two pulley cables 112 may be routed and/or connected between only elbow module 104 and knee module 108 and/or shoulder module 106 and hip module 110.
Additionally, in an embodiment, as shown in
Moreover, as shown in
As described above, in an embodiment, cable drum 102 and/or pulley system 144 may comprise adjustable ratchet mechanism 152, such that an amount of tension of the at least two pulley cables 112 may be altered according to the need and/or requirements of the user. Furthermore, in this embodiment, ratchet mechanism 152 may be comprise an engaged position and/or a disengage position, such that when ratchet mechanism is disposed in the engaged position the connected modules of appendage work sharing apparatus 100 may be paired and/or fully functional. In this manner, in this embodiment, when ratchet mechanism is disposed in the disengaged position, appendage work sharing apparatus may be configured to disconnect the connected modules, such that the connected modules may be unpaired and/or appendage work sharing apparatus 100 may be nonfunctional.
Referring now to
As shown in
In some embodiments, the computing device may be configured to transmit a notification indicative of a level of reduction (e.g., a percent reduction in muscle exertion) by the targeted muscle group to the user, via a tactile, visual, and/or auditory output. Additionally, in these other embodiments, the computing device may be communicatively coupled and/or in mechanical communication with the at least one ratchet mechanism 152, such the user, via at least one user-interface, may engage and/or disengage appendage work sharing apparatus 100, via at least one operational command of the computing device. In this manner, when the exertion data is transmitted to the computing device of the appendage work sharing apparatus 100, the computing device may be configured to provide a notification indicative of at least one recommendation to improve the exercise and/or activity, in real time, such that optimal muscle exertion reduction is achieve for the at least one targeted muscle group.
In some embodiments, the appendage work sharing apparatus 100 may comprise at least one motor 154 in mechanical communication with the linking component of appendage work sharing apparatus 100. In this manner, at least one motor 154 may be disposed about at least a portion of appendage work sharing apparatus 100, including but not limited to, at least a portion of at least one cable drum 102, at least one assistance drum 116, shoulder harness 118, and/or backpack frame 142, as shown in
The following examples are provided for the purpose of exemplification and are not intended to be limiting.
Strenuous activity and exercise were performed by a group of users using appendage work sharing apparatus 100 (hereinafter “the device”). In the current example, five users were selected to perform the strenuous activity and exercises using the appendage work sharing apparatus. The resulting exercise data and profile is provided below.
Four of the five participants were right-side dominant. Each user was instructed to wear light sports clothing for instrumenting the device and an electromyography (hereinafter “EMG”) sensor. The device was subsequently adjusted and/or conformed to the user once the user donned the device for proper fit to their arms and legs and for proper joint alignment between the device and the user's anatomical joints.
As shown in
As depicted in
As all three exercise tests (E1, E2, and E3) involved knee extension, the Rectus Femoris muscle activation was used as the primary metric to assess the work-sharing of upper module and lower module through the device. Moreover, the surface electromyography (EMG) sensors were placed on the Biceps, lateral Triceps, Rectus Femoris, and Gastrocnemius Medialis of the user. Placement of the EMGs was done following the manufacturer's guidelines. Additionally, joint kinematics were recorded using a set of wearable Inertial Measurement Units (“IMUs”), which were placed on the forearms, upper arms, thighs, shanks, upper thoracic, and pelvis of the user, following the manufacturer's guidelines.
To maintain a consistent cadence across multiple repetitions and throughout three different exercises, all users were instructed to follow an auditory cue to keep the cadence at 6 seconds per cycle, which was controlled by an Arduino Uno connected to a soundboard. Within each cycle, a monotone sound was generated, 3 seconds apart, to inform the transition timing between two phases: extension and flexion (E1), sit to stand and stand to sit (E2), and step up and step down (E3). The same Arduino was interfaced with the EMG and IMU sensor systems to record the cadence signals simultaneously for data parsing during post-processing.
Additionally, all data was recorded using Noraxons' MR3 software, which synchronized EMG and motion data, sampled at 2000 Hz and 200 Hz, respectively. The data process and analysis were done using MATLAB software. The time series EMG and motion data were normalized to represent 0-100% cycle to obtain linear envelope, then averaged over the four cycles (repetitions). The integrated EMG (“iEMG”) of Rectus Femoris (hereinafter “RF”) was computed and used as the main variable to assess the difference between OFF and ON conditions for each exercise performed. Further, ON condition results were calculated as a percentage of OFF condition within each exercise.
In single-leg exercise (E1), RF is activated during the first half of the cycle when knee extension was performed, showing the peak at around 20% of the cycle. The Triceps activation aligns with the RF activation pattern with its peak at around 10% of the cycle, indicating the most work sharing occurred at the early phase of the knee extension. As shown in
In accordance with E1 results, as shown in
Finally, the RF reduction seemed less effective during the E3 exercise, as shown in
In summary, appendage work sharing apparatus 100 may provide an external mechanical pathway to transmit a movement and/or force from at least one upper appendage joint and/or muscle group in mechanical communication with the at least one upper appendage joint to at least one lower appendage joint and/or muscle group in mechanical communication with the at least one lower appendage joint, and/or vice versa. As such, appendage work sharing apparatus 100 may allow lower appendage muscles to share the work (e.g., the muscle exertion) with upper appendage muscles and/or upper appendage muscles to share the work with the lower appendage muscles. This, in turn, optimizes and effectively reduces the work done by the at least one lower appendage muscle and/or the at least one upper appendage muscle in ambulatory movements. Additionally, in this manner, this, in turn, optimizes and effectively reduces the amount of force applied to the at least one lower appendage joint and/or the at least one upper appendage joint in ambulatory movements.
The advantages set forth above, and those made apparent from the foregoing description, are efficiently attained. Since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
L. Xie, G. Huang, L. Huang, S. Cai, and X. Li, “An Unpowered Flexible Lower Limb Exoskeleton: Walking Assisting and Energy Harvesting,” IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2236-2247, 2019, doi: 10.1109/TMECH.2019.2933983.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween.
This nonprovisional application claims the benefit of U.S. Provisional Application No. 63/345,295 entitled “APPENDAGE WORK SHARING APPARATUS” filed May 24, 2022 by the same inventors, all of which is incorporated herein by reference, in its entirety, for all purposes.
Number | Date | Country | |
---|---|---|---|
63345295 | May 2022 | US |