The invention will now be described in greater detail in connection with the associated drawings, in which:
An embodiment 10 of one method in accordance with the concepts of the invention is illustrated in
During this initial pre-scan, the dwell time ti per angular view is held constant over the entire scan range (either π or 2π radians, depending on the type of scan being conducted) such that:
T=Σti, i=1, . . . N, N=number of views, t=ti, ∀i.
For each pixel in the ROI, an analysis of the number of counts acquired for the pixel is analyzed, such that the number of counts per pixel as well as the total counts over the entire ROI may be determined. Once the pre-scan is complete, at step 14 a statistical subsampling for a time T1, which is a desired fraction ε of the total pre-scan acquisition time T is performed on the acquired pre-scan data, wherein T1=εT, ε≦1.
Next, at step 16 the statistical subsampling is used to simulate a varying dwell time tomographic dataset according to a profile that has been pre-generated for the patient by an analysis of patient-specific anatomical dataset (e.g., μ-map from a CT scan) or a functional reconstructed dataset (e.g., from the pre-scan); alternatively, time increments may be assumed to be equal (t1i=t1) such that t1i=εit1≦ti, and T1=Σt1i.
Next, at step 18, the pre-scan acquired data is reconstructed to obtain a reconstructed image R, being based on the pre-scan using constant dwell time and at step 20 a second reconstructed image R1 is obtained from the statistically sub-sampled dataset obtained at step 16. Next, at step 22 a difference image (R−R1) is generated. Once the difference image is generated, at step 24 an objective value Φ is computed based on some measure of image quality (e.g., L2), such that Φ=minarg∥(R−R1)2∥.
It should be appreciated that in accordance with the invention, dwell time can be varied so as to optimize a variety of different image quality parameters, e.g., total image noise power, the probability of lesion detection, etc., and Φ will vary accordingly.
Once Φ has been calculated, at step 26 it is compared to a pre-selected, acceptable level of deviation δ. If Φ≦δ (or if a pre-selected maximum number of iterations has been reached), then εi for the given view angle, and hence the reduced dwell time εiti1 for the given view angle, has been determined. This reduced dwell time value for the given view angle is stored at step 28 and at step 30 the overall process repeats itself for the next view angle until all view angles have been analyzed. Otherwise, if Φ>δ, εi is varied at step 32 to a modified dwell time εi+Δε and the sub-process repeats at step 34, to obtain a new statistical subsampling of the pre-scan data with the modified dwell time (εi+Δε)ti1, and an updated or revised image set R1 is reconstructed at step 20.
Alternatively, if Φ≦δ is determined to be true at step 26, the dwell time fraction εi may be reduced by a predetermined increment, and the statistical subsampling recalculated, to determine whether the dwell time can be even further reduced while still maintaining the objective measure of image quality Φ with the acceptable deviation range δ. As a further alternative, it is possible to use variable dwell times for different view angles in the pre-scan instead of a constant dwell time. In this case, the individual modifications to the dwell times as a function of view angle would simply be different than if a constant dwell time over all view angles were to be used.
Once all view angles have been processed in this manner such that a specific dwell time for each angle has been determined, a full scan is conducted using the dwell times calculated for each view angle.
According to another method to determine dwell time so as to minimize noise power, it can be shown that for an imaging acquisition of time T, the total noise power in a reconstructed image for a particular view angle can be minimized by making the dwell time ti for that view angle proportional to the square root of the count rate ri at that angle:
It should be appreciated by those having ordinary skill in the art that while the present invention has been illustrated and described in what is deemed to be the preferred embodiments, various changes and modifications may be made to the invention without departing from the spirit and scope of the invention. Therefore, it should be understood that the present invention is not limited to the particular embodiments disclosed herein.