1. Technical Field
This invention relates to joint replacement, and more particularly, to improving prosthesis fitting and balancing in joints by employing neural network applications.
2. Related Art
Some medical conditions may result in the degeneration of a human joint, causing a patient to consider and ultimately undergo joint replacement surgery. The long-term success of the surgery oftentimes relies upon the skill of the surgeon and may involve a long, difficult recovery process.
The materials used in a joint replacement surgery are designed to enable the joint to move like a normal joint. Various prosthetic components may be used, including metals and/or plastic components. Several metals may be used, including stainless steel, alloys of cobalt and chrome, and titanium, while the plastic components may be constructed of a durable and wear resistant polyethylene. Plastic bone cement may be used to anchor the prosthesis into the bone, however, the prosthesis may be implanted without cement when the prosthesis and the bone are designed to fit and lock together directly.
To undergo the operation, the patient is given an anesthetic while the surgeon replaces the damaged parts of the joint. For example, in knee replacement surgery, the damaged ends of the bones (i.e., the femur and the tibia) and the cartilage are replaced with metal and plastic surfaces that are shaped to restore knee movement and function. In another example, to replace a hip joint, the damaged ball (i.e., the upper end of the femur) is replaced by a metal ball attached to a metal stem fitted into the femur, and a plastic socket is implanted into the pelvis to replace the damaged socket. Although hip and knee replacements are the most common, joint replacement can be performed on other joints, including the ankle, foot, shoulder, elbow, fingers and spine.
As with all major surgical procedures, complications may occur. Some of the most common complications include thrombophlebitis, infection, and stiffness and loosening of the prosthesis. While thrombophlebitis and infection may be treated medically, stiffness and loosening of the prosthesis may require additional surgeries. One technique utilized to reduce the likelihood of stiffness and loosening relies upon the skill of the physician to align and balance the replacement joint along with ligaments and soft tissue intraoperatively, i.e., during the joint replacement operation.
During surgery, a physician may choose to insert one or more temporary components. For example, a first component known as a “spacer block” is used to help determine whether additional bone removal is necessary or to determine the size of the “trial” component to be used. The trial component then may be inserted and used for balancing the collateral ligaments, and so forth. After the trial component is used, then a permanent component is inserted into the body. For example, during a total knee replacement procedure, a femoral or tibial spacer block and/or trial may be employed to assist with the selection of appropriate permanent femoral and/or tibial prosthetic components, e.g., referred to as a tibia insert.
While temporary components such as spacers and trials serve important purposes in gathering information prior to implantation of a permanent component, one drawback associated with temporary components is that a physician may need to “try out” different spacer or trial sizes and configurations for the purpose of finding the right size and thickness, and for balancing collateral ligaments and determining an appropriate permanent prosthetic fit, which will balance the soft tissues within the body. In particular, during the early stages of a procedure, a physician may insert and remove various spacer or trial components having different configurations and gather feedback, e.g., from the patient. Several rounds of spacer and/or trial implantation and feedback may be required before an optimal component configuration is determined. However, when relying on feedback from a sedated patient, the feedback may not be accurate since it is subjectively obtained under relatively poor conditions. Thus, after surgery, relatively fast degeneration of the permanent component may result.
Some previous techniques have relied on placing sensors that are coupled to a temporary component to collect data, e.g., representative of joint contact forces and their locations. One current limitation associated with the use of sensors is that, while objective feedback is obtained, that feedback is limited to the number of sensors that are employed and the number of physical tests that are performed.
Therefore, it would be desirable to obtain enhanced feedback during prosthesis fitting and balancing in joints without increasing the burden imposed upon the physician or the patient.
The present invention provides systems and methods for prosthesis fitting and balancing in joints that employ a trained neural network to predict at least one unknown set of data, such as position and load. The unknown data is predicted based on at least one known sensor value that is obtained intraoperatively. Advantageously, by employing the neural networking techniques of the present invention, increased data may be provided to a physician without the need to acquire numerous samples from a patient, and fewer sensors may be employed. The predicted neural network data is made available to a physician and aids in the determination of whether to resect additional bone, release soft tissues, and/or select sizes for prosthetic components.
In a first embodiment of the present invention, the system comprises at least one artificial condyle and at least one bearing surface disposed in proximity to the condyle. The bearing surface is adapted to receive at least one force imposed by the condyle. In one embodiment, the condyle may be disposed at the end of the femoral component used in a total knee arthroplasty procedure, while the bearing surface may be an exterior surface of a trial insert that is disposed adjacent to the femoral component.
The system further comprises at least one sensor within the bearing surface. The sensor is responsive to a force between the condyle and the bearing surface and is capable of providing a known measurement indicative thereof. In one embodiment disclosed herein, the sensor comprises a plurality of strain gages adapted to generate a voltage in response to the forces imposed on the bearing surface. A processor having a memory is operatively coupled to the sensor, and is capable of storing values obtained by the sensor.
The prosthesis fitting and balancing system further comprises a trained neural network operatively coupled to the processor. The neural network is used to predict at least one unknown measurement based on the known measurement obtained by the sensor. In particular, the neural network may predict contact position and load values for sets of readings that were not used during training of the neural network.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
The present invention is directed to systems and methods for prosthesis fitting and balancing in joints using neural network applications. It will be apparent that the neural networking techniques used in conjunction with the present invention, described hereinbelow, may be applied to a variety of medical procedures. For example, with respect to total knee arthroplasty, a force may be imposed between a trial insert and a femoral component, a trial insert and a tibial component, or between the trial insert and both femoral and tibial components. Further, the techniques of the present invention are suitable for applications including, but not limited to, joint replacement surgeries performed on the shoulder, elbow, ankle, foot, fingers and spine.
It will be appreciated that while the techniques of the present invention are generally described in the context of acquiring data using a trial insert during a knee replacement procedure, data also may be acquired and/or processed while a spacer is inserted in the joint, e.g., prior to implantation of the trial insert. Alternatively, data may be acquired and/or processed while a permanent component is housed within the patient. In the latter embodiment, the permanent component may utilize the apparatus and techniques described below to provide feedback to a physician while the permanent component is housed within the patient's body, i.e., after surgery.
Referring now to
The materials used in a joint replacement surgery are designed to enable the joint to mimic the behavior or a normal knee joint. While various designs may be employed, in one embodiment, femoral component 55 may comprise a metal piece that is shaped similar to the end of a femur, i.e., having condyles 75. Condyles 75 are disposed in close proximity to a bearing surface of trial insert 64, and preferably fit closely into corresponding concave surfaces of trial insert 64, as discussed in
Referring now to
Second body 122 also may comprise central portion 126, which may slidably engage groove 71 in femoral component 55 (see
First body 132 of trial insert 64 is adapted to be coupled to second body 122, and further is adapted to be coupled to tibial tray 58 of
In the embodiment of
It should be noted that, while one illustrative sensor embodiment having four protrusions and strain gages is depicted in
First body 132 preferably further comprises printed circuit 137, data acquisition/processing unit 138, and battery 139. Printed circuit 137 is connected for communication between one or more sensors 136 and data acquisition/processing unit 138, as shown in
When trial insert 64 is fully assembled and disposed adjacent femoral component 55, as shown in
As shown in
Referring now to
In
In the embodiment of
A plurality of “connections,” which are analogous to synapses in the human brain, are employed to couple the input parameters of input layer 202 with the nodes of first layer 204. In the embodiment of
Each node in
Transfer function “f” may encompass any function whose domain comprises real numbers. While various transfer functions may be utilized, in one embodiment, a hyperbolic tangent sigmoidal function is employed for nodes within first hidden layer 204 and second hidden layer 206, and a linear transfer function is used for output layer 208. Alternatively, a step function, logistic function, and normal or Gaussian function may be employed.
In sum, any number of hidden layers may be employed between input layer 202 and output layer 208, and each hidden layer may have a variable number of nodes. Moreover, a variety of transfer functions may be used for each particular node within the neural network.
Since neural networks learn by example, many neural networks have some form of learning algorithm, whereby the weight of each connection is adjusted according to the input patterns that it is presented with. Therefore, before neural network 200 may be used to predict unknown parameters, such as contact locations and forces that may be experienced in the context of total joint replacement surgery, it is necessary to “train” neural network 200.
In order to effectively train neural network 200, it is important to have a substantial amount of known data stored in a database. The database may comprise information regarding known contact forces and their locations. Data samples may be acquired using various techniques. For example, as described with respect to
The data samples may be separated into three groups: a training set, a validation set, and a test set. The first set of known data samples may be used to train neural network 200, as described below with respect to
Referring now to
In a first training step, an input value “x(n)” is inputted into neural network 200. After being processed through neural network 200, a predicted output value, generally designated “y(n),” is obtained. It should be noted that predicted output value y(n) of
In the context of joint replacement surgery, input value x(n) may comprise measured sensor values indicative of position and load. Further, target value z(n) may comprise known sample data representative of position and load. The known sensor values x(n) are fed through neural network 200 and predicted output y(n) is obtained. Logic 296 compares the estimated output y(n) with known target value z(n), and the weight of the connections are adjusted accordingly.
The supervised learning algorithm used to train neural network 200 may be the known Bayesian Regularization algorithm with early stopping. Alternatively, neural network 200 may learn using the Levenberg-Marquardt learning algorithm technique with early stopping, either alone or in combination with the Bayesian Regularization algorithm. Neural network 200 also may be trained using simple error back-propagation techniques, also referred to as the Widrow-Hoff learning rule.
As noted above, a set of data samples may be used for validation purposes, i.e., to implement early stop and reduce over-fitting of data. Specifically, the validation data samples may be used to determine when to stop training the neural network so that the network accurately fits data without overfitting based on noise. In general, a larger number of nodes in hidden layers 204 and 206 may produce overfitting.
Finally, a third set of known data samples may be used to provide an error analysis on predicted sample values. In other words, to verify the performance of the final model, the model is tested with the third data set to ensure that the results of the selection and training set are accurate.
Referring now to
In
Advantageously, by employing neural network techniques in conjunction with data sensing techniques of the present invention, a physician may obtain significant amounts of estimated data from only a few data samples. During a prosthesis fitting procedure, the physician only needs to insert one trial insert 64 having sensors 136 embedded therein. The physician need not “try out” multiple trial inserts to determine which one is an appropriate fit before implanting a permanent component. Rather, by employing the neural networking techniques described herein, the physician may employ one trial insert 64, acquire a limited amount of force/position data, and be provided with vast amounts of data to aid in the determination of whether to resect additional bone, release soft tissues, and/or select sizes for prosthetic components during the joint replacement procedure.
Further, by employing the neural networking techniques described herein, the physician need not substantially rely on verbal feedback from a patient during a procedure. By contrast, the physician may rely on the extensive data provided by the neural network software, thereby facilitating selection of permanent prosthetic components. Moreover, it is expected that the prosthetic components will experience reduced wear post-surgery because of improved component selection and/or the ability to properly balance soft tissue during surgery based on the neural network data available to the physician.
Another advantage of using the neural network technique of the present invention in a joint replacement procedure is that the database of stored values can grow over time. For example, even after a neural network is trained and used in procedures to predict values, sensed data may be inputted and stored in the database. As the database grows, it is expected that improved data estimations will be achieved.
As noted above, it will be appreciated that while the techniques of the present invention have been described in the context of acquiring data using a trial insert during a knee replacement procedure, data also may be acquired and/or processed while a spacer is inserted in the joint, e.g., prior to implantation of the trial insert. Alternatively, data may be acquired and/or processed while a permanent component is housed within the patient. In the latter embodiment, the permanent component may utilize the apparatus and techniques described above to provide feedback to a physician while the component is housed within the patient's body, i.e., after surgery.
Referring now to
In
In alternative embodiments of the present invention, the outputs from sensors 136 may be transmitted to processor 172, wherein they may be captured by an analysis program 182, as shown in
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application incorporates by reference applicant's co-pending applications U.S. patent application Ser. No. ______ (Attorney Docket No. 12462/5), filed concurrently herewith, entitled “Device and Method of Spacer and Trial Design During Joint Arthoplasty,” and U.S. patent application Ser. No. ______ (Attorney Docket No. 12462/6), filed concurrently herewith, entitled “Force Monitoring System.”