This invention relates generally to movable articles such as articles of furniture and in particular tables.
Articles of furniture comprise a generally well-understood area of endeavor. In many cases articles of furniture are statically placed; once placed in a specific location they are not moved during ordinary use. In other cases, however, the end user (such as an authorized attendant) will position and reposition the article of furniture on a more dynamic basis. This can comprise, for example, moving the article of furniture some considerable distance at least once a month or week or even multiple times in a single day.
The ease with which an attendant can move a given article of furniture varies with a variety of factors including the nature of the surface upon which the article rests. Whether the flooring is carpeted or comprises vinyl, stone tile, or wood, for example, can significantly impact how easily the end user can move the article of furniture.
Wheels (such as but not limited to casters) are sometimes employed to facilitate moving an article of furniture. Wheels, unfortunately, also make it easier to inadvertently move that same article of furniture at an inopportune time. It may be useful, for example, to provide wheels on the legs of a table to facilitate moving that table when desired. Those same wheels, however, make it considerably more likely that that table will be inadvertently and inappropriately moved at other times, too. For example, a person who is rising from their chair and who presses upon the table to assist themselves in rising may cause the table to roll on its wheels and hence move from a desired location.
A locking mechanism can of course be employed to lock such wheels from rolling. Such an approach, however, can lead to other concerns including overall ease of use, safety, and efficiency.
The above needs are at least partially met through provision of the apparatus pertaining to an article that can be selectively tilted and rolled described in the following detailed description, particularly when studied in conjunction with the drawings, wherein:
Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and/or relative positioning of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of various embodiments of the present invention. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present invention. Certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. The terms and expressions used herein have the ordinary technical meaning as is accorded to such terms and expressions by persons skilled in the technical field as set forth above except where different specific meanings have otherwise been set forth herein.
Generally speaking, pursuant to these various embodiments, an article (such as an article of furniture) has a main body, a floor-engagement frame that operably couples to the main body, and a plurality of non-rolling floor-engagement members connected to a floor-side surface of the floor-engagement frame that engage a floor when the article of furniture rests upon the floor in an ordinary state of usage. This article also includes a plurality of rollers that are also connected to the floor-side surface of the floor-engagement frame. These rollers do not engage the floor when the article of furniture rests upon the floor in that aforementioned ordinary state of usage but do engage the floor when the article of furniture is tilted at least some specific amount such as fifteen degrees. So tilted, the article of furniture can then be moved across the floor by rolling on the plurality of rollers.
By one approach the aforementioned non-rolling floor-engagement members comprise leveling glides and the rollers comprise casters. If desired, each of the rollers is disposed proximal to a corresponding one of the non-rolling floor-engagement members (and near, for example, an outermost end of a corresponding beam as comprises a part of the floor-engagement frame).
These teachings are highly flexible in practice. By one approach, for example, the article of furniture can further comprise (in lieu of the foregoing or in combination therewith), a pedestal that couples to the floor-engagement frame and that supports a table surface. By one approach this table surface can be pivotally coupled to the pedestal. A user interface can be mounted to an underside surface of the table surface (or elsewhere as desired) that controls a latch that serves to hold the table surface in a perpendicular orientation with respect to the pedestal and that permits the table surface to move to a parallel orientation with respect to the pedestal when unlatched. So configured, a user can selectively move that table surface from the perpendicular orientation to the parallel orientation to thereby facilitate, for example, compactly storing a plurality of such articles of furniture in an interleaved manner.
As another example with respect to the flexibility of these teachings, by one approach the article of furniture can include a user interface (which again may connect to an underside surface of the aforementioned table surface) to control a latch that holds the table surface at a present vertical height when latched and that permits the table service to be selectively moved to a different vertical height when unlatched by the user. If desired, a biasing member (such as a pneumatic biasing member) can serve to urge the table surface upwardly and away form the aforementioned floor-engagement frame to thereby facilitate such adjustments.
If desired, one or more visually-discernable images can be disposed on the floor-engagement frame beneath one or more of the aforementioned user interfaces to thereby signal to a user a present location of the user interface on the underside of the table surface.
These and other benefits may become clearer upon making a thorough review and study of the following detailed description. Referring now to the drawings, and in particular to
In this illustrative example the table 100 includes a floor-engagement frame 101 that comprises a plurality of beams 102. As illustrated there are four such beams 102 and they are each disposed perpendicular to the beams 102 that are immediately adjacent on either side thereof. It will be understood that a fewer or greater number of beams 102 can be utilized as desired. These beams 102 can be formed of any material that may be appropriate to a given application setting. Steel or aluminum, for example, can serve well in these regards for many purposes.
In this example the beams 102 meet at a central point and extend outwardly therefrom to an outermost end. Accordingly, viewed from above or from below these beams 102 in this example form a plus sign. Again, these teachings are highly flexible in these regards. Just as there may be a greater or smaller number of beams 102, these teachings will accommodate using beams that are not all of an identical length or that are not linear in shape. These teachings will also accommodate using other shapes for the floor-engagement frame 101 such as, but not limited to, squares, rectangles, circles, ovals, pentagons, and so forth as desired.
In this illustrated example a short leg 103 is formed at the outermost end of each beam 102 and extends downwardly. This short leg 103 includes a threaded opening (not shown) axially disposed therein to receive a threaded engagement member (not shown). In this example two of these short legs 104 so connect to a roller 104 (such as a caster as is known in the art) while the remaining two short legs 103 each connect to a non-rolling floor-engagement member 105 that comprises a leveling glide as is known in the art. Also in this example the two beams 102 that have the rollers 104 also have a non-rolling floor-engagement member 105 disposed proximal (i.e., in this example, within one or two inches) to a corresponding one of the rollers 104 via a support leg 106 that is attached to and extends downwardly from the corresponding beam 102.
Referring now to both
So configured, the non-rolling floor-engagement members 105 for each beam 102 engage the floor upon which the table 100 rests when the table 100 is in an ordinary state of usage. The plurality of rollers 104, in turn, do not engage the floor when the table is resting upon the floor in that ordinary state of usage. Accordingly, the rollers 104 are not in a position to facilitate moving the table 100 during ordinary use of the table 100 and this can help to facilitate maintaining a present position of the table 100 during use. Referring now to
Referring now to
The pedestal 108, in turn, operably couples to a table surface 110 that comprises another component of the table 100. In this illustrative example the underside of the table surface 100 pivotally connects to the pedestal 108. With reference in particular to
So configured, the table surface 110 can be selectively disposed in a first position where the table surface 110 is in a perpendicular orientation with respect to the pedestal 108 (as shown for example, in
Tilting the table surface 100 to the upright, parallel orientation can facilitate, for example, storing the table 100 in a small space and/or storing a plurality of such tables 100 in a relatively small storage area. By one approach, and as illustrated in
By having the underside of the higher beams 102 higher than the top sides of the lower beams 102, one can easily slide the lower beams 102 of a second table (not shown) beneath the higher beams 102 of a first table to thereby interleave the beams 102 of these two tables to thereby place their respective main bodies 107 close to one another. The latter proximity, in turn, becomes possible because the beams 102 not only interleave as described but also because the table surface 110 can tilt as described to thereby prevent the table surfaces 110 of the two tables 100 from contacting or otherwise interfering with one another. Properly interleaved with one another as described, the table surfaces 110 of these various tables 100 will be at least substantially parallel to one another.
By one approach, and referring now to
When the latch 114 so engages this catch opening 115, the first and second portions 111 and 112 of the pivot assembly are no longer free to pivot and this, in turn, causes the table surface 110 to be held in the perpendicular orientation. By switching the latch 114 to an unlatched state, however, the latch 114 is removed from the catch opening 115 and the table surface 110 can now be freely tilted to the aforementioned parallel orientation with respect to the pedestal 108.
If desired, a first user interface 401 can be mounted to the underside of the table surface 110 proximal to one edge thereof (for example, within two to four inches of that edge). This first user interface 401 can couple to the aforementioned latch 115 by a corresponding cable 402. With particular momentary reference to
If desired, the paddle 602 can be biased (for example, via one or more spring mechanisms (not shown)) to urge the paddle 602 away from the table surface 110. Urging the paddle 602 away from the table surface 110 will, in turn, push the cable 402 back towards the latch 114 and hence will urge the latch 114 towards a latched position when the latch 114 is otherwise disposed proximal to the catch opening 115.
As noted above, by one approach the pedestal 108 can move up and down vertically in the pedestal receiver 109. For some application settings it may be sufficient that these two components fit snuggly such that friction alone is sufficient to hold the table surface 110 at a desired height. These teachings will accommodate other approaches in these regards, however.
By one approach, for example, a biasing member (such as a pneumatic biasing member 116 as shown in
If desired, and referring now to
Also if desired, this latch 501 can again be made responsive to a second user interface 403 that again couples, in this illustrative example, to the underside surface of the table surface 110 (or elsewhere as desired) and that couples via a corresponding control cable 404 to this latch 501. This second user interface 403 can be identical in form and substance to the earlier-described first user interface 401 if desired.
As yet another optional approach in these regards, yet another latch (not shown) having a corresponding user interface (not shown) akin to those described herein can serve to help prevent unintended changes to the table surface 110 height. This optional latch can serve, for example, to interact with a hole in the control cable 404 to prevent that control cable 404 from moving even if the user should engage the latch 501 for that control cable 40. This optional latch can therefore serve as a user-operable safety lock to lock the latch 501 in the latched state and prevent that latch 501 from inadvertently switching to the unlatched state.
By one approach these user interfaces 401 and 403 are disposed on the underside of the table surface 110 and proximal to a shared edge of that table surface 110 with the hand-engageable paddles 602 facing outwardly towards the attendant 300. If desired, one or both of these user interfaces 401 and 403 can be disposed proximal to a particular corner of the table surface 110 (where either both user interfaces 401 and 403 are located near the same corner or where one or both are located proximal to separate corners). So configured, an attendant 300 can easily manipulate either or both of the user interfaces 401 and 403 while also gripping and otherwise holding or pressing upon that table surface 110 when seeking to tilt and/or raise/lower that table surface 110.
While locating these user interfaces 401 and 403 on the underside of the table surface 110 renders those interfaces readily accessible and further contributes to the aesthetic appearance of the table 100, in some cases this location may make it somewhat more challenging for the attendant to locate them at a time of need (especially if the table surface 110 is already at its lowest available height). It is also possible that the attendant might become uncertain as to which user interface controls tilting of the table surface 110 and which controls adjusting the height of the table surface 110.
Accordingly, if desired and as shown in
These images 405 and 406 can comprise alphanumeric characters (such as, by way of illustration and not by way of limitation, the letter “H” for the user interface 403 that facilitates adjusting height and the letter “T” for the user interface 401 that facilitates adjusting the tilt of the table surface 110) and/or graphic images, icons, or the like as desired. These images 405 and 406 can be formed as part of the floor-engagement frame 101 (for example, as a part of a molded beam 102) or can be applied via paint or ink or as an applied sticker, decal, or the like as desired.
The table surface 110 itself can be comprised of any of a variety of materials including plastic, wood, metal, or any of a variety of composite and/or laminated substrates as desired. By one approach, as shown in
So configured, an article of furniture (such as, but not limited to, a table) can be easily rolled from place to place while also tending to stay located in an installed state such that the article will resist sideways movement during ordinary use. A table surface for such an article can be readily adjusted in height and by only a single attendant if desired. The table surface can be tilted to a vertical orientation that reduces the article's corresponding storage footprint and that can work in cooperation with an interleaving floor-engagement member configuration to permit a plurality of such articles to be closely interleaved with one another to again reduce their aggregate storage footprint. The user interfaces to facilitate such adjustability can themselves be secreted from ordinary view while nevertheless remaining conveniently located to facilitate their successful usage.
These teachings are highly flexible in practice and will accommodate a wide variety of variations. The concepts set forth herein are also highly scalable in practice and will accommodate not only a variety of different types of articles of furniture but also differently-shaped and differently-sized articles of the same type (such as, for example, tables having smaller or larger table surfaces, tables having round or oval-shaped table surfaces, or tables having a smaller or larger vertical adjustment capability, to note but a few examples in these regards.
Those skilled in the art will recognize that a wide variety of modifications, alterations, and combinations can be made with respect to the above described embodiments without departing from the spirit and scope of the invention, and that such modifications, alterations, and combinations are to be viewed as being within the ambit of the inventive concept.