The invention relates to an applicator for applying a product and light to an application surface, especially the dermis or epidermis of a skin. The invention further relates to a capsule for applying at least a product to a surface, especially the epidermis of a skin.
For dispensing a product to a surface, such as a substance to a epidermis of a skin, it is known to use dispensers with an applicator element such as a ball which can be rolled over said surface. The substance is taken up by the ball from a reservoir in the applicator and transferred to the surface over which the ball is rolled.
Moreover it is known to apply light to a surface, for example for optimizing effects of a substance applied to said surface.
From US2008/262394 an applicator is known for dispensing a light to human skin, which applicator is a hand piece comprising a rolling ball as a massaging element and a connector for connecting the hand piece to a light source in a control device. Light from said light source is passed to the hand piece though a light connection such as an optical fiber and then radiated through or alongside the ball onto the surface to be illuminated. The ball is held in the hand piece in a ball chamber. In one embodiment the hand piece is provided with a plurality of openings around the ball, or a gap around the ball, through which cooling/warming air/liquid or massage oil/lubricant may be delivered to the skin during treatment of the skin. In US2008/262394 such liquid to be dispensed is, during use, injected into the ball chamber through a tube connected to the hand piece, from a source outside the hand piece.
From DE3905517 a hand held device is known comprising a rolling ball in a ball chamber, surrounded by a reservoir containing a fluid to be dispensed. The fluid can be picked up by the ball when rolling and be dispensed onto the skin. Light can be radiated onto and through the ball for heating the ball and for light therapy.
US2011/0106067 discloses an applicator device for applying a substance to skin, comprising a handle and a head. The head comprises a permanent part for connecting to the handle and a disposable part comprising a base, a volume of a substance to be dispensed and a sponge for dispensing the substance. The sponge is semi spherical and is molded to the base, such that between the base and the sponge a volume for the substance to be dispensed is provided. The outer semi spherical surface of the sponge provides for an application surface and the sponge is perforated for allowing the substance to be transmitted through the perforations onto the users skin. The handle is arranged to create a rotating magnetic force by rotating a first magnet by a motor or via electromagnetic field induction. A transmission is provided in the permanent part of the head for transmitting power from the handle to the head. A second magnet is provided in the head, within a ring-shaped stator. The second magnet is rotated by the rotating magnetic field and is used as an energy source in the head. The disposable part of the head is arranged to release a portion of the substance from the volume through the perforations of the sponge dependable upon the power transmitted from the permanent part of the head. In this device the sponge will be deformed during delivery of the product onto skin, and will absorb at least part of the product. Moreover, the sponge bounds the reservoir and thus the dispensing of the product will at least in part be controlled by the forces applied onto the sponge.
In an embodiment the disposable part comprises a central opening. The permanent part of the head comprises a tubular extension which at a free end is provided with four LED's. When the disposable part of the head is mounted on the permanent part, the tubular extension will fit in the central opening, such that the LED's extend outward from the semi spherical surface of the sponge.
US2011/0040235 discloses transdermal delivery device for therapeutic agents which comprises fixed in a housing a mechanical vibration element, a light source and a heating and cooling element. An end of the housing forms an application surface. In some embodiments a reservoir containing a therapeutic agent may be comprised in the housing, spaced well apart from the application surface, connected thereto by a series of narrow conduits. In one embodiment the reservoir is provided as a replaceable pouch with tangible closures for connecting to the conduits. A piston is provided with a piston rod extending through the end of the housing opposite the application surface, which can be engaged by a user for forcing the piston against the pouch, such that product is dispensed. Alternatively an embodiment is shown in which the reservoir is an integral part of the housing.
US2009/0299236 discloses a device for therapeutic light treatment, in which a ball is rolled over a skin surface during which light is radiated onto the skin.
US2008/0014011 discloses a cosmetics and/or drug dispensing device, having a head portion. In embodiments a ball is provided in the head portion, as an applicator element, and a light source emitting light through the top of the head portion and/or through the ball. In embodiments the entire device can be dispensable, in other embodiments a disposable cartridge comprising a cosmetic or drug compound can be mounted to the rear of the head portion. A similar device is disclosed in US2012/0207532, again disclosing a disposable reservoir containing a large quantity of product being mounted to a rear of a reusable head portion comprising a ball as an applicator element. The product is fed to the applicator element by natural flow, for example by gravity.
WO2010/111997 discloses an applicator device for cosmetic and/or medical use, having a ball as an applicator element. The device comprises a disposable applicator part and a reusable base comprising a power source and a vibrating element. In a semi spherical reservoir extending around the ball a substance is provided to be dispensed. Moreover in the applicator part compounds are contained, between the reservoir and the base, which need to be mixed for providing heating or cooling of the substance. A light source may be provided in the base, radiating light through the compounds, the reservoir with the substance and the ball, to be radiated on the skin. This means that during use the light will be influenced by these elements and the changes therein, such as the level and type of filling, temperature of the mixing compounds, air gaps between components and the like, which will make the system inaccurate. Moreover in WO2010/111997 the substance to be dispensed is apparently brought onto the ball by adherence between the ball and the substance.
An aim of the present disclosure is to provide an alternative system for dispensing a product and light onto a surface, such as onto the dermis of human skin. An aim of the present disclosure is to provide a capsule for dispensing a product onto a surface. An aim of the present disclosure is to provide an applicator system which can be hand-held, comprising a light source and a reservoir for fluid to be dispensed by means of an applicator element such as a ball, with which small volumes of product can be dispensed, preferably in a well-controlled manner. An aim of the present disclosure is to provide for a method and system for treating a surface, such as the dermis of skin, by applying a product and light onto said surface by an applicator element, with which a predetermined amount of product per period of time is dispensed onto said surface. An aim of the present disclosure is to provide an applicator system for applying a product and light onto a surface, such as human skin, in a hygienic and comfortable manner. An aim of the present disclosure is to provide for such applicator system in which during use the contact between the applicator and the skin of a user onto which a substance is applied is limited to contact between a disposable part and the skin. Preferably such applicator can be used in any position of the applicator in contact with the skin, even in vertical position.
At least one of these and/or other aims of the disclosure can be obtained with a system, applicator, capsule and/or method as disclosed in this disclosure.
In an aspect a capsule can be provided for distributing, on a surface of a living body, a product containing an active component or forming a cosmetic product, the capsule having a product distribution zone and comprising in a body, a supply of product which is in communication with the product distribution zone, and first linking means for removably securing the capsule to second linking means of a housing in which is disposed a light source.
In an aspect a product distribution device can be provided containing an active component for distribution on a surface of a living body and the radiation towards this surface, the device comprising a distribution capsule and a housing to which the capsule is secured in a removable manner, by first and second linking means, and in which is disposed the light source adapted for emitting said light ray(s) towards the product distribution zone.
In a further aspect a device can be provided for distributing, on a surface of a living body, a product containing an active component or forming a cosmetic product, and the release/discharge, at least as far as this surface, of energy in the form of (a) light wave(s), the device comprising a distribution zone of product on said surface and at least one light source emitting at least one light ray towards the surface, for example focused or, preferably, spread out over a wider zone, for example over a contact zone between a movable element and the skin.
In a still further aspect a capsule, can be provided, for example for use with a device as described here above, wherein the capsule comprises a ball rotatably mounted in a housing, wherein the housing comprises a reservoir having a movable and/or deformable wall, for containing product to be dispensed by the ball, and wherein the reservoir is in communication with a space between the ball and the housing through at least one opening. The opening is preferably relatively small. The reservoir preferably has a volume for a relatively small amount of product.
According to the present disclosure a capsule preferably is disposable and preferably comprises a relatively small amount of product to be dispensed, such as for example an amount sufficient for a single application cycle, which can for example comprises a series of dispense steps.
In a still further aspect a method can be provided for applying product and light to a surface, wherein a capsule comprising a reservoir containing product is releasably coupled to a housing comprising at least a light source and a control unit. The capsule comprises a movable element such as a ball onto which product from the reservoir can be fed for dispensing it to a surface by the ball, wherein light is transmitted from the light source through the capsule to the said surface prior to, during and/or after dispensing said product onto said surface, whereafter the capsule is removed from the housing and replaced by another capsule. The capsule comprises preferably a relatively small amount of product.
Other characteristics and advantages connected to the suggested solutions will become clear from the following detailed description of various embodiments where reference numerals refer to the annexed drawings provided by way of example and where:
The present invention is by no means limited to the embodiments disclosed and discussed specifically in this description. Many alternative embodiments are considered to also have been disclosed or covered by the claims, including but not limited to combinations of embodiments or parts thereof as disclosed herein, including but not limited to embodiments and parts and features thereof as shown in and discussed with reference to the drawings.
In embodiments for example more than one reservoir could be provided, opening into the space around the movable element, such that components or products can be dispensed which will be mixed only upon application, for example components which would not provide a stable product over a longer period of time or which provide a chemical or physical reaction upon mixing which is desired to happen at or near said surface 5. The reservoir for active dispensing could be designed differently, for example as a flexible pouch, compressible by the push rod or by for example squeezing it. To this end for example the pouch could be pressurized by gas pressure or mechanically. Alternatively the reservoir could have a membrane or otherwise deformable wall in stead of the piston, which could be deformed by the push rod or in a different manner, for dispensing the product. A capsule could be provided with a light source, in stead of or additional to that in the holder 15. Multiple movable elements could be provided in a capsule, for example two or three such elements such as balls or rolls. A device according to the disclosure could be provided with an indicator system such as an alarm, for example by light, vibration and/or sound, indicating to a user that the applicator element should be moved to a next surface or part of a surface for dispensing a next amount of product in a next step. In embodiments the entire device could be disposable or reusable. However, disposable capsules 17 used with a reusable holder 15 are preferred.
These and other variations are considered to have been disclosed herein as well.
In this description embodiments of an applicator, capsule and method for dispensing are disclosed by way of examples only. In the different embodiments the same or similar parts and features have the same or similar reference signs. The products to be dispensed as discussed can be used in all embodiments, unless specifically discussed otherwise.
In this description wording like substantially or about should be understood as meaning that a value or property it refers to does not have to be met entirely. Small variations can be possible, such as for example 20% or less of the given value, for example less than 15%, such as for example 10% or less, or at least 5% or less.
In the present disclosure an applicator, also referred to as device 1 is to be understood as at least meaning a device comprising a housing which houses at least a light source and an energy source or connector for such energy source and a capsule releasably connected to or connectable to said housing, an applicator element and a reservoir for a product to be dispensed. Preferably the capsule comprises the applicator element and the reservoir.
In the present disclosure a capsule can be understood as meaning at least an element to be connected to or connectable to a housing as described, which capsule comprises at least first coupling or linking means or elements, for cooperation with second coupling or linking means or elements provided in and/or on the housing.
A capsule according to this description preferably is disposable, which can be understood at least as meaning that it contains a relatively small amount of product, especially an amount of product for a single treatment procedure, is made of relatively inexpensive materials and can be discarded after dispensing at least most of said small amount of product and/or after said single treatment procedure.
By using such disposable capsule, which could also be referred to as cartridge or pod, different advantages can be obtained. By using a new capsule for each treatment procedure it can be guaranteed that the right amount of product is dispensed during such procedure, or at least no more than a desired maximum. Moreover hygiene can be more easily guaranteed since the same capsule and especially the same applicator element will not be used for different treatments or by or for different users and/or surfaces. It may for example be prevented that contaminations picked up by the applicator element will be carried into a reservoir of product to be dispensed in more than one treatment procedure. Moreover the element that would normally require the best cleaning after use can now be discarded, limiting the necessity of meticulous cleaning. Furthermore it will be easy to switch between products to be dispensed. A further advantage can be that the quality of product contained inside the reservoir of said capsule can be guaranteed better, especially when the product may be susceptible to for example deterioration by aging or oxidation.
In this description a relatively small amount of product contained in the reservoir can for example be less than 10 ml, more specifically less than 5 ml, more in particular less than 3 ml, such as for example between 0.01 and 1.5 ml.
During use the product may be dispensed from the reservoir in a continuous or semi continuous flow, for example initiated by movement of the applicator element over the said surface. The supply of fluid to the applicator element can for example result from adhesion of the product to the moving applicator element, from gravity, from capillary effect or from a combination thereof.
In other embodiments during use the product may be actively fed to the applicator element, for example with a controlled flow and/or with a controlled, preferably predetermined amount per period of time. Actively fed can be understood as at least meaning that a positive force is applied to the product for feeding an amount of product to the applicator element. This can for example be achieved by a piston, or a movable or deformable wall of the reservoir, acting on the product under the influence of a displacement source or power source, such as but not limited to a motor or pump.
Preferably the light source is provided in the housing. In embodiments the light source can comprise or be formed by one or more LED's. The light source can have different elements for different light frequencies. One or more light guides can be provided for guiding the light through part of the housing, from the light source to the capsule when mounted properly. A light guide can for example comprise one or more optical fibers or a light transmitting element or elements, such as an element, for example made of a transparent plastic such as but not limited to PMMA, Perspex, PC or the like, or of glass. The capsule can be provided with one or more windows or openings or be made of a light transmitting material, for allowing light from the light source cq light guide to pass into the capsule and/or into and/or through the applicator element and/or passed the applicator element.
The disclosure inter alia relates to a capsule (which can serve as applicator device) and a device which provides energy in the form of light radiation waves. The device enables at the same time the application of a product containing an active component or forming a cosmetic product, and light radiation of a wave length selected on or just below an application surface, in particular the dermis of a skin.
More in general, objectives of the present invention can be
Also envisaged is:
It is understood that here, ‘product’ is understood to mean a substance, containing an active component or forming a cosmetic product. What is concerned here is a product for local (topical) application, which is either a cosmetic product, or a medicine, with its (their) active component(s). It has a more or less fluid consistency and composition, with a possibly variable viscosity and texture according to the sought after benefits. A serum can be involved, or a liquid emulsion, without excluding slightly thicker consistencies, if necessary. Preferably, the active component has a bio-inductive effect.
Advantageously, the product contained in the capsule can be such that it reacts to a given wavelength and a given time of exposure to radiation.
An object of the present invention is a solution with which the substance to be applied is optimally protected, to select the substance depending on the application to be considered, while always benefiting, on the entire device, from the light radiation which is favorable to the efficiency of the product, once it is applied.
In addition to the skin, the distribution surface for the product can be the external surface of a living organ, in particular an organ that needs to heal.
The proposed capsule can be such that it provides a product distribution zone, and comprises: in a body, a supply of product which is in communication with the distribution zone of the product, and first linking means, and second linking means, for removably connecting, between the capsule and a housing in which is disposed a light source. The first and second linking means can be situated at a distance from the light ray(s) coming from the light source.
The exchangeability of the capsule, and therefore the changing of product is thus improved.
Another advantage is, if desired, that a capsule is provided which can be used once (mono-dose), and is especially hygienic as thus, the risks of proliferation of bacteria and oxidation of the product (and of the active component in particular) are restricted. Furthermore, the same housing can receive various capsules, especially having different forms and/or content.
To simplify the way of activating the product or the bodily environment where it is placed, it is recommended that preferably, the emitted ray(s) pass through the product distribution zone mentioned.
For a given product, it is possible to reduce the exposure to radiation (filtering of the rays on the capsule) by regulating the focal point while changing the optical indexes of the transparent parts of the capsule, modifying the diameter of the ellipsoid of revolution that can serve as applicator element (see element 7 hereinafter), which diameter can be adjusted depending on the viscosity of the product and/or modifying the supply of product under the ellipsoid of revolution (in particular ball), again depending on for example the viscosity.
It is further recommended that the device comprises product applicator means, for applying the product application (putting it on) on said surface, and means for starting the emission of the ray by the light source, while these starting means are activatable by the user at a distance from the distribution zone and/or with the intermediary of applicator means for allowing the start of the emission while the product is applied via said distribution zone, favorably such that then, the ray passes through the applied product.
Furthermore, the safety of the user with regard to the emitted light can be checked.
In order to improve a uniform distribution of the product and its penetration into the thickness of the dermis or the surface of the organ, which is a priori porous, it is recommended that the capsule comprises a movable element having an outer wall, preferably convex, which contributes to or ensures the product application, and/or which is movable on said surface by the intermediary of the distribution zone of the product.
This is advantageous to the compactness of the device and to an interaction between the application of the product and a possible “massaging” effect favorable to the penetration thereof into the surface, which is porous.
In preferred embodiments an applicator element is provided in or on a cartridge having a relatively hard surface for contact with the skin of a user, forming or containing a product distribution zone. In this disclosure relatively hard should be understood in relation to skin of a human body. Relatively hard may be understood as meaning at least but not necessarily limited to not spongeous. Relatively hard may be understood as meaning at least but not necessarily limited to having a surface hardness which is such that when the surface of the applicator element is pushed against the skin of a user during application of a substance contained in the cartridge, the skin will be compressed by the applicator element more than the applicator element by the skin. Preferably the applicator element is sufficiently hard not to be compressed during application, when a normal force is applied to the skin by the applicator for applying the substance.
In preferred embodiments an applicator element is provided in or on a cartridge which is relatively rigid, for contact with the skin of a user, forming or containing a product distribution zone. In this disclosure relatively rigid should be understood in relation to skin of a human body. Relatively rigid may be understood as meaning at least but not necessarily limited to having configuration which is such that when the surface of the applicator element is pushed against the skin of a user during application of a substance contained in the cartridge, the skin will be elastically compressed by the applicator element substantially without deformation of the applicator element.
In preferred embodiments an applicator element is provided in or on a cartridge which is non absorbing and non permeable for the substance contained in the cartridge, such that during application the substance will be distributed over at least part of the surface of the applicator element but does substantially not penetrate into said surface.
In order to improve the interaction between the delivered light energy and the applied product, it is advised that the light source emits the ray(s) towards the surface, through the distribution zone.
In order to provide a proper distribution of the product over a skin area, preferably an active product supply is provided for ensuring a constant flow of product to the applicator element for distribution.
To reduce oxidation and dehydration of the product contained in the device, it is recommended that prior to the first distribution, a protective foil or cap is provided over the movable element.
In order to optimize the application of the product as well as the passage of the ray as far as the surface mentioned, it is recommended that the device provides an axis along which the ray is emitted towards the surface, while the product supply is situated either at least essentially transversely to the axis mentioned or around this axis. In the first case, the ray does not pass through the product, and in the second case, it does. This should be taken into account in determining the focal point.
To further improve the application of the product without disturbing the passage of the emitted light ray(s), it is advised that the movable element provides the product distribution zone. Thus, the synergy product/light can be improved.
Still with respect to a favorable distribution of the product and this synergy, it is recommended that the movable element pivots about at least one pivotal axis and has a convex exterior wall, and/or that the movable element has an ovoid form, preferably an ellipsoid of revolution, and pivots on the body, and/or rotates in the body.
For protection of the product, without this interfering with the removable connection between the capsule and the body of the device bearing the light source, or with the favorable emission of the ray(s), the capsule can have a cavity which is open towards the exterior to one side and have a blind flange, preferably transparent to rays, said first linking means of the capsule being situated towards this blind flange, and lateral relative thereto.
Thus, at the same time, it is ensured and simplified both the separation and the axial connection between the housing bearer of the light source and the capsule, without hindering the free passage of the light rays/radiation.
With respect to the device itself, it is understood that it is provided with the precited distribution capsule, and the housing to which this capsule is therefore secured in a removable manner, by first and second linking means, and in which is disposed the light source adapted to emit, toward the product distribution zone, and therefore the distribution surface, the light ray(s) or at least one wavelength.
For reasons already given, it is recommended that the light source emits ray(s) through the product application means, and preferably, that the product applicator means comprise, as movable element, an ovoid form through which the ray(s) can pass. Thus the above-mentioned synergy is improved and with this ovoid form, preferably an ellipsoid of revolution, an optical system can be created. The ovoid form in its housing can be arranged to adapt to the viscosity of the substance.
In a favorable embodiment, for a simple and efficient optical system, the optical index of the movable element is constant over the entire mobile element, which is uniformly solid or hollow.
The movable element can be designed from different materials, solid, hollow or liquid. Thus, in embodiments the focal point can be regulated to a certain depth in the surface, in particular the epidermis, so as to optimize the effect of the chosen product. With the same purpose, the dimensioning of the ovoid form and in particular its diameter and the distance relative to the source enable regulation of a focal distance and concentration of the light flow to a certain distance below the application surface concerned, in particular the dermis, if light is to be emitted at least partly through the movable element.
Again for the performance of the synergy between the application of the product and the effect provided by the radiation, it is recommended to limit the oxidation of the product while considering the device as a whole of two parts comprising a housing in which the light source is accommodated and a capsule, movably secured to the housing and containing the supply of product and the product distribution zone. Thus, the capsule can be a recharge/refill which allows the use of a disposable, one-time-dose of product. The amount of product can then be a one day dose of treatment.
The dose of product contained in the capsule can be especially protected against oxidation by the packaging formed by the capsule, while removal of a sealed protective film or cap only takes a few seconds just before the application of the product.
Alternatively, or preferably additionally, a lid is provided in a removable manner, for isolating the supply of product from the environment, whereby a volume is covered at an atmosphere intended to protect the product from oxidation prior to the first opening of the lid.
For the transmission of the ray towards the surface and the protection, a first wall transparent to the ray can be provided, interposed between the light source and the product distribution zone, and which allows the ray to pass through this zone. This wall can be dimensioned such that is sufficiently great for allowing the ray(s) to concentrate on the zone of the exterior, convex wall of the movable element that comes into contact with the surface of the body, or beyond.
In this respect, it is favorable for the efficiency of the synergy between the applied product and the ray emitted towards the application surface, that the passage of the ray in the optical system formed in the device concentrates this ray in the contact zone, there where the product distribution zone comes into contact with the surface to be treated, or slightly beyond, more deeply into this surface.
In this respect, a well chosen solution is a priori a solution where the movable element having the distribution zone and/or the supply which feeds it with product, define an optical device as such, while the application means are in contact with the surface of the body, the passage of the optical rays in the device concentrate these rays in the contact zone. The movable element can be integrally formed to concentrate the ray(s) on or a few millimeters beyond the distribution zone mentioned, which is a contact zone with the surface of the body in a manner such that, with the distribution surface being the skin. A focal point can be located in the dermis or, between the dermis and the epidermis. In embodiments the light can be distributed over part or all of the contact zone between the movable element, such as a ball, and the surface for application, such the skin. In embodiments the light can be distributed over an area around the contact zone between the movable element, such as a ball, and the surface for application, such the skin.
If the solution with a disposable capsule is considered, it is further recommended that the first wall transparent to the ray be airtightly secured to or form an integral part of the capsule with respect to the product. This especially increases the protection from oxidation.
A disposable capsule should be understood as a capsule which is to be replaced by another such capsule each time its supply of product is exhausted. A disposable capsule is preferably a capsule which cannot practically be filled again after use.
In the housing, the light source can be protected by a second wall transparent to the ray which, with the capsule and housing assembled, can be situated opposite to the first transparent wall. In principle, only air separates the opposing first and second walls.
To promote the use of the device on numerous locations of the surface in question, as well as the spread of the product on the movable element, it is further recommended that this movable element be ellipsoid of revolution, in particular a sphere or a more oval form, pivoting in all directions, in or on the device. Preferably the element is a ball.
For the use and the ergonomics of the solution proposed to the user, it is advised that the housing of the device provides for a push-handle for moving the movable element, this push-handle extending in a direction towards the movable element and batteries or a feed battery for the light source which are arranged in the push-handle. The housing can be designed as the push handle, meaning that the device can be held by the housing and be moved over a skin surface by for example rolling the movable element, such as the ball, over the skin.
For safe use, and taking into account the light intensity of the ray which might damage the retina of a user when catching the ray, it is provided, while ensuring a simple functioning of the device and avoiding unnecessary loss of electric energy, that on the device, starting means for the emission of the light by the light source are provided which can comprise a first body, mounted with the application means and itself translatably mounted along an axis relative to a second body of the device, between a first position where the first and second body are axially distanced one from the other while opening (interrupting) an electric circuit comprising the light source which, in this manner, cannot emit a ray, and a second position where, by pushing the movable element along this axis, the first and second body are axially brought closer to each other while closing the electric circuit so that the light source emits its ray, and biasing means, provided between the first and second body for returning them in a natural manner to the first position. Thus, pressure on the movable element starts the electric contact, and switches on the device. Light will be emitted only in the event of a pushing motion on the movable element. In rest, no light whatsoever will be emitted. This, preferably together with the presence of an opaque protective lid movably mounted on the movable part forming the applicator of the product, allows for combining proper protection of the product in supply (via the lid) and safety of use, wherein there will be emission of light only if, with removed cap, the movable element is pressed in. If not, the starting means comprise an interrupter on/off and preferably the above mentioned protective cover.
With respect to the manner of distribution of the product on the surface involved and the emission of radiation, it is advised for reasons already given hereinabove, that the method comprises application of the product on the product distribution zone of the device mentioned, and the emission of radiation towards this distribution zone, preferably together with the application of the product.
To improve the synergy between the distribution and the emission of radiation, while simplifying the use, it is recommended that the product be provided in a product supply of the device, that the product is distributed by rolling a movable element of the device, in contact with the product in the product supply, and that, by a light source of the device, a surface of an exterior wall of the movable element be lighted, through the movable element.
However, for certain products and certain applications, it is provided that the product can easily be placed in the luminous path, whereby the focal point is modified and the reaction of the cells is improved.
The bottom of the capsule is designed in a material transparent to the radiation, or can be optically filtering, which allows for the selection, on a given capsule, of wave lengths adapted to the conditions of use. It is advised for a specific product, for an identical wavelength emission of the light source device to provide the light source emitting rays in a housing of the device, —to provide the product in a product supply of a capsule comprising product application means, and also associated to the device, whereby the capsule forms an optical system, to movably secure the capsule to the housing and to modify the refraction index(es) of the optical system of the capsule traversed by the ray, depending on the product, for example for and/or changing the emitted light frequency changing the focal point.
For reasons of ergonomics and ease of handling of the device, it is recommended that, with the capsule secured to the housing, the housing has a push handle for moving the movable element, while advantageously extending in a direction towards this movable element and the light source, and wherein the feed batteries of the light source are arranged.
To check the interaction between the produced light energy and the distributed product, and/or the safety of the user with respect to the emitted light, it is recommended that starting means are provided, activatable by the user at a distance from the distribution zone and/or by the intermediary of the movable element, thus allowing for the start of the emission of the ray by the light source when the product is distributed via the distribution zone mentioned, so that the light flow passes through the distributed product.
With respect to distributing the product over the surface concerned, and creating warmth and/or photonic activation of the constituent cells of this living surface, by light radiation thereon, it is provided to distribute the product on this surface, via the product application means, and, preferably simultaneously, to emit towards this surface the radiation coming from the light source, while adapting the focal point thus that photo-biomodulation is effected, which preferably penetrates as far as the fibroblasts responsible for the production of collagen and blood vessels.
To reach the surface to be treated, the radiation coming from the light source can pass through the application means and in particular the movable element. However, another configuration can be envisaged: have the ray(s) pass alongside the applicator element, in particular around, via for instance a series of electroluminescent diodes disposed in a circle.
The product 3 contains an active component or forms a cosmetic product.
It is preferred that it has the consistency of a liquid or a creme.
The surface 5 can be skin surface, or (epi)dermis. Also, the surface of an organ of the human body can be involved, including in internal organ accessible through operation, and which can be healed. More in general are involved cutaneous applications, treatment of acne, stretch marks, cicatrization, such as but not limited to skin or internal organs.
The device 1 has a zone 30 of distribution of this product to the surface 5, there where product is present and where it can be in contact with the surface to be covered.
For distributing the product and optimally activating it, the device 1 can comprise:
Advantageously, the applicator element is movable in and/or on the body of the device.
Advantageously, the source 9 comprises one or several electroluminescent diodes. They can emit light according to different wavelengths, thus allowing an adaptation of the effect on, or in, the surface 5, preferably depending on the product 3.
Here, the product 3 is liquid and rather fluid. Preferably, it has a viscosity that allows the product to be spread substantially uniformly over the distribution zone, during the exposition time to (a) selected illumination/(light) wave length(s).
The movable element is preferably ellipsoid of revolution ovoid, in particular a ball, whereas preferably the ray(s) can pass through it.
Here, a solid, transparent glass ball or solid polymer ball, or containing another product, solid or liquid can be involved. Alternatively the ball can be a hollow ball, for example a plastic ball.
In a preferred embodiment, the ball allows the passage of wavelengths between 400 and 1400 nm. Its diameter can for example be between 8-12 mm, although it can be smaller or larger.
A filter color can be added to the device, for instance to the movable element such as the ball, for selectively avoiding the transmission of certain wavelengths to the surface, this to augment the efficiency of a specific product, or for protecting it.
This movable element is pivotally mounted about at least one pivotal axis and it can be seen in the drawings that it is preferred that the exterior wall 70 has a convex exterior.
Although for instance a cylindrical or ovoid shape is possible, with, in that case, a movable element 7 mounted a priori pivotally around a single rotational axis perpendicular to the direction 13, it is recommended that the movable element 7 be ovoid, preferably an ellipsoid of revolution, has an ovoid shape such as a ball pivoting freely in all directions, in or on the device.
This improves a substantially uniform spread of product 3 and of the light on the surface 5, whatever the orientation in space of the device may be relative to the surface 5. Advantageously, the ellipsoid of revolution or ovoid shape, especially ball shaped, has a diameter which allows it to pass over all the parts of the face.
The device 1 also comprises a supply 11 of product which is in communication with the distribution zone 30, here the movable element 7.
In this respect, it is recommended that the product distribution zone 30 is situated on the movable element 7, here, in the Figures, at the surface of the exterior convex (rounded) wall 70.
To avoid ray/product interference to a high degree, it is recommended that the supply of product 11 is situated transversely relative to the axis 13 parallel to the direction the ray 90 is initially emitted in, towards the surface 5. But this is not necessary: provision in a rear zone, behind the applicator means 7 is also possible (see zone 11a in
To further improve the synergy between product and emitted ray(s), it is recommended that the passage of the light or optic ray 90 in the device concentrates this light in the zone 25 where the exterior, convex wall 70 of the movable element 7 comes into contact with the surface 5, or some millimeters beyond, as shown in
With respect to
Still with respect to
Especially when the focal point 41 is in the dermis, the emitted light can be infrared light.
On the device, optionally, flexible ring-shaped lips 19a, 19b can ensure the airtightness before and behind, respectively, the supply of product 11, i.e. reservoir 102, while allowing passage only to the front at 19a of a film of product around the movable element 7, in the way of a wringer. The clearance allowed by the lip 19a matches the viscosity of the product. The discharge and the spread of the product 3 on the surface of the movable element 7 can be performed through capillarity. The movable element 7 can be mounted by snap connection in the supply space 11, i.e. in the housing 110.
In order to simplify the design, it can be preferred that product can pass between the movable element 7 and the bottom of the supply 11, here the wall 21.
Additionally, the device is provided with a housing 15 which can form a push handle in which is accommodated the light source 9 to which is preferably movably secured a capsule 17 comprising a supply 11 of product and the movable element 7. This can simplify the use of a single use capsule 17 which then becomes a disposable, which can be disposed of after use.
Hence, capsules can be exchanged or replaced and therefore especially provide several products to be applied, or diffuse several rays, for instance while having various movable elements 7. Diffusing several rays shall be understood as including the possibility of changing the color of light passing through the capsule due to differences in refraction indexes, coloring of the ball 7 or the housing, providing refraction elements such as but not limited to Fresnel lenses or prisms or similar means for influencing the light.
In this way, the capsules 17 become replaceable, especially disposable, refills, so that the use of one-time doses of products such as different serums, is made possible. The reservoir 102 of a capsule 17 can for example hold a small amount of product 3 to be dispensed, which can for example be less than 10 ml, more specifically less than 5 ml, more in particular less than 3 ml, such as for example between 0.01 and 1.5 ml. Other volumes are obviously possible.
The supply 11, i.e. the reservoir 102 is provided in a body 110 of the capsule relative to which the applicator element 7 is movable.
Between the light source 9 and the movable element 7 is interposed a first wall 21, transparent to the ray which it allows to pass, towards the movable element. In particular in
It is recommended that this wall 21 be transparent to a wavelength of between 400 nm and 1400 nm, preferably such that, it substantially does not alter the optical characteristics of the radiation and/or that it has a size and shape sufficiently great for a ray to concentrate on a defined focal point depending on the product and the desired effect (
Preferably, the transparent wall 21 is secured to or an integral part of the capsule 17 such that it is airtight to the product, thus giving this wall a double function. The light source 9 will then be in a zone isolated from the product contained in the supply 11 i.e reservoir 102.
To simplify assembly and disassembly and reduce the production cost of the two assemblies, the housing 15 and the capsule 17 can be snapped together through the lip 150 of the housing elastically retaining the rear top piece 170, via the peripheral groove 103, in the housing where also the transparent wall 21 is engaged. The lip 150 and groove 103 can form first and second connecting means or elements 100, 101. This is advantageous for assembly/disassembly in case only the capsule 17 is utilized. In
Further to the rear, especially illustrated in
With the capsule 17 and housing 15 in assembled condition, the second wall 210 is situated opposite the first wall 21.
Thus, the light source 9 is interposed between the first and the second wall 21, 210.
The two walls 21, 210 can be parallel to each other. The ray emitted by the light source 9 at a predetermined wavelength and which is emitted as far as the application surface 5, travels successively through the first wall 21, the applicator means 7, then the layer of product 3 discharged on the surface 30, each having its own refraction index.
Advantageously, the applicator means 7 defines an optical system. This can be hollow, with air in the interior, or any substance in solid, liquid or gaseous form, so that the focal point can be placed anywhere one wants at the exit of the capsule.
For a good hold and easy handling after application of the product, it is advised that the housing 15 comprises or forms a push handle or casing 151 for moving the movable element. Advantageously, this push handle extends in a direction, here 131, towards the movable element/applicator means 7.
In the housing 15, in the push handle or casing 151 are disposed one or several electrical feed batteries 27 of the light source 9 or a connector to a mains.
Incidentally, for safety of use and long lasting functioning, it is recommended that the movable element 7 be mounted to or engaging a first element 29 of the device 1 which, in turn, is movably mounted for translation following an axis relative to a second element 31 of the device. The above-mentioned axis can be the axis 13 that passes through the source 9 and the movable element 7.
It is thus ensured that the starting means 47, started here, apart from the distribution zone 30, by the intermediary of the movable element 7, allow the start of the emission of the ray by the light source, while at the same time the product is applied through this distribution zone, such that the flow of light then passes through the applied product.
The fact is that the first element 29, bearing the movable element 7, is favorably mounted for translation between:
It is preferred that a biased element 33 is provided between the first and second element 29, 31, to return them in a natural way to the first position, as is illustrated.
The first and second element 29, 31 are electrically conducive to form the interrupter 35 which is opened when the device 1 is in rest (the circuit comprising the light source 9 does not emit any light) and closed if a pressure according to the axis 13 is applied thereon (typically through a contact with the application surface 5). The light can be emitted in the movable element 7 with a slight delay controlled by an electronic decade of 39 (circuit delay
What is thus prevented is that the light source emits a strong light to the eyes of the user.
Alternatively the first and second coupling means 100, 101 of the capsule 17 and housing 15 are designed such that once the capsule 17 is properly coupled to the housing 15 the elements 29, 31 are brought into the conductive position, such as e.g. shown in
Preferably, a lid 37, advantageously opaque, and therefor in turn an anti-ray protection, covers the product supply 11 and is removably secured to the body of the device, preferably to the capsule 17. Mounted on the capsule 17, the lid 37 may or may not bear on the movable element 7 that it covers here. Preferably, it is robustly secured so as to prevent (or at least limit) the passage of air towards the internal volume 38 which it isolates, beneath it. Before the first opening of the lid 37, the air pressure in volume 38 can be lower relative to the exterior 380, or filled with an antioxidant substance aiming to keep the product 3 from oxidizing or limit oxidation.
Connecting it to a one-dose capsule 17 is particularly appropriate.
To adapt the device in particular to various types of application surfaces, for instance skin, it is provided that the light source 9 can generate different wavelengths, alternatively or simultaneously during a continuous contact between the movable element 7 and the surface 5.
During such a phase of, at the same time, discharge of the product 3 on this surface and illumination thereof by the light emitted by the light source 9, the generated light beam can be modulated in intensity or sequence during contact.
As already indicated, the reservoir or supply 11 can extend between the movable element 7 and the light source 9. This would then imply that the refraction index of the product 3 should be taken into account. The product 3 to be spread then forms an integral part of the optical system, its refraction index being taken into account in the optical sum.
However, this is not advantageous if the quantity of the stored product 3 in the device, especially the capsule is reduced, the more so as one risks less uniform (or non-uniform) distribution of the product 3. Furthermore, restricting the amount of product 3 in the radial periphery of the supply 11, transversely to the axis 13, could allow for omission of the rear wall 21.
Advantageously, the movable element 7 has such dimensions that, for optimal application on the skin, it can travel on all parts of the face, in particular also around the eyes. In a preferred embodiment, through rotation generated by friction on the dermis, the movable element 7 applies the product a priori obtained by capillarity from the reservoir 11.
In
Additionally, as is shown in particular in
More specifically, the capsule encloses a cavity 53 which:
To improve the engagement of the side 55 which is annular here, under the end 511a, 511b curved towards the interior of the brackets 51a, 51b, these latter provide biased inclinations with complementary inclinations at the inside periphery of the side (see
In
If, now, in
With regard to the functioning of the starting means 47, if this 57 is in “go” position, it is provided, with the capsule 17 is secured to the housing, this capsule has once more the capacity to move relative to the housing 15, through a displacement (translation) according to the axis 13, for:
Thereto, a mechanical action can be chosen, on an internal interrupter 63, of a foot 61 connected to a ring 65 which is held in the opening 64 of the housing through which pass the brackets 51a, 51b, in the direction of the capsule.
Under the effect of the displacement of the capsule 17, according to the axis 13, produced by the pressure of the movable element 7, the ring 65 comes to press on the internal interrupter 63, via the projecting foot 61.
As can be seen in
To secure the whole, the housing is furthermore provided with biasing means 67, such as springs, which return the capsule in a natural way to the first position, the interrupter open (
Thus, the capsule 17 can move along the axis 13 relative to the housing.
Here, the guiding and one of the axial stop means are provided through lateral brackets 51a 51b which are located parallel to the axis 13.
Engaged in a groove formed perpendicularly to the axis 13, between the annular side 55 and an interior shoulder 56, the lateral brackets move there over a short axial distance. Preferably, also an annular exterior stop means 58 for the housing/capsule is provided.
With respect to the aspect “impact” on the surface 5 of a living body of the distribution of the product 3, together with the transmission of light towards this surface, it should be noted that the object is to achieve photo bio-modulation. What is involved here is stimulation through a row of photons (along the emitted wavelengths). For the skin it is recommended that it penetrates as far as the level of the dermis, or the hypodermis, the cells of the dermic matrix and in particular fibroblasts responsible for the production of collagen and blood vessels (collagen being the principal component of the skin, in particular responsible for its firmness and tonicity.) The stimulation of the blood circulation provides for an optimal feed of oxygen and nutriments to the cells for an improved functioning thereof.
Preferably, the radiation of the source 9 towards this surface 5 comprises infrared rays, a source of warmth.
As to active substances, in particular the following are provided:
ACS III, with molecular formula C37H69NO5,
INIC: Dipalmitol Hydroxyproline
Collagen synthesis enhancer Type III
An active ingredient for (human) skin care, which selectively enhances the synthesis of the isotope III of collagen
A “transporter” liposome containing dipalmitate hydroxyproline covered by hydroxyl proline which acts as a modulator of the phenotypical expression of the fibroblast.
Collatein
An induction of HSP 47 accelerates the extracellular transport of the pro-collagen III and the folding of the alpha chains of the collagen during the synthesis of collagen and its externalization before the extracellular fibrillogenesis.
HSP 47 which are chaperone proteins specific for the synthesis of collagen.
In the context of a therapeutic treatment or a cosmetic indication of product 3, together with the emission of the precited rays, it is clear from what precedes that preferably, conditions for use are as follows
It is clear that although the distribution (therefore the spread) of the product on the surface 5 is performed by the movable element 7, if, as is preferred, such an element is present also. The application of the product on the surface can be performed in another way, for instance by an associated distributor, separate from the device 1.
Thus, whatever the embodiment, a product containing an active component or forming a cosmetic product is distributed on a surface 5 of a living body, where it is activated, preferably simultaneously with its application, by the transmission to the cells situated on or in this surface of at least one wavelength in the form of a ray of energy.
In
When in such capsule 17 the piston 109 is moved towards the opening 108, product will be forced through the opening 108 and against the ball 7, in a volume equal to about the frontal surface area of the piston times the displacement along the axis 13, and thus well defined and controllable. If the ball 7 is pressed against the opening 108, the opening 108 may even be better sealed for keeping the product 3 inside the reservoir, for example prior to use of the capsule, whereas the ball can be pushed off the opening 108 by the product when the piston is pushed towards the opening 108. The ball 7 can for example be pressed against the opening 108 prior to use by a cap 37.
In embodiments the ball 7 can be held in the housing 110 without seals closing a space between part of the ball surface and the housing 110. In embodiments the housing 110 can comprise a substantially bowl shaped holding part 110A, having an upper rim 19 spaced apart over a small gap 115 from the ball surface, as shown in
In the general embodiment of
As can be seen in
As can be seen in
Again upon placing the capsule 17 a switch can be operated for empowering the device, especially the light source 9 and/or the motor 123.
The general concept of a device 1 of
In
In the embodiment of
By driving the motor 123 the piston is moved forward, dispensing the product 3 from the reservoir 102.
In
As can be seen in
In an inward facing side of the wall of the housing 104A a groove 143 is provided, such that if the guide unit 133 is moved outward the balls 39 can move outward into the groove 143, releasing the capsule 17 from the guide element 133. Thus the capsule can be removed again.
In
In
In
In this embodiment, as in the previous embodiments, the lights 9, 9A can be positioned directly near an end of the cartridge 17, or can be positioned further into the housing 15, wherein one or more light guides 113 can be provided for transferring the light from the light source 9, 9A to the cartridge 17.
A cartridge of the present disclosure could be provided with one or more light guides 113 for transferring light from a light source 9, 9A and/or light guides 113 in the housing to a specific area of the cartridge 17 for exiting the light to the skin and/or to the applicator element 7.
In preferred embodiments at least part of the light emitted is passed through at least part of the cartridge 17. This can have the advantage that the cartridge can be used for influencing the light emitted, for example in direction, scattering, color, frequency, intensity and power and the like. This can for example provide for the possibility of using the same light source 9, especially the same LED's 9A for different products to be distributed, wherein the light frequencies and/or intensities of the light and/or the position(s) in which the light contacts the skin can be influenced, depending on the product to be dispensed and the interaction desired. The cartridge can in effect be used as a filter for the light.
Since in preferred embodiments of the present disclosure the applicator element will be substantially impervious for the product 3 and will not absorb said product, it is easily ensured that the limited quantity of product dispensed is indeed all distributed accurately over the skin. Since the drive means accurately dispense the product in said limited quantity this provides for a highly accurate system, with very little to no loss of active product 3. Since in the preferred embodiments of the present disclosure the applicator element 7 during application of the product onto the skin will substantially not deform, it will compress the skin such that it will provide for a contact zone having the skin elastically deform around part of said surface, and can provide for a more preferred massaging effect of the skin than when using a pliable element such as a sponge.
In preferred embodiments of the present disclosure preferably the only contact between the device and the skin onto which product is to be dispensed is provided for by the applicator element 7, which is part of a disposable cartridge 17. For example the light source(s) 9, 9A is/are shielded from such contact by at least part of the cartridge. Thus hygiene is improved and the device does not have to be cleaned as often as for example some of the prior art devices.
In the embodiments of the present disclosure preferably the cartridge can be released from the device without a user having to touch the cartridge, which again further improves hygiene. In the embodiments of the present disclosure preferably a mechanical drive is used for reducing the volume of the reservoir 102 and dispensing the product 3. This may improve accuracy of the movements and volume reduction over other drive means, such as magnetic, whereas a mechanical drive is economic and reliable and may prevent electro magnetic fields undesirable for a user.
A device 1 according to the disclosure can comprise a control unit 146, preferably connected to the motor 123, the light source 9 and/or a switch operated by placing the capsule 17 as discussed. The control unit can at least control the drive formed by or including the motor 123 for reducing the volume of the reservoir 102 to substantially zero milliliter, preferably in a single dispensing cycle of less then 15 minutes, especially of less than 5 minutes. The control can be set to have the drive reduce the volume of the reservoir 102 in one continuous step or intermittently, including a series of dispensing steps of seconds each. The control unit can for example be programmed to operate the motor 123 such that the piston 109 is driven forward into the reservoir for dispensing the product. The motor 123 can for example be driven such that the piston is driven forward intermittently, in steps, such that the product is dispensed in a number of quantities, for example equal portions, in a number of steps each having a predetermined duration. For example the control can be set to dispense 1/nth of the volume of product 3 from the reservoir every X seconds, such that in n steps of X seconds all of the product is dispensed, whereas during each period the ball 7 can be rolled over the surface 5 for applying the product over a different portion of said surface. For example n could be between 1 and 50, for example between 4 and 20, such as for example between 8 and 15. In an test example n was chosen to be 12, whereas the duration X of each period was chosen to be 15 seconds. Thus all of the product 3 was dispensed in twelve periods of 15 seconds each. However, the duration of the period and/or the number of steps can be chosen as desired. In an embodiment the control unit 145 can be provided with the possibility to choose between different dispensing regimes or to set the number of steps and/or the duration thereof by a user.
A single dispensing cycle should be understood as a relatively short period in which a user dispensed the volume of product onto a relevant portion of his or her skin for a single treatment of said portion of the skin. For example for each such portion a different cartridge can be used or for the same portion of the skin for subsequent treatments, for example daily treatments, individual cartridges can be used.
The invention is by no means limited to the specific embodiments disclosed and described herein. Many variations are possible with in the inventive concept. For example the light source 9 can be provided at least partly in the cartridge 17, such that a specific light source can be provided for each cartridge, for example depending on the product to be dispensed. The cartridge can have a membrane as a movable wall part, in stead of a piston. Multiple openings could be provided for allowing product to be forced onto the applicator element. A cartridge could be connected to the housing 15 differently, for example such that it can be slid into the housing from a side, i.e. in a direction perpendicular to the longitudinal axis of the housing. In stead of a motor other means can be provided for reducing the volume of the reservoir, for example compressed gas, manually operated forcing means, a spring or the like.
These and similar amendments should be considered having been disclosed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/063462 | 6/16/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62012568 | Jun 2014 | US | |
62012568 | Jun 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14310083 | Jun 2014 | US |
Child | 15317443 | US |