Applying a particle beam to a patient

Abstract
An apparatus includes a yoke having a first end and a second end. The yoke is configured to hold a device that includes an aperture and a range compensation structure. A catch arm is pivotally secured to the first end of the yoke. The catch arm includes a locking feature. The locking feature and the second end of the yoke interface, respectively, to a first retention feature and a second retention feature defined by the aperture and the range compensation structure. The locking feature is configured to interface to the first retention feature and the second end of the yoke is configured to interface to the second retention feature.
Description
BACKGROUND

This description relates to applying a particle beam to a patient.


For therapy on a tumor, for example, a proton beam should be applied to all of the tumor and to none of the surrounding normal tissue, to the extent possible. An applicator can be placed across the therapy beam near the patient to help to control which tissue the proton beam reaches.


SUMMARY

Described herein is an apparatus comprising a yoke and a catch arm. The yoke comprises a first end and a second end, and is configured to hold a device comprising an aperture and a range compensation structure. The catch arm is pivotally secured to the first end of the yoke. The catch arm comprises a locking feature. The locking feature and the second end of the yoke interface, respectively, to a first retention feature and a second retention feature defined by the aperture and the range compensation structure. The locking feature is configured to interface to the first retention feature and the second end of the yoke is configured to interface to the second retention feature. The apparatus may comprise one or more of the following features, either alone or in combination.


The yoke may define a groove configured to receive a rim contained on the device. The second end of the yoke may comprise a pivot feature comprising a rounded protrusion and the first retention feature may comprise a notch on at least one of the aperture and the range compensation structure. The locking feature may comprise a hook and the second retention feature may comprise a notch on at least one of the aperture and the range compensation structure.


The apparatus may comprise a catch arm locking feature defined by the yoke to inhibit rotation of the catch arm. The catch arm locking feature may be for engaging a catch arm lock of the device. The catch arm lock may comprise a latch plate that is positionable to engage the catch arm locking feature. The catch arm locking feature may be configured to spring bias the latch plate.


The apparatus may comprise an indicator switch to detect locked and unlocked positions of the catch arm. At least one spring biased plunger may be on the yoke and may be configured to urge the device against the locking feature.


Also described herein is a method of loading a device onto a device holder. The method comprises positioning a first retention feature defined by the device so as to be received by a pivot feature defined by a yoke of the device holder, moving the device over the pivot feature and into the holder, and securing a second retention feature defined by the device with a locking feature defined by a catch arm pivotally secured to the yoke. The method may also comprise aligning a rim defined by the device with a groove defined by the yoke.


Also described herein is a proton applicator mount that comprises a base, a plurality of rollers associated with the base and configured to support a proton applicator, at least one alignment block associated with the base and configured to receive a corresponding alignment post of a proton applicator, and a locking clamp associated with the base. The locking clamp comprises a clamp bar, a handle attached to the clamp bar, a rotatable shaft carried by the base, and first and second hinges secured to the clamp bar and to the shaft. Each hinge comprises a hinge block defining a cam aperture and a cam path slot, a cam secured to the shaft and rotatably carried in the cam aperture of the hinge block, and a cam path protrusion on the base and configured to be received by the cam path slot. The cam aperture and the cam path slot are for guiding rotational and radial movement of the hinge block about the shaft. The proton applicator mount may also comprise one or more of the following features, either alone or in combination.


The cam may define a limit feature configured to be received by a corresponding cam aperture limit feature defined by the hinge block to limit rotation of the cam. The clamp bar may comprise at least one alignment block configured to receive a corresponding alignment post of the proton applicator.


The proton applicator mount may comprise a dovetail feature on the base and configured to align the proton applicator. The alignment block may define a substantially V-shaped groove. The alignment block may define a substantially conical receptacle. The handle may comprise a latch configured to be received by a latch receiver disposed on the base. Each cam of the first and second hinges may be spring biased.


Also described herein is a transport cart for a proton applicator. The transport cart comprises a cart body, a plurality of rollers disposed on an upper portion of the cart body and configured to support a proton applicator, at least one docking interlock comprising a docking protrusion extending outwardly from the cart body and configured to be received by a docking plate disposed on a docking target, a docking cam pivotally attached to the docking protrusion and configured to engage the docking plate to retain the cart against the docking target, and at least one applicator interlock comprising a locking cam pivotally attached to the upper portion of the cart body and spring biased to a locking position, the locking cam being configured to retain a proton applicator.


Also described herein is a method of loading a proton applicator onto a radiation beam delivery system. The method comprises docking a transport cart carrying the proton applicator against the radiation beam delivery system. At least one docking interlock of the transport cart engages and retains the transport cart against the radiation beam delivery system. The docking interlock comprises a docking protrusion extending outwardly from the cart body and configured to be received by a docking plate disposed on the radiation beam delivery system, and a docking cam pivotally attached to the docking protrusion and configured to engage the docking plate to retain the cart against the radiation beam delivery system. The method also comprises moving the proton applicator over a plurality cart rollers supporting the proton applicator and disposed on the transport cart across onto a plurality mount rollers disposed on a proton applicator mount of the radiation beam delivery system. The method may comprise one or more of the following features, either alone or in combination.


The method may comprise disengaging an applicator interlock disposed on the cart before moving the proton applicator. The applicator interlock may comprise a locking cam pivotally attached to the cart and configured to retain the proton applicator. The method may comprise engaging a locking clamp disposed on a base of the proton applicator mount after receiving the proton applicator. The locking clamp may comprise a clamp bar, a handle attached to the clamp bar, a rotatable shaft carried by the base, and first and second hinges secured to the clamp bar and the shaft. Each hinge may comprise a hinge block defining a cam aperture and a cam path slot, a cam secured to the shaft and rotatably carried in the cam aperture of a corresponding hinge block, and a cam path protrusion disposed on the base and configured to be received by the cam path slot. The cam aperture and the cam path slot are for guiding rotational and radial movement of the hinge block about the shaft.


These and other features and aspects and combinations of them can be expressed as methods, apparatus, systems, and means for performing functions and in other ways. Any of the foregoing features may be combined to form embodiments not specifically described herein.


Other features and advantages will be apparent from the description and the claims.





DESCRIPTION OF THE DRAWINGS


FIGS. 1 through 5 are perspective views of a holder.



FIG. 6 is a perspective view of a patient aperture and range compensator assembly.



FIG. 7 is a top view of a patient aperture.



FIG. 8 is a side view of a patient aperture.



FIG. 9 is a side view of a range compensator.



FIG. 10 is a top view of a range compensator.



FIG. 11 is a perspective view of an applicator and an applicator mount system.



FIG. 12 is a perspective view of an applicator mount system.



FIG. 13 is a bottom perspective view of a proton applicator.



FIGS. 14-15 are side views of a hinge.



FIG. 16 is a side view of a handle latch.



FIGS. 17-19 are perspective views of a transport cart.



FIGS. 20-21 are side views of a transport cart docking interlock.



FIGS. 22-23 are side views of a proton applicator interlock.





DETAILED DESCRIPTION

A proton applicator system (PAS) provides final collimation and range compensation of a proton beam to a clinical target, such as tumor, within a patient. The PAS can also shield other patient tissues from radiation intended for the target.


Referring to FIGS. 1-3, a holder 100 holds a device 200 that is part of a proton applicator system (e.g. a patient aperture and a range compensator) in a loaded position.


A patient aperture may be used to limit the extent of application of a proton beam to patient tissue. A range compensator may be used to provide vertical compensation (e.g., height) relative to the patient tissue for the proton applicator. The holder 100 includes a main yoke piece 110 having first and second ends 111 and 112, respectively, and a pivot feature 122 (e.g., a protrusion) on the stationary yoke 110. The stationary yoke 110 may be arc-shaped or any other shape. The pivot feature 122 may include a rounded protrusion located near the first end 111 of the stationary yoke 110.


The device 200 includes a device body 210 defining first and second retention features 212 and 214, respectively. The first and second retention features 212, 214 may include notches that are defined by the device body 210. The pivot feature 122 may be configured to receive the first retention feature 212 of the device 200. The device 200 is pivoted over the pivot feature 122 into the holder 100. The holder 100 includes a locking catch 130 pivotally attached to the second end 112 of the stationary yoke 110 and a locking feature 134 (e.g., a hook) to receive the second retention feature 214 of the device 200, thereby retaining the device 200 in the holder 100. The locking catch 130 may be spring-biased toward a locking position with a spring 136. The device 200 may be held in the holder 100 axially by an associated rim 220 received by a groove 120 defined by the stationary yoke 110. The shape and size of the retention features 212, 214, the pivot feature 122, and locking feature 134 are scalable with outer dimensions of the device 200.


Referring to FIG. 3, the holder 100 includes an indicator switch 140 to detect a presence of the device 200 and the locked or unlocked positions of the catch 130. Spring-loaded plungers 145 on the holder 100 aid ejection of the device 200 upon release of the locking catch 130. The spring-loaded plungers 145 also keep the device 200 against the pivot feature 122. Locking feature 134 is arranged to reduce movement or tolerance jitter, which in turn makes for repeatable insertion of device 200 into the holder. The holder 100 may remain accurate and repeatable for hundreds of cycles.


Referring to FIGS. 4 and 5, the holder 100 includes a secondary locking mechanism 150. FIG. 4 illustrates holder 100 in the locked position and FIG. 5 illustrates the holder 100 in the unlocked position. In this example, a user activates a secondary release button 152 and slightly rotates the locking catch 130 to release the device 200 from the holder 100. A latch plate 154 connected to the secondary release button 152 and the locking catch 130 is loaded in the locked position with a compression spring 156. The latch plate 154 locks the catch 130 in the loaded position by toggling into a recess 158 defined by the stationary yoke 110. When the secondary release button 152 and latch plate 154 are pulled forward, a secondary release linkage plunger 160 is moved into a detent 155 defined by the latch plate 154, thereby locking the latch plate 154 in a forward position, and allowing rotation of the locking catch 130. The secondary release linkage plunger 160 is biased by a spring 162 toward the detent 155. The device 200 can be safely removed manually.


As the device 200 is inserted into the holder 100 by placing the first retention feature 212 of the device 200 on the pivot feature 122 and rotating the device 200 into the holder 100, the locking catch 130 pivots or rotates into the second retention feature 214 of the device 200 to retain the device 200. As the device 200 rotates into the holder 100, the secondary release linkage plunger 160 is actuated up into the catch 130, allowing the latch plate 154 to lock into the recess 158 defined by the stationary yoke 110. The locked latch plate 154 reduces the chances that the catch 130 will inadvertently rotate outward and release the device 200.


Referring to FIGS. 6-10, multiple holders 100 may be layered or stacked to allow for various device thicknesses and weight ranges. Example of devices that the holder 100 can lock and retain include both a patient aperture 300 and a range compensator 400. The aperture 300 includes an aperture body 310 defining first and second retention features 312 and 314, repetitively. The range compensator 400 includes a range compensator body 410 defining first and second retention features 412 and 414, repetitively. The aperture 300 and the range compensator 400 are each held in lateral and longitudinal directions by the first and second retention features 312, 314, 412, and 414. The first retention features 312 and 412 are configured to engage and be received by the pivot feature 122 disposed on the holder 100. The second retention features 314 and 414 are configured to be received by the locking feature 134 of the catch 130. Both devices 300 and 400 are individually loaded and retained by the same features 122, 134 of the holder 100. The patient aperture 300 and the range compensator 400 both include a retention edge or rim 320 and 420, respectively, configured to be received by the groove 120 defined by the stationary yoke 110 for axial retention.


Referring to FIGS. 11-12, in this example, a proton applicator 500 includes an applicator base 510 and assembly applicator 520, which may be secured to the base 510. One or more holders, such as those described above, may be secured to the assembly applicator 520. In the example shown in FIG. 11, four holders 100 are stacked and secured on the assembly applicator 510. An applicator mount system 600 is used to mount the proton applicator 500 to a C-Inner Gantry (not shown). The applicator mount system 600 includes a base 610, a plurality of rollers 620 carried by the base 610 and exposed at a top surface 612 of the base 610, and an eccentric locking clamp (clamping bar) 630. The locking clamp holds the applicator in place during transport. When the locking clamp 630 is lowered, the applicator 500 may be rolled onto the applicator mount system 600 from an applicator transport cart 700 (see FIG. 18). As the applicator 500 is transferred from the cart 700 to the mount system 600, it is captured by dovetail features 640 on the base 610. The dovetail features 640 allow for course alignment and axial retention of the applicator 500. After the applicator 500 moves to the end of its travel, it comes to rest on stationary tooling ball alignment blocks 650 secured on the base 610.


Referring to FIGS. 12-13, the alignment blocks 650 are configured to interface with the tooling ball posts 550A (e.g., tooling balls) located on the applicator base 510. Two types of tooling ball alignment blocks 650 are mounted on the mount system base 610, a V-groove alignment block 650A defining a V-groove, and a cone alignment block 650B defining a conical receptacle. The V-groove alignment block 650A restrains the applicator 500 axially and the cone alignment block 650B positions and restrains the applicator 500 perpendicular to a load direction and axially. Both alignment blocks 650A, 650B act to restrain or position the applicator 500 in the load direction. The applicator base 510 defines a dovetail groove 540 configured to mate with the dovetail features 640 on the mount system base 610. The applicator base 510 defines roller grooves 512 configured to receive the mount system base rollers 620.


The eccentric locking clamp 630 is located on the opposite end of the mount system base 610 from the alignment blocks 650. The eccentric locking clamp 630 includes a clamping bar 632, a pair of V-groove alignment blocks 650A disposed on the clamping bar 632, a lock handle 634 connected to the clamping bar 632, and eccentric hinges 6000. The lock handle 634 (FIG. 16) includes a secondary release latch 636, which includes a secondary release block 636A secured to the base 610 and configured to retain a secondary release button 636B on the lock handle 634. When actuated, the eccentric locking clamp 630 imparts a clamping force onto the applicator base 510, locking the applicator 500 onto the applicator mount system 600. The eccentric hinging action of the locking clamp 630 has a rotational component that brings the clamp bar 632 into position against spring loaded tooling balls 550B on a side of the applicator base 510. The eccentric hinging action of the locking clamp 630 also has linear component that drives the clamp bar 632 and V-groove alignment blocks 650A forward to lock the applicator 500 into position.



FIG. 14 illustrates the eccentric hinge 6000 in a locked position. FIG. 15 illustrates the eccentric hinge 6000 in an un-locked position. The eccentric hinge 6000 includes a hinge block 6100 secured to the clamp bar 632 and placed over an eccentric cam 6200 secured to a shaft 6210. The hinge block 6100 defines a limitation slot 6110 which receives a cam protrusion 6212. The limitation slot 6110 is positioned to provide an over-center locking action to lock the clamp 630. In some examples, the hinge block 6100 defines a cam path 6112 which retains a dowel pin 6300 secured to the mount system base 610. The cam path 6112 controls the rotational travel limits of the hinge block 6100. The shaft 6210 is common to both eccentric cams 6200. The shape of the cam path 6112 allows for linear movement of the eccentric cam 6200. Rotation of the eccentric cam 6200 produces the linear force component that clamps the proton applicator 500 in place with accuracy and repeatability. Use of the eccentric cam 6200 provides a strong mechanical force advantage over a conventional non-eccentric clamp. The eccentric hinge 6000 includes an extension spring 6400 to control the timing of engagement of the eccentric cam 6200. The spring force is balanced, such that as the clamp bar 632 is rotating into the lock position the actuation of the linear movement of the eccentric cam 6200 is held back.


Referring to FIG. 16, when the hinge block 6100 and clamp bar 632 are at a rotational limit of travel, the linear component of the eccentric cam 6200 engages and locks the proton applicator 500 into position. To disengage the clamp 630, the same actions may be performed in reverse. Both forward and reverse movements may be controlled by the rotation of the lock handle 634. The lock handle 634 is locked into position with the aid of the secondary release latch 636 which is compression spring loaded. Engagement of the secondary release latch 636 into a secondary retaining block 637 latches the lock handle 634.


Referring to FIGS. 17-19, the applicator transport cart 700 may be used to transport and change proton applicators 500 onto and off of the C-Inner Gantry (CIG). The applicator transport cart 700 includes a support body 710 having a top portion 702 on which the proton applicator 500 rests. In one example, two different sized proton applicators 500 may be provided with a radiation beam delivery system: a large field proton applicator 500 (25 cm treatment field diameter) and a small field proton applicator 500 (14 cm treatment field diameter). Both proton applicators 500 are of significant weight and size and must be transported and changed safely by a radiation therapist. Changing of the proton applicators 500 should by completed in a timely manner in order to increase the number of patient treatments per day. Each proton applicator 500 may have a transport cart 700 that docks into a side of the CIG.


Referring to FIGS. 20-21, a docking interlock 720 prevents the transport cart 700 from backing out of the C-Inner Gantry while docked. The docking interlock 720 aligns the transport cart 700 both laterally and vertically with tapered protruding tongues 722 that dock into an associated slotted docking plate 822. The docking plate 822 resides on the CIG. The docking interlock 720 locks into the CIG with spring loaded ramped cams 724 that catch into the opposite side of the docking plate 822 with a retention surface 726. The transport cart 700 includes a plurality of rollers 730 disposed on the top portion 702 of the transport cart 700. The rollers 730 are positioned to support the proton applicator 500.


Referring to FIGS. 22-23, the transport cart 700 includes an applicator interlock 740 which retains the proton applicator 500 on the transport cart 700. In some implementations, the applicator interlock 740 includes at least one ramped spring loaded locking cam 742 disposed on the top portion 702 of the transport cart 700. An applicator release handle 744 on the transport cart 700 is configured to engage and disengage the cam(s) 740. As the proton applicator 500 is pushed onto the cart 700, the proton applicator 500 moves over the cam 742, pushing it down into the top portion 702 until the proton applicator 500 reaches an end of travel. At an end of travel, the ramped cam 742 is exposed and free to spring up to a spring biased position, holding the proton applicator 500 in place with a retention surface 746 on the ramped cam 742. The applicator interlock 740 is similar to the docking interlock 720 by utilizing similar types of ramped cam devices to lock a device into position.


To transfer the applicator 500 off the transport cart 700 and onto the applicator mount system 600, the eccentric locking clamp 630 of the applicator mount system 600 is disengaged to the un-locked position. The applicator release handle 744 on the transport cart 700 is disengaged and the therapist pushes the proton applicator 500 off the transport cart 700 and onto the applicator mount system 600. The proton applicator 500 travels on rollers 730 from the transport cart 700 to rollers 620 of the applicator mount system 600. The locking clamp 630 of the applicator mount system 600 is engaged into its locked position. The docking interlock 720 is disengaged (e.g. by an associated handle) and the transport cart 700 is released from the CIG and moved away to a storage area. Removing the proton applicator 500 involves similar steps as described above. However, when the proton applicator 500 is moved from the CIG to the transport cart 700 the user does not need to actuate the applicator release handle 742 on the transport cart 700.


The claims are not limited to the implementations described above. Elements of different implementations may be combined to form other implementations not specifically described herein.


Other implementations are within the scope of the following claims.

Claims
  • 1. An apparatus for holding a device comprising an aperture and a range compensation structure, the aperture and the range compensation structure defining a first retention feature and a second retention feature, the apparatus comprising: a yoke comprising a first end and a second end, the yoke being configured to hold the device; anda catch arm pivotally secured to the first end of the yoke, the catch arm comprising a locking feature, the locking feature and the second end of the yoke interfacing, respectively, to the first retention feature and the second retention feature, the locking feature being configured to interface to the first retention feature and the second end of the yoke being configured to interface to the second retention feature.
  • 2. The apparatus of claim 1, wherein the yoke defines a groove configured to receive a rim contained on the device.
  • 3. The apparatus of claim 1, wherein the second end of the yoke comprises a pivot feature comprising a rounded protrusion and the first retention feature comprises a notch on at least one of the aperture and the range compensation structure.
  • 4. The apparatus of claim 1, wherein the locking feature comprises a hook and the second retention feature comprises a notch on at least one of the aperture and the range compensation structure.
  • 5. The apparatus of claim 1, further comprising a catch arm locking feature defined by the yoke to inhibit rotation of the catch arm, the catch arm locking feature for engaging a catch arm lock of the device, the catch arm lock comprising a latch plate that is positionable to engage the catch arm locking feature.
  • 6. The apparatus of claim 5, wherein the catch arm locking feature is configured to spring bias the latch plate.
  • 7. The apparatus of claim 1, further comprising an indicator switch to detect locked and unlocked positions of the catch arm.
  • 8. The apparatus of claim 1, further comprising at least one spring biased plunger on the yoke and configured to urge the device against the locking feature.
  • 9. A method of loading a device onto a device holder, the method comprising: positioning a first retention feature defined by the device so as to be received by a pivot feature defined by a yoke of the device holder;moving the device over the pivot feature and into the device holder; andsecuring a second retention feature defined by the device with a locking feature defined by a catch arm pivotally secured to the yoke.
  • 10. The method of claim 9, further comprising aligning a rim defined by the device with a groove defined by the yoke.
  • 11. A proton applicator mount comprising: a base;a plurality of rollers associated with the base and configured to support a proton applicator;at least one alignment block associated with the base and configured to receive a corresponding alignment post of a proton applicator; anda locking clamp associated with the base, the locking clamp comprising: a clamp bar;a handle attached to the clamp bar;a rotatable shaft carried by the base; andfirst and second hinges secured to the clamp bar and to the rotatable shaft, each hinge comprising: a hinge block defining a cam aperture and a cam path slot;a cam secured to the rotatable shaft and rotatably carried in the cam aperture of the hinge block; anda cam path protrusion on the base and configured to be received by the cam path slot, the cam aperture and the cam path slot guiding rotational and radial movement of the hinge block about the rotatable shaft.
  • 12. The proton applicator mount of claim 11, wherein the cam defines a limit feature configured to be received by a corresponding cam aperture limit feature defined by the hinge block to limit rotation of the cam.
  • 13. The proton applicator mount of claim 11, wherein the clamp bar comprises at least one alignment block configured to receive a corresponding alignment post of the proton applicator.
  • 14. The proton applicator mount of claim 11, further comprising a dovetail feature on the base and configured to align the proton applicator.
  • 15. The proton applicator mount of claim 11, wherein the alignment block defines a substantially V-shaped groove.
  • 16. The proton applicator mount of claim 11, wherein the alignment block defines a substantially conical receptacle.
  • 17. The proton applicator mount of claim 11, wherein the handle comprises a latch configured to be received by a latch receiver disposed on the base.
  • 18. The proton applicator mount of claim 11, wherein each cam of the first and second hinges is spring biased.
  • 19. A transport cart for a proton applicator, comprising: a cart body;a plurality of rollers disposed on an upper portion of the cart body and configured to support a proton applicator;at least one docking interlock comprising a docking protrusion extending outwardly from the cart body and configured to be received by a docking plate disposed on a docking target;a docking cam pivotally attached to the docking protrusion and configured to engage the docking plate to retain the transport cart against the docking target; andat least one applicator interlock comprising a locking cam pivotally attached to the upper portion of the cart body and spring biased to a locking position, the locking cam being configured to retain a proton applicator.
  • 20. A method of loading a proton applicator onto a radiation beam delivery system, the method comprising: docking a transport cart carrying the proton applicator against the radiation beam delivery system, at least one docking interlock of the transport cart engaging and retaining the transport cart against the radiation beam delivery system, the at least one docking interlock comprising: a docking protrusion extending outwardly from a cart body of the transport cart and configured to be received by a docking plate disposed on the radiation beam delivery system; anda docking cam pivotally attached to the docking protrusion and configured to engage the docking plate to retain the transport cart against the radiation beam delivery system; andmoving the proton applicator over a plurality cart rollers supporting the proton applicator and disposed on the transport cart onto a plurality of mount rollers disposed on a proton applicator mount of the radiation beam delivery system.
  • 21. The method of claim 20, further comprising disengaging an applicator interlock disposed on the transport cart before moving the proton applicator, the applicator interlock comprising a locking cam pivotally attached to the transport cart and configured to retain the proton applicator.
  • 22. The method of claim 21, further comprising engaging a locking clamp disposed on a base of the proton applicator mount after receiving the proton applicator, the locking clamp comprising: a clamp bar;a handle attached to the clamp bar;a rotatable shaft carried by the base; andfirst and second hinges secured to the clamp bar and the rotatable shaft, each hinge comprising: a hinge block defining a cam aperture and a cam path slot;a cam secured to the rotatable shaft and rotatably carried in the cam aperture of a corresponding hinge block; anda cam path protrusion disposed on the base and configured to be received by the cam path slot, the cam aperture and the cam path slot guiding rotational and radial movement of the hinge block about the rotatable shaft.
US Referenced Citations (220)
Number Name Date Kind
2280606 Van et al. Apr 1942 A
2492324 Salisbury Dec 1949 A
2615129 McMillan Oct 1952 A
2659000 Salisbury Nov 1953 A
3175131 Burleigh et al. Mar 1965 A
3432721 Naydan et al. Mar 1969 A
3582650 Avery Jun 1971 A
3679899 Dimeff Jul 1972 A
3689847 Verster Sep 1972 A
3757118 Hodge et al. Sep 1973 A
3868522 Bigham et al. Feb 1975 A
3886367 Castle, Jr. May 1975 A
3925676 Bigham et al. Dec 1975 A
3955089 McIntyre et al. May 1976 A
3958327 Marancik et al. May 1976 A
3992625 Schmidt et al. Nov 1976 A
4038622 Purcell Jul 1977 A
4047068 Ress et al. Sep 1977 A
4112306 Nunan Sep 1978 A
4129784 Tschunt et al. Dec 1978 A
4139777 Rautenbach Feb 1979 A
4197510 Szu Apr 1980 A
4220866 Symmons et al. Sep 1980 A
4230129 LeVeen Oct 1980 A
4256966 Heinz Mar 1981 A
4336505 Meyer Jun 1982 A
4345210 Tran Aug 1982 A
4353033 Karasawa Oct 1982 A
4425506 Brown et al. Jan 1984 A
4490616 Cipollina et al. Dec 1984 A
4507614 Prono et al. Mar 1985 A
4507616 Blosser et al. Mar 1985 A
4589126 Augustsson et al. May 1986 A
4598208 Brunelli et al. Jul 1986 A
4628523 Heflin Dec 1986 A
4633125 Blosser et al. Dec 1986 A
4641057 Blosser et al. Feb 1987 A
4641104 Blosser et al. Feb 1987 A
4651007 Perusek et al. Mar 1987 A
4680565 Jahnke Jul 1987 A
4705955 Mileikowsky Nov 1987 A
4710722 Jahnke Dec 1987 A
4726046 Nunan Feb 1988 A
4734653 Jahnke Mar 1988 A
4736173 Blosser et al. Apr 1988 A
4737727 Yamada et al. Apr 1988 A
4739173 Blosser et al. Apr 1988 A
4745367 Dustmann et al. May 1988 A
4754147 Maughan et al. Jun 1988 A
4769623 Marsing et al. Sep 1988 A
4771208 Jongen et al. Sep 1988 A
4783634 Yamamoto et al. Nov 1988 A
4808941 Marsing Feb 1989 A
4812658 Koehler Mar 1989 A
4843333 Marsing et al. Jun 1989 A
4865284 Gosis et al. Sep 1989 A
4868843 Nunan Sep 1989 A
4868844 Nunan Sep 1989 A
4870287 Cole et al. Sep 1989 A
4880985 Jones Nov 1989 A
4902993 Krevet Feb 1990 A
4904949 Wilson Feb 1990 A
4905267 Miller et al. Feb 1990 A
4917344 Prechter et al. Apr 1990 A
4943781 Wilson et al. Jul 1990 A
4987309 Klasen et al. Jan 1991 A
4996496 Kitamura et al. Feb 1991 A
5017789 Young et al. May 1991 A
5017882 Finlan May 1991 A
5036290 Sonobe et al. Jul 1991 A
5039057 Prechter et al. Aug 1991 A
5039867 Nishihara et al. Aug 1991 A
5072123 Johnsen Dec 1991 A
5111173 Matsuda et al. May 1992 A
5117194 Nakanishi et al. May 1992 A
5117212 Yamamoto et al. May 1992 A
5117829 Miller et al. Jun 1992 A
5148032 Hernandez Sep 1992 A
5166531 Huntzinger Nov 1992 A
5189687 Bova et al. Feb 1993 A
5240218 Dye Aug 1993 A
5260581 Lesyna et al. Nov 1993 A
5278533 Kawaguchi Jan 1994 A
5317164 Kurokawa May 1994 A
5336891 Crewe Aug 1994 A
5341104 Anton et al. Aug 1994 A
5349198 Takanaka Sep 1994 A
5365742 Boffito et al. Nov 1994 A
5374913 Pissantezky et al. Dec 1994 A
5382914 Hamm et al. Jan 1995 A
5405235 Lebre et al. Apr 1995 A
5440133 Moyers et al. Aug 1995 A
5461773 Kawaguchi Oct 1995 A
5463291 Carroll et al. Oct 1995 A
5511549 Legg et al. Apr 1996 A
5521469 Laisne May 1996 A
5561697 Takafuji et al. Oct 1996 A
5585642 Britton et al. Dec 1996 A
5668371 Deasy et al. Sep 1997 A
5726448 Smith et al. Mar 1998 A
5751781 Brown et al. May 1998 A
5778047 Mansfield et al. Jul 1998 A
5811944 Sampayan et al. Sep 1998 A
5818058 Nakanishi et al. Oct 1998 A
5821705 Caporaso et al. Oct 1998 A
5825845 Blair et al. Oct 1998 A
5841237 Alton Nov 1998 A
5846043 Spath Dec 1998 A
5851182 Sahadevan Dec 1998 A
5866912 Slater et al. Feb 1999 A
5874811 Finlan et al. Feb 1999 A
5895926 Britton et al. Apr 1999 A
5920601 Nigg et al. Jul 1999 A
5929458 Nemezawa et al. Jul 1999 A
5993373 Nonaka et al. Nov 1999 A
6034377 Pu Mar 2000 A
6057655 Jongen May 2000 A
6061426 Linders et al. May 2000 A
6094760 Nonaka et al. Aug 2000 A
6265837 Akiyama et al. Jul 2001 B1
6268610 Pu Jul 2001 B1
6278239 Caporaso et al. Aug 2001 B1
6279579 Riaziat et al. Aug 2001 B1
6316776 Hiramoto et al. Nov 2001 B1
6407505 Bertsche Jun 2002 B1
6433336 Jongen et al. Aug 2002 B1
6433349 Akiyama et al. Aug 2002 B2
6441569 Janzow Aug 2002 B1
6443349 Van Der Burg Sep 2002 B1
6476403 Dolinskii et al. Nov 2002 B1
6492922 New Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6519316 Collins Feb 2003 B1
6621889 Mostafavi Sep 2003 B1
6646383 Bertsche et al. Nov 2003 B2
6683318 Haberer et al. Jan 2004 B1
6683426 Kleeven Jan 2004 B1
6693283 Eickhoff et al. Feb 2004 B2
6710362 Kraft et al. Mar 2004 B2
6717162 Jongen Apr 2004 B1
6769806 Moyers Aug 2004 B2
6774383 Norimine et al. Aug 2004 B2
6777700 Yanagisawa et al. Aug 2004 B2
6800866 Amemiya et al. Oct 2004 B2
6803591 Yamashita et al. Oct 2004 B2
6814694 Pedroni Nov 2004 B1
6853703 Svatos et al. Feb 2005 B2
6865254 Nafstadius Mar 2005 B2
6891177 Kraft et al. May 2005 B1
6897451 Kaercher et al. May 2005 B2
6914396 Symons et al. Jul 2005 B1
6953943 Yanagisawa et al. Oct 2005 B2
6969194 Nafstadius Nov 2005 B1
6984835 Harada Jan 2006 B2
6993112 Hesse Jan 2006 B2
7008105 Amann et al. Mar 2006 B2
7014361 Ein-Gal Mar 2006 B1
7026636 Yanagisawa et al. Apr 2006 B2
7173385 Caporaso et al. Feb 2007 B2
7208748 Sliski et al. Apr 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7348579 Pedroni Mar 2008 B2
7402963 Sliski Jul 2008 B2
7466085 Nutt Dec 2008 B2
7476883 Nutt Jan 2009 B2
7541905 Antaya Jun 2009 B2
7656258 Antaya et al. Feb 2010 B1
7696847 Antaya Apr 2010 B2
20030048080 Amemiya et al. Mar 2003 A1
20030152197 Moyers Aug 2003 A1
20030163015 Yanagisawa et al. Aug 2003 A1
20030183779 Norimine et al. Oct 2003 A1
20030234369 Glukhoy Dec 2003 A1
20040000650 Yanagisawa et al. Jan 2004 A1
20040056212 Yanagisawa et al. Mar 2004 A1
20040061077 Muramatsu et al. Apr 2004 A1
20040061078 Muramatsu et al. Apr 2004 A1
20040085023 Chistyakov May 2004 A1
20040098445 Baumann et al. May 2004 A1
20040111134 Muramatsu et al. Jun 2004 A1
20040118081 Reimoser et al. Jun 2004 A1
20040149934 Yanagisawa et al. Aug 2004 A1
20040173763 Moriyama et al. Sep 2004 A1
20040174958 Moriyama et al. Sep 2004 A1
20040183033 Moriyama et al. Sep 2004 A1
20040183035 Yanagisawa et al. Sep 2004 A1
20040200982 Moriyama et al. Oct 2004 A1
20040200983 Fujimaki et al. Oct 2004 A1
20040213381 Harada Oct 2004 A1
20040227104 Matsuda et al. Nov 2004 A1
20040232356 Norimine et al. Nov 2004 A1
20040240626 Moyers Dec 2004 A1
20050058245 Ein-Gal Mar 2005 A1
20050089141 Brown Apr 2005 A1
20050161618 Pedroni Jul 2005 A1
20050184686 Caporaso et al. Aug 2005 A1
20050228255 Saracen et al. Oct 2005 A1
20050234327 Saracen et al. Oct 2005 A1
20050247890 Norimine et al. Nov 2005 A1
20060067468 Rietzel Mar 2006 A1
20060126792 Li Jun 2006 A1
20060284562 Hruby et al. Dec 2006 A1
20070001128 Sliski et al. Jan 2007 A1
20070013273 Albert et al. Jan 2007 A1
20070014654 Haverfield et al. Jan 2007 A1
20070023699 Yamashita et al. Feb 2007 A1
20070029510 Hermann et al. Feb 2007 A1
20070051904 Kaiser et al. Mar 2007 A1
20070061937 Curle Mar 2007 A1
20070092812 Caporaso et al. Apr 2007 A1
20070145916 Caporaso et al. Jun 2007 A1
20070171015 Antaya Jul 2007 A1
20070181519 Khoshnevis Aug 2007 A1
20070284548 Kaiser et al. Dec 2007 A1
20080093567 Gall Apr 2008 A1
20080218102 Sliski Sep 2008 A1
20090096179 Stark et al. Apr 2009 A1
20090140671 O'Neal, III et al. Jun 2009 A1
20090140672 Gall et al. Jun 2009 A1
20090200483 Gall et al. Aug 2009 A1
Foreign Referenced Citations (104)
Number Date Country
2629333 May 2007 CA
27 53 397 Jun 1978 DE
31 48 100 Jun 1983 DE
35 30 446 Aug 1984 DE
41 01 094 May 1992 DE
4411171 Oct 1995 DE
0194728 Sep 1986 EP
0 277 521 Aug 1988 EP
0208163 Jan 1989 EP
0 222 786 Jul 1990 EP
0 221 987 Jan 1991 EP
0499253 Aug 1992 EP
0 306 966 Apr 1995 EP
0 388 123 May 1995 EP
0 465 597 May 1997 EP
0 864 337 Sep 1998 EP
0 776 595 Dec 1998 EP
1 069 809 Jan 2001 EP
1 153 398 Apr 2001 EP
1 294 445 Mar 2003 EP
1 348 465 Oct 2003 EP
1 358 908 Nov 2003 EP
1 371 390 Dec 2003 EP
1 402 923 Mar 2004 EP
0 911 064 Jun 2004 EP
1430932 Jun 2004 EP
1 454 653 Sep 2004 EP
1 454 654 Sep 2004 EP
1 454 655 Sep 2004 EP
1 454 656 Sep 2004 EP
1 454 657 Sep 2004 EP
1 477 206 Nov 2004 EP
1 605 742 Dec 2005 EP
1 738 798 Jan 2007 EP
1826778 Aug 2007 EP
1949404 Jul 2008 EP
2219732 Aug 2010 EP
2 560 421 Aug 1985 FR
2911843 Aug 2008 FR
957342 May 1964 GB
2015821 Sep 1979 GB
2 361 523 Oct 2001 GB
43-23267 Oct 1968 JP
61-80800 Apr 1986 JP
62-150804 Jul 1987 JP
62-186500 Aug 1987 JP
63-149344 Jun 1988 JP
63-218200 Sep 1988 JP
63-226899 Sep 1988 JP
1-276797 Nov 1989 JP
4-94198 Mar 1992 JP
4-128717 Apr 1992 JP
4-129768 Apr 1992 JP
4-273409 Sep 1992 JP
4-337300 Nov 1992 JP
05-341352 Dec 1993 JP
06233831 Aug 1994 JP
06233831 Aug 1994 JP
06-036893 Oct 1994 JP
2007-260939 Oct 1995 JP
07260939 Oct 1995 JP
08-173890 Jul 1996 JP
08-264298 Oct 1996 JP
09-162585 Jun 1997 JP
10-071213 Mar 1998 JP
11-47287 Feb 1999 JP
11-102800 Apr 1999 JP
11-243295 Sep 1999 JP
2000-294399 Oct 2000 JP
2001-6900 Jan 2001 JP
2001-129103 May 2001 JP
2002-164686 Jun 2002 JP
2009-515671 Apr 2009 JP
2011-500152 Jan 2011 JP
SU569635 Aug 1977 RU
300137 Nov 1969 SU
200930160 Jul 2009 TW
200934682 Aug 2009 TW
200939908 Sep 2009 TW
200940120 Oct 2009 TW
WO 8607229 Dec 1986 WO
WO9012413 Oct 1990 WO
WO 9203028 Feb 1992 WO
WO 9302536 Feb 1993 WO
WO 9817342 Apr 1998 WO
WO9939385 May 1999 WO
WO 0040064 Jul 2000 WO
WO 0049624 Aug 2000 WO
WO 0126569 Apr 2001 WO
WO 0207817 Jan 2002 WO
WO 03039212 May 2003 WO
WO 03092812 Nov 2003 WO
WO 2004026401 Apr 2004 WO
WO 2004101070 Nov 2004 WO
WO2007061937 May 2007 WO
WO2007084701 Jul 2007 WO
WO2007130164 Nov 2007 WO
WO2007145906 Dec 2007 WO
WO2008030911 Mar 2008 WO
WO 2009048745 Apr 2009 WO
WO2009048745 Apr 2009 WO
WO2009-070173 Jun 2009 WO
WO2009-070588 Jun 2009 WO
WO2009-073480 Jun 2009 WO
Related Publications (1)
Number Date Country
20090096179 A1 Apr 2009 US