Aspects of the embodiments generally relate to battery operated roller shades, and more particularly to an architectural roller shade housing with adjustable battery compartment.
Motorized roller shades provide a convenient one-touch control solution for screening windows, doors, or the like, to achieve privacy and thermal effects. A motorized roller shade typically includes a rectangular shade material attached at one end to a cylindrical rotating tube, called a roller tube, and at an opposite end to a hem bar. The shade material is wrapped around the roller tube. An electric motor, either mounted inside the roller tube or externally coupled to the roller tube, rotates the roller tube to unravel the shade material to cover a window.
Motorized roller shades require local power to be provided to the shade to energize the motor and associated electronics, such as the radio, control circuitry, and encoders, among other devices. Power is typically supplied using power over Ethernet (PoE) wiring, or a local power supply, such as a 24V wall-wart, which may be unsightly and/or challenging to install. In many installations, it may be difficult or impossible to run power and communication wires to a specific location especially in retrofit applications. Battery powered roller shades with radio transceivers for communication provide means to easily install and control a roller shade without running new wires. To enable operation of a roller shade for a prolonged amount of time, many large batteries are required, which present a challenge since they are needed to be stored in proximity to the roller tube in a hidden position. Roller shades typically house the batteries inside the roller tube or roller shade housing out of site from the end user. However, battery replacement in such roller shades is a cumbersome and difficult exercise.
Therefore, a need has arisen for systems, methods, and modes for an improved architectural roller shade housing with adjustable battery compartment that is easily accessible by the user.
It is an object of the embodiments to substantially solve at least the problems and/or disadvantages discussed above, and to provide at least one or more of the advantages described below.
It is therefore a general aspect of the embodiments to provide systems, methods, and modes for a battery operated roller shade that will obviate or minimize problems of the type previously described.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Further features and advantages of the aspects of the embodiments, as well as the structure and operation of the various embodiments, are described in detail below with reference to the accompanying drawings. It is noted that the aspects of the embodiments are not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.
According to one aspect of the present embodiments, a battery operated shade is provided for adjustably cover a structural opening. The battery operated shade comprises a shade material extending from a top end to a bottom end and a motor drive unit operably connected to the top end of the shade material to raise and lower the shade material between an upper limit and a lower limit to adjustably cover and uncover the structural opening. The battery operated shade also comprises a shade housing adapted to at least partially conceal the motor drive unit, wherein the shade housing comprises an opening from which the shade material exits the shade housing. The battery operated shade further comprises a battery compartment adapted to removably retain batteries for providing power to the motor drive unit and a pair of swing arms each comprising a proximal end pivotally connected to the shade housing and a distal end connected to the battery compartment; wherein the pair of swing arms are adapted to pivot with respect to the shade housing to swivel the battery compartment from a first position, where the battery compartment is at least partially concealed by the shade housing and the pair of swing arms are retained within the shade housing by a pair of retaining clips, to a second position, where the battery compartment extends out of the shade housing.
According to another embodiment, each retaining clip comprises a pair of oppositely disposed spring arms biased toward each other, wherein the proximal end of each swing arm is retained between the spring arms of the respective retaining clip when the battery compartment is in the first position. The spring arms of each retaining clip may comprise bulges inwardly extending toward each other and wherein the proximate ends of each swing arm comprise grooves shaped and sized to receive the bulges therein to maintain the battery compartment in the first position. The battery operated shade may further comprise a pair of support brackets each comprising one of the pair of swing arms, wherein the pair of support bracket connect the pair of swing arms to the shade housing.
According to another embodiment, the battery operated shade further comprises a connector bracket pivotally connected to the shade housing, wherein the connector bracket is adapted to swivel with respect to the shade housing from a first position where the connector bracket is at least partially concealed by the shade housing to a second position where the connector bracket is at least partially extends out of the shade housing, wherein the connector bracket comprises a port retaining portion adapted to retain a port for electrically connecting the battery compartment to the motor drive unit, wherein the connector bracket is retained within the shade housing by a third retaining clip when the connector bracket is in the first position. The third retaining clip may comprise a pair of oppositely disposed spring arms biased toward each other, wherein the connector bracket comprises a clip engaging portion adapted to be retained between the spring arms of the third retaining clip. The spring arms of the third retaining clip may comprise bulges inwardly extending toward each other and wherein the clip engaging portion comprises grooves shaped and sized to receive the bulges therein to maintain the connector bracket in the first position.
According to an embodiment, the battery compartment is slidably connected to the pair of swing arms such that it slides with respect to the swing arms between their distal end and proximal end. Each swing arm may comprise a longitudinal channel extending from about its proximal end to about its distal end, wherein the battery compartment comprises nipples in each of its ends adapted to slide within the longitudinal channel in each swing arm. When the swing arms and thereby the battery compartment are in the first position, the battery compartment is positioned proximate to the proximal ends of the swing arms, and wherein when the swing arms and thereby the battery compartment are in the second position, the battery compartment is positioned proximate to the distal ends of the swing arms.
According to an embodiment, the battery compartment extends out of the shade housing through the opening in the shade housing. The battery compartment may be attached to the shade housing below the motor drive unit, wherein the opening in the shade housing is located below the battery compartment. The shade housing may comprise a front wall connected to a bottom wall that defines the opening.
According to an embodiment, the battery compartment may comprise a battery opening that traversely extends through a side surface of the battery compartment. The battery compartment may comprises a door adapted to translate from a closed position where it closes the battery opening to an opened position where it exposes the battery opening. The door may comprises a latch adapted to removably fasten to a mating groove disposed on the battery compartment to maintain the door in a closed position.
According to an embodiment, the motor drive unit is adapted to determine whether power of the batteries in the battery compartment is below a minimum battery threshold and when determining that the battery power is below the minimum battery threshold to move the shade material to a battery replacement position. The battery replacement position may comprise a position where the bottom end of the shade material is positioned at a predetermined distance from the upper limit. The minimum battery threshold may correspond to the battery power required to raise the shade material from the lower limit to the battery replacement position. After moving the shade material to the battery replacement position, the motor drive unit may disable movement of the shade material until the batteries are replaced.
The above and other objects and features of the embodiments will become apparent and more readily appreciated from the following description of the embodiments with reference to the following figures. Different aspects of the embodiments are illustrated in reference figures of the drawings. It is intended that the embodiments and figures disclosed herein are to be considered to be illustrative rather than limiting. The components in the drawings are not necessarily drawn to scale, emphasis instead being placed upon clearly illustrating the principles of the aspects of the embodiments. In the drawings, like reference numerals designate corresponding parts throughout the several views.
The embodiments are described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the inventive concept are shown. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity. Like numbers refer to like elements throughout. The embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the inventive concept to those skilled in the art. The scope of the embodiments is therefore defined by the appended claims.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the embodiments. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular feature, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
The following is a list of the major elements in the drawings in numerical order.
100 Roller Shade
101 Roller Tube
102 Motor Drive Unit
103 Idler Assembly
104 Roller Shade Housing
105 Mounting Bracket(s)
106 Shade Material
107 Motor Housing
108 Idler Body
109 Idler Pin
110 Hem Bar
111
a First End of Roller Tube
111
b Second End of Roller Tube
112 Motor Control Module
115 Motor
116 Crown Adapter Wheel
117 Idler Crown Wheel
120 Counterbalancing Spring
121 Drive Wheel
122 First Stage Planetary Gear
123 Clutch
124 Final Stage Planetary Gear
125 Output Mandrel
127 Motor Head
128
a First Power Cord
128
b Second Power Cord
130 Power Supply
131 Battery Compartment
132 Connectivity Port
133 Connectivity Plug
202
a First End of Roller Shade Housing
202
b Second End of Roller Shade Housing
204 Front Wall
205 Bottom Wall
206 Intermediate Horizontal Wall
207 Opening
208 First Drop Down Position
209 Second Drop Down Position
210 Battery Replacement Position
211 First Housing Portion
212 Second Housing Portion
215 Battery Compartment Supporting Bracket(s)
216 End Cap(s)
217 Nipple(s)
218 Latch
219 Groove
221
a First End of Battery Compartment
221
b Second End of Battery Compartment
222 Channel
223 Battery Opening
224 Door
225 Biasing Spring
230 Pivot Axis
231 Screw
232 Shoulder(s)
233 Rivet/Screw
234 Channel
235 Swing Arm(s)
236 Proximal End
237 Distal End
238 Grooves
239 Outer Surface
241
a Pair of First Retaining Clips
241
b Second Retaining Clip
242 Spring Arms
243 Bulges
244 First Distance
245 Second Distance
246 First Thickness
247 Second Thickness
248 Flat Surface
251 Connector Bracket
252 Grip Portion
253 Port Retaining Portion
254 Clip Engaging Portion
401 Distance
405 Layers
600 Battery(s)
The following is a list of the acronyms used in the specification in alphabetical order.
ASICs Application Specific Integrated Circuits
BLDC Brushless Direct Current
DC Direct Current
IR Infrared
LED Light Emitting Diode
PCB Printed Circuit Board
PoE Power Over Ethernet
RAM Random-Access Memory
RF Radio Frequency
ROM Read-Only Memory
For 40 years Crestron Electronics, Inc. has been the world's leading manufacturer of advanced control and automation systems, innovating technology to simplify and enhance modern lifestyles and businesses. Crestron designs, manufactures, and offers for sale integrated solutions to control audio, video, computer, and environmental systems. In addition, the devices and systems offered by Crestron streamline technology, improving the quality of life in commercial buildings, universities, hotels, hospitals, and homes, among other locations. Accordingly, the systems, methods, and modes of the aspects of the embodiments described herein can be manufactured by Crestron Electronics, Inc., located in Rockleigh, N.J.
The different aspects of the embodiments described herein pertain to the context of battery operated roller shades, but is not limited thereto, except as may be set forth expressly in the appended claims. While the roller shade is described herein for covering a window, the roller shade may be used to cover other architectural openings, such as doors, wall openings, or the like. The embodiments described herein may further be adapted in other types of window or door coverings. For example, the battery compartment described herein may be placed in a shade housing designed to house an inverted roller, a Roman shade, an Austrian shade, a pleated shade, a blind type shade, a shutter type shade, a skylight shade, a garage door, or the like.
Disclosed herein are systems, methods, and modes for a battery operated roller shade, and more particularly to an architectural roller shade housing with adjustable battery compartment. Referring to
Roller tube 101 is generally cylindrical in shape and longitudinally extends from a first end 111a to a second end 111b. In various embodiments, the roller tube 101 comprises aluminum, stainless steel, plastic, fiberglass, or other materials known to those skilled in the art. The first end 111a of the roller tube 101 may receive the motor drive unit 102 and the second end 111b of the roller tube 101 may receive the idler assembly 103, although the placement of the motor drive unit 102 and the idler assembly 103 may be reversed.
The idler assembly 103 of the roller shade 100 may comprise an idler body 108 rotatably connected about the idler pin 109. The idler assembly 103 is inserted into the second end 111b of the roller tube 101 and operably connected to the roller tube 101 such that rotation of the roller tube 101 also rotates the idler body 108. The idler body 108 may comprise ball bearings therein (not shown) allowing the idler body 108, and thereby the roller tube 101, rotate with respect to the idler pin 109.
During installation, the roller shade 100 is mounted on or in a window between a pair of mounting brackets 105. The mounting brackets can comprise similar configuration to the CSS-ARCH3 QMT3 Series Architectural Shade Hardware, available from Crestron Electronics, Inc. of Rockleigh, N.J. Other types of brackets may be utilized without departing from the scope of the present embodiments. The mounting brackets 105 in turn can be surface-mounted on a wall or ceiling or recess-mounted in a pocket or window jamb. The terminal end of the idler pin 109 may attach the roller shade 100 to one of the mounting brackets 105. The roller shade 100 may then be mounted to the other mounting bracket 105 by snapping the motor head 127 of the motor drive unit 102 to the mounting bracket 105 or coupling the motor drive unit 102 to the mounting bracket 105 using screws.
The motor drive unit 102 may comprise a motor head 127 including a crown adapter wheel 116, a motor housing 107 containing a motor control module 112 and motor 115 therein, an idler crown wheel 117, an output mandrel 125, a counterbalancing spring 120, and a drive wheel 121. The motor drive unit 102 may be inserted into the roller tube 101 from the first end 111a. The crown adapter wheel 116, idle crown wheel 117, and drive wheel 121 may be generally cylindrical in shape and may comprise a plurality of channels extending circumferentially about their external surfaces that mate with complementary projections radially extending from an inner surface of roller tube 101 such that crown adapter wheel 116, idle crown wheel 117, drive wheel 121, and roller tube 101 rotate together during operation. The drive wheel 121 is operably connected to the motor output shaft of the motor 115 via the output mandrel 125 such that rotation of the motor output shaft also rotates the drive wheel 121. The crown adapter wheel 116 and idle wheel 117 may be rotatably attached at two opposite ends of the motor housing 107 via ball bearings to hold the motor 115 concentric to the roller tube 101.
The motor 115 may comprise a brushless direct current (BLDC) electric motor. In another embodiment, the motor 115 comprises a brushed direct current (DC) motor, or any other motor known in the art. In operation, the roller shade 100 is rolled down and rolled up via the motor drive unit 102. Particularly, the motor 115 drives the drive wheel 121, which in turn engages and rotates the roller tube 101. The roller tube 101, in turn, engages and rotates the crown adapter wheel 116, idle crown wheel 117, and idler body 108 with respect to the motor 115, while the motor housing 107, including the motor 115 and motor control module 112, remain stationary. The motor 115 may drive the drive wheel 121 through a series of components that in combination provide efficiency and counterbalancing to the roller shade 100, such as a first stage planetary gear 122, a clutch 123, a final stage planetary gear 124, an output mandrel 125, and a counterbalancing spring 120. In one embodiment, the first and final stage planetary gears 122 and 124 may be configured for providing speed reduction and torque increase to achieve efficient operation of the motor 115. According to another embodiment, the first and final stage planetary gears 122 and 124 may be configured for providing increased speed and decreased torque. The spring 120 may be pretensioned in the factory using the motor 115. The pretensioned counterbalancing spring 120 assists the motor 115 to roll up the shade material 106 throughout the rolling up cycle without the motor 115 requiring to exert much power. According to an embodiment, the motor drive unit 102 may comprise similar configuration to the motor drive unit disclosed in U.S. Pat. No. 10,738,530, filed Jan. 16, 2018 and issued Aug. 11, 2020, titled “Motor Pretensioned Roller Shade,” the entire contents of which are hereby incorporated by reference.
The motor control module 112 operates to control the motor 115, directing the operation of the motor, including its direction, speed, and position. The motor control module 112 may comprise fully integrated electronics housed on a single or a plurality of printed circuit boards (PCBs). The motor control module 112 may comprise a controller, a memory, a communication interface, a user interface, and a light indicator. The user interface may comprise buttons, such as open and close, as well as a setup button that may allow the user to set the upper limit, the lower limit, the battery replacement limit (discussed below), reverse motor direction as well as assist in acquiring shades to the control system and any other intermediary devices necessary. The buttons may be arranged on the motor drive unit 102 such that they are visible from the front or bottom of the motor drive unit 102. The light indicator, such as a multicolor light emitting diode (LED), may be adapted to display device status, any error feedback, status blink codes, as well as the battery status, such as low-battery conditions. The controller can represent one or more microprocessors, and the microprocessors can be “general purpose” microprocessors, a combination of general and special purpose microprocessors, or application specific integrated circuits (ASICs). The controller provides processing capability for one or more of the techniques and functions described herein. The memory can be communicably coupled to controller and can store data and executable code. In another embodiment, memory is integrated into the controller. The memory can represent volatile memory such as random-access memory (RAM), but can also include nonvolatile memory, such as read-only memory (ROM) or Flash memory.
The communication interface may comprise a wireless communication interface configured for bidirectional communication with other electronic devices over a communications network. A wireless interface can comprise a radio frequency (RF) transceiver, an infrared (IR) transceiver, trace antenna, or other communication technologies known to those skilled in the art. The wireless interface may communicate using a communication protocol, such as the infiNET EX® protocol from Crestron Electronics, Inc. of Rockleigh, N.J., ZigBee® protocol from ZigBee Alliance, Bluetooth, or the like.
The control commands received by the motor control module 112 may be a direct user input to the controller from the user interface or a wireless signal from an external control point. For example, the motor control module 112 may receive a control command from a wall-mounted button panel or a touch-panel in response to a button actuation or similar action by the user. Control commands may also originate from a signal generator such as a timer or a sensor. Accordingly, the motor control module 102 can integrate seamlessly with other control systems using the communication interface to be operated from keypads, wireless remotes, touch screens, and wireless communication devices, such as smart phones. Additionally, the motor control module 102 can be integrated within a large scale building automation system or a small scale home automation system and be controllable by a central control processor, such as the PRO3 control processor available from Crestron Electronics, Inc., that networks, manages, and controls a building management system.
The motor drive unit 102 may be connected to a replaceable power supply 130, such as a plurality of serially arranged batteries. Power supply 130 provides power to the circuitry of the motor control module 112, and in turn the motor 115. The motor control module 112 may be connected to the power supply 130, such as batteries, through one or more power cords 128a-b and one or more connectivity ports 132 and/or plugs 133. In yet another embodiment, the motor control module 112 may also be connected to a solar panel or a solar collection module placed in proximity to the window to aggregate solar energy and recharge the batteries. Power supply 130 may comprise a battery compartment 131 adapted to house batteries therein.
Referring to
As seen in
Irrespective of the housing type or shape, the housing 104 defines an opening 207 at the bottom that allows the shade material 106 to drop down from the roller tube 101 and out of the housing 104. The housing 104 may be connected to and supported by the pair of oppositely disposed mounting brackets 105, for example by having the fascia snap on the front of each of the mounting brackets 105. Although in other embodiment, the mounting brackets 105 and housing 104 may be an integral component. Referring to
The battery compartment 131 may be secured to the housing 104 at a position below the roller tube 101 such that it does not impede with the travel of the shade material 106 and/or the hem bar 110 when the battery compartment 131 is in a retracted position. Particularly, when the shade material 106 is raised or lowered between its upper and lower limits, it tends to translate laterally with respect to the roller tube 101—for example from a first drop down position 208 (
The battery compartment 131 may comprise a tubular body or enclosure designed to maintain a compact and discrete appearance that is easily accessible for battery replacement. Battery compartment 131 longitudinally extends from a first end 221a to a second end 221b, each attached to a respective battery compartment supporting bracket 215. The battery compartment 131 may be made from a lightweight material, such as plastic or a light weight metal extrusion, although other materials may be utilized. The battery compartment 131 may comprise a pair of end caps 216 adapted to close the first and second ends 221a and 221b of the battery compartment 131. Although according to an alternative embodiment, the battery compartment 131 may comprise a single tubular enclosure with integrated closed ends. The battery compartment 131 may be shaped and sized to receive a plurality of batteries arranged in series within the battery compartment 131, for example, eight Alkaline D′ cell batteries 600 (
As shown in
The battery compartment 131 may further comprise a door 224 disposed over the battery opening 223. The door 224 may be adapted to slide from a closed position where it closes the battery opening 223, as shown in
Referring to
During normal operation of the roller shade 100, the battery compartment 131 is maintained in the retracted position shown in
According to an embodiment, the motor control module 112 may include battery status monitoring to help users in determining when the batteries 600 need replacement. The motor control module 112 may include circuitry to monitor the power of the batteries through power cords 128a-b (
In addition, once determining that the battery power has reached the minimum battery threshold (or a second minimum battery threshold different from the minimum battery threshold for issuing the low battery alert), the motor control module 112 may direct the shade material 106 to move to the preset battery replacement limit such that the hem bar 110 is located at a battery replacement position. For example, referring to
According to an embodiment, the minimum battery threshold may correspond to the minimum runtime required to raise the shade material 106 from a fully lowered or rolled down position 208 (i.e., lower limit) to the battery replacement position 210. As such, if the hem bar 110 is positioned below the battery replacement position 210 (for example when the roller shade 100 is fully closed or partially closed), and if the motor control module 112 detects that the battery power level is at or below the minimum battery threshold, the motor control module 112 may raise the shade material 106 until the hem bar 110 is position at the battery replacement position 210. Similarly, if the hem bar 110 is positioned above the battery replacement position 210 (for example when the roller shade 100 is fully opened as shown in
To replace the batteries, each swing arm 235, and thereby the battery compartment 102, may swivel out of the second housing portion 212 about the pivot axis 230 and down through opening 207 in the roller shade housing 104 as shown in
As shown in
According to an embodiment, the battery compartment 104 may comprise a release latch or lever (not shown) that generally keeps the battery compartment 104 retained in the retracted position shown in
According to another embodiment, the battery compartment 104 may be maintained in a retracted position shown in
Another embodiment of securing the battery compartment 104 in the retracted position is shown in
After the batteries are replaced, the battery compartment 131 may be rotated back inside the roller shade housing 104. The thicker portions of the proximal ends 236 of the swing arms 235 comprising the first thickness 246 will enter the retaining clips 241a, push against the bulges 243, and force the spring arms 242 apart as shown in
Referring to
After the batteries 600 are replaced and the battery compartment 131 is in the retracted position and retained by the pair of the first retaining clips 241a as shown in
The disclosed embodiments provide a system, software, and a method for an improved architectural roller shade housing with adjustable battery compartment that is easily accessible by the user. It should be understood that this description is not intended to limit the embodiments. On the contrary, the embodiments are intended to cover alternatives, modifications, and equivalents, which are included in the spirit and scope of the embodiments as defined by the appended claims. Further, in the detailed description of the embodiments, numerous specific details are set forth to provide a comprehensive understanding of the claimed embodiments. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of aspects of the embodiments are described being in particular combinations, each feature or element can be used alone, without the other features and elements of the embodiments, or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
The above-described embodiments are intended to be illustrative in all respects, rather than restrictive, of the embodiments. Thus the embodiments are capable of many variations in detailed implementation that can be derived from the description contained herein by a person skilled in the art. No element, act, or instruction used in the description of the present application should be construed as critical or essential to the embodiments unless explicitly described as such. Also, as used herein, the article “a” is intended to include one or more items.
Additionally, the various methods described above are not meant to limit the aspects of the embodiments, or to suggest that the aspects of the embodiments should be implemented following the described methods. The purpose of the described methods is to facilitate the understanding of one or more aspects of the embodiments and to provide the reader with one or many possible implementations of the processed discussed herein. The steps performed during the described methods are not intended to completely describe the entire process but only to illustrate some of the aspects discussed above. It should be understood by one of ordinary skill in the art that the steps may be performed in a different order and that some steps may be eliminated or substituted.
All United States patents and applications, foreign patents, and publications discussed above are hereby incorporated herein by reference in their entireties.
Alternate embodiments may be devised without departing from the spirit or the scope of the different aspects of the embodiments.
Number | Name | Date | Kind |
---|---|---|---|
6382294 | Anderson | May 2002 | B1 |
8820386 | Mullet | Sep 2014 | B2 |
9115537 | Blair | Aug 2015 | B2 |
10094169 | Kirby | Oct 2018 | B2 |
11002071 | Campagna | May 2021 | B2 |
20030168187 | Wen | Sep 2003 | A1 |
20120090797 | Mullet | Apr 2012 | A1 |
20130098561 | Mullet | Apr 2013 | A1 |
20130153162 | Blair | Jun 2013 | A1 |
20140231032 | Blair | Aug 2014 | A1 |
20140305602 | Kirby | Oct 2014 | A1 |
20150247362 | Kirby | Sep 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20210222490 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62649638 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16250164 | Jan 2019 | US |
Child | 17224371 | US |