The present invention relates to optical imaging, and more particularly to arrangements, systems and methods which are capable of providing spectral-domain polarization-sensitive optical coherence tomography. BACKGROUND OF THE INVENTION
The acquisition speed of a polarization-sensitive optical coherence tomography (PS-OCT) system can be significantly increased by replacing time-domain technology, examples of which are described in J. F. de Boer et al., “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Optics Letters, 1997, Vol. 22(12): pp. 934-936, and B. H. Park et al., “Real-time multi-functional optical coherence tomography,” Optics Express, 2003, Vol. 11(7): pp. 782-793.
One exemplary spectral-domain (SD) fiber-based system has been described in N. Nassif et al., “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Optics Letters, 2004. Vol. 29(5): pp. 480-482, and N. A. Nassif et al., “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Optics Express, 2004. Vol. 12(3): pp. 367-376. These publications describe the advantages of spectral-domain over time-domain analysis, such as, e.g., faster data acquisition and improved signal-to-noise ratio. For example, the structural information, i.e., the depth profile, can be obtained by Fourier transforming the optical spectrum of the interference at the output of a Michelson interferometer.
An exemplary polarization-sensitive time-domain system, as well as a fiber-based system, has also been described in J. F. de Boer et al., “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Optics Letters, 1997, Vol. 22(12): pp. 934-936.
For example, it is possible to compare the image quality and polarization-sensitive results obtained with a known time-domain OCT system from healthy volunteers with those of glaucoma patients as described in B. Cense et al., “Thickness and birefringence of retinal nerve fiber layer of healthy and glaucomatous subjects measured with polarization sensitive optical coherence tomography,” Ophthalmic Technologies XIV, 2004. Proceedings of SPIE Vol. 5314: pp. 179-187.
Lower signal-to-noise ratio in images obtained from glaucoma patients was identified as the possible cause of unreliable results. Furthermore, from the analyzed RNFL thickness and double-pass phase retardation per unit depth (DPPR/UD) data obtained from a healthy subject, it was ascertained that a retinal nerve fiber layer (RNFL) thickness of more than 75 μm should be used for a reliable birefringence measurement as described in this publication. Since, as indicated in this publication, most of the measured glaucomatous nerve fiber layer thickness was less than this limit, complete glaucomatous data set could not be retrieved. In addition, the long acquisition time of 6 seconds per scan and 72 seconds for a complete data set with a time-domain system as described in this publication resulted in unreliable data due to involuntary eye motion and data loss caused by frequent blinking.
Birefringence measurements on human skin in vitro and porcine esophagus in vitro using a spectrometer-based Fourier-domain system have been described in Y. Yasuno et al., “Birefiingence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Optics Letters, 2002, Vol. 27(20): pp. 1803-1805; and Y. Yasuno et al., “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Applied Physics Letters, 2004, Vol. 85(15): pp. 3023-3025. In the publications, the A-line rate of the measurements was not discussed. Measurements have been described on rabbit tendon in vitro using a polarization-sensitive optical frequency-domain imaging (OFDI) system, provided in J. Zhang et al., “Full range polarization-sensitive Fourier domain optical coherence tomography,” Optics Express, 2004, Vol. 12(24): pp. 6033-6039. The A-line rate of such system was 250 Hz, which was likely not an improvement compared to classic time-domain PS-OCT systems. Certain advantages of spectral-domain OCT over time-domain OCT, which are a higher sensitivity and higher acquisition rate, were not demonstrated by the above-described publications. These improvements are preferable for in-vivo measurements. Described herein below are certain advantages which can be obtained by measuring the thickness and DPPR/UD of the retinal nerve fiber layer of a glaucoma patient in-vivo.
One of the objects of the present invention is to overcome certain deficiencies and shortcomings of the prior art systems (including those described herein above), and provide an exemplary embodiment of arrangement, system and method which are capable of providing spectral-domain polarization-sensitive optical coherence tomography. This can be done my implementing spectral-domain (SD) analysis, arrangements, systems and methods in PS-OCT (e.g., PS-SD-OCT arrangements, systems and methods).
For example, polarization-sensitive characteristics of the tissue (such as the sample or the target) being investigated can be obtained by analyzing the interferometric signal from an OCT system simultaneously in two orthogonal polarization channels for two sequentially generated input states of polarization. According to one exemplary embodiment of the present invention, different configurations of the high-speed spectrometer can be used in the exemplary PS-SD-OCT arrangements, systems and methods.
The exemplary embodiment of the PS-SD-OCT system, arrangement and method according to the present invention can combine an ultra-high-speed acquisition and a high sensitivity with the polarization sensitivity. This exemplary combination can improve the reliability of measurements obtained from glaucoma patients.
Therefore, exemplary embodiments of systems, arrangements and methods for separating an electro-magnetic radiation and obtaining information for a sample using an electro-magnetic radiation are provided. In particular, the electromagnetic radiation can be separated into at least one first portion and at least one second portion according to at least one polarization and at least one wave-length of the electromagnetic radiation. The first and second separated portions may be simultaneously detected. Further, a first radiation can be obtained from the sample and a second radiation may be obtained from a reference, and the first and second radiations may be combined to form a further radiation, with the first and second radiations being associated with the electromagnetic radiation. The information as a function of first and second portions of the further radiations that have been previously separated.
According to another exemplary embodiment of the present invention, the detection can be performed using a detection arrangement which can include a single row of detection elements. In addition or alternatively, two detection arrangements can be used, with each of the detection arrangements including a single row of detection elements. Further, the separation can be performed using a first element which is configured to separate the electro-magnetic radiation into the first and second portions based on the polarization, and a second element which is configured to separate the electromagnetic radiation into the first and second portions based on the wave-length. The first element can follow the second element in an optical path of the electromagnetic radiation.
A third light directing element can be provided in the optical path in a proximity of the first and second elements, e.g., between the first and second elements, and/or following the first and second elements in the optical path. In addition or alternatively, further light directing elements can be provided in the optical path following the first and second elements. Each of these further elements can direct at least one of the respective separated portions toward the second element. The second element can follow the first element in an optical path of the electromagnetic radiation. Another arrangement can be provided to control a polarization of the generated electromagnetic radiation.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the present invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments.
A spectral-domain fiber-based system has been described in N. Nassif et al., “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Optics Letters, 2004, Vol. 29(5), pp. 480-482, and N. A. Nassif et al., “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Optics Express, 2004, Vol. 12(3), pp. 367-376. An exemplary embodiment of a system and an arrangement according to the present invention is shown in
For example, the two orthogonal components of the state of polarization of light or electromagnetic radiation at the end of the fiber in the detection arm can be separated with the polarizing beam splitter (PBS:1040), after which each polarization component can be imaged on its own optical component and/or camera. Since the polarizing beam splitter (PBS:1040) performance is not ideal, some of the polarized light/electro-magnetic radiation that is forwarded to an off-axis camera (which may be included in the polarization beam splitter PBS:1040) may be contaminated with the light/electro-magnetic radiation that has the other polarization state. It therefore should be improved (or cleaned) using an extra polarizer.
Another exemplary embodiment of the system/arrangement according to the present invention is shown in
For example, by selecting the splitting angle of a Wollaston prism (WP:2040), the two spectra can be spatially separated such that they can both be imaged on the same line-scan camera (2050) simultaneously. This exemplary configuration can use a single camera (2050), thereby simplifying the design of the system/arrangement and possibly reducing costs. Another possible advantage of this exemplary embodiment is that the Wollaston prism (2040) can separate the orthogonal polarization components with a significantly higher extinction ratio than performed by conventional polarizing beam splitters. Therefore, a clean-up polarizer does not have to be implemented, thus further possibly reducing costs, as well as improving the efficiency of the spectrometer by reducing optical losses.
Other exemplary embodiments of the present invention are shown in
A further exemplary embodiment of the system/arrangement according to the present invention is shown in
Similarly to the first and second exemplary configurations described above, the collimator C (4010) can collimate the light/electro-magnetic radiation emerging from the fiber (4000). The light/electro-magnetic radiation can then be dispersed using a transmission grating (4020), and the two orthogonal polarization components may be separated using a polarizing beam splitter (PBS:4030). The two linear polarization components can be transformed into circular polarizations by two achromatic quarter-wave plates (QWP: 4040, 4060). After these two linear polarization components are reflected by the parabolic mirrors (4050, 4070), they are transformed back into linear polarizations using the same achromatic quarter-wave plates (QWP: 4040, 4060). These linear polarizations generally become orthogonal to the initial components, and can therefore be processed differently by the PBS (4030). The linear polarization that has been initially reflected by the PBS (4030) can then be transmitted toward the LSC (4080), while the linear component which has been initially transmitted by the PBS (4030) can be reflected toward the same LSC (4080). The spectra of the two polarization components may be separated using the LSC (4080) by slightly tilting the two mirrors.
Another advantage of this exemplary configuration may be that the light/electro-magnetic radiation generally travels twice through the PBS (4030), and therefore, the polarization purity can be significantly improved without using an additional clean-up polarizer.
The spectra of the two orthogonal polarization components can be imaged on the same LSC in the second and third configurations. If another exemplary arrangement is used, the two spectra can be imaged along parallel lines of a rectangular CCD. Such exemplary arrangement may be advantageous in that off-axis geometrical aberrations may likely be reduced.
In the above-described exemplary configurations, the two acquired spectra can be stored to a hard disk (or another storage device), and analyzed in real time and during post-processing.
For the analysis of these spectra, it is preferable to avoid “ghost birefringence” artifacts. Ghost birefringence is birefringence that is measured by the system, but likely does not exist in reality. It can be caused by an incorrect calibration of the polarization-sensitive spectrometer. The exemplary embodiments of the system, arrangement and method of the present invention provides a procedure for providing a correct calibration of the spectrometer, as described in further detail below.
As described above with reference to the first, second and third exemplary configuration in accordance with the exemplary embodiments of the present invention, a conventional spectral-domain optical coherence tomography system can be made polarization-sensitive. For example, this can be done by adding a polarization modulator in the source arm and a polarizing beam splitter (CVI) combined with a further line scan camera (e.g., Basler, 2048 elements of 10 by 10 μm, maximum line frequency 29,300 Hz) in the detection arm. A high-power superluminescent diode (e.g., SLD-371-HP, Superlum, λ0=840 nm, ΔλFWHM=50 nm) can be isolated using a broadband isolator (OFR). At the output of the isolator, the light/electro-magnetic radiation can likely be linearly polarized.
A processing arrangement according to yet another exemplary embodiment of the present invention can be used to generate driving waveforms for line acquisition triggering and for the polarization modulator, which may be positioned either directly or indirectly following the isolator. One exemplary embodiment of the method according to the present invention is shown in
Another exemplary embodiment of the system that is capable of performing polarization-sensitive spectral-domain optical coherence tomography in accordance with the present invention is shown in
For example, the 80/20 fiber coupler (6050) can provided 80% of the power to the reference arm. The rapid scanning delay line (RSOD:6080-6140) can be used with the polarizing beam splitter (6090), to facilitate a transmission of, e.g., equal amounts of power through the delay line for both input polarization states. The RSOD can be used for dispersion compensation, and the galvanometer mirror (6120) may be kept stationary for these measurements. The light returning from the RSOD can be interfered with the light returning from the sample arm. The interference spectra may be recorded with the polarization-sensitive spectrometer in the detection arm, where the two line scan cameras (6270, 6280) may be positioned around the polarizing beam splitter (6260). The light emerging from the fiber may be first collimated (6230) and diffracted with the transmission grating (6240), after which the light can be focused using the lens (6250). The polarizing beam splitter (6260) can direct the orthogonal states to the two line scan cameras (6270, 6280), which may be mounted on five-axis translation stages.
A polarization state that is transmitted straight through a polarizing beam splitter can be generally pure, e.g., approximately 99% of the power can be horizontally polarized. The polarization state that is reflected at 90° by a polarizing beam splitter can be less pure, with the horizontally polarized light mixing with vertically polarized light. Since such contamination may distort a proper polarization analysis, the horizontally polarized light can be filtered from the reflected polarization state using a cleanup polarizer. A Polarcor wire grid polarizer can be with an extinction ratio of 1:10,000 and a transmission performance of higher than about 90% over the full bandwidth. The polarizer may be positioned in front of the off-axis line scan camera (6270). The transmitted wavefront distortion of such polarizer may be specified as less than a quarter wavelength (at 632.8 nm). Spectra can be recorded simultaneously with the two line scan cameras (6270, 6280), and stored to the hard disk or any other storage device. An on-screen frame rate of approximately three frames per second can be maintained in real time. The polarization state in all arms of the interferometer can be optimized using the polarization controllers (6010, 6060, 6150, 6210).
It is further possible to utilize a prior art system described in B. Cense et al., “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” Journal of Biomedical Optics, 2004, Vol. 9(1), pp. 121-125 to simultaneously acquire OCT data and/or video images. As shown in
Generally, in the SD-OCT system, a reflectivity depth profile (A-line) can be obtained as the Fourier transform of a spectrum resulting from remapping from wavelength-space to k-space (k=2 π/λ). This remapping can depend on a knowledge of the wavelength that is incident on the different pixels of the line scan camera. An error Δλ of the assumed incident wavelength λ can be used to generate a deviation in a wave number provided by Δk=2 π Δk/λ2. If the two line scan cameras have even slightly different errors, the relative deviation in the wave number can give rise to an artificial appearance of a birefringence. For an incident wavelength of λ=850 nm and with a relative alignment error of Δλ=1 nm between the cameras, a phase difference Δφ=8.70 radians over a depth of 1 mm can be obtained. The cumulative effect of these phase differences across the line scan cameras can lead to an overall phase difference that may not be distinguished from a phase retardation due to the sample birefringence. A removal of this artificial, or “ghost”, birefringence is likely beneficial to obtain a more accurate determination of sample polarization properties.
The relationship between the pixel position on the LSC and the corresponding wavelength λ can be obtained from the standard grating formula using simple geometry, and may be provided by the following equation:
In an exemplary two polarization channels configuration described above and shown in
For a non-polarization-sensitive system according to another exemplary embodiment of the present invention, the exemplary procedure according to an exemplary embodiment of the present invention for determining the calibration parameters is provided below and shown in a flow diagram in
Initially, in step 7050, the intensity profile on the two LSC's is recorded for a number of positions of the reference mirror in the reference arm. In step 7055, the sample arm contains a mirror in a water-filled model eye to simulate a patient measurement. The spectrum may be mapped in wavelength-space and then in k-space (step 7060), and the coherence function can be obtained as the Fourier transform of the spectrum in k-space (step 7065). In step 7075, the calibration parameters can be tuned until the phase of the complex Fourier transform is constant, independent of the mirror position in the reference arm. This phase term can be used for a dispersion compensation for the patient measurement as described above.
Further, a rough alignment can be done in step 7070 and can be done performed prior to the data acquisition step 7075. The reference arm signal is maximized on both cameras. To align the two cameras with one another, a non-birefringent scattering sample (such as a stack of microscope cover slips or a uniformly scattering medium) can be imaged, and real-time polarization processing can be performed to, e.g., visually remove large amounts of the artificial birefringence. This can be performed by moving the location of one camera perpendicular to the beam until the observed birefringence, as measured with the exemplary embodiment of the system according to the present invention, becomes small or even negligible. This may insure the particular alignment of one camera with respect to the other, i.e., that the incident wavelength on corresponding pixels of the two line scans cameras can be approximately or roughly the same.
Second, a more careful recalibration of the mapping parameters can be performed in step 7080. This can be achieved, e.g., by optimizing various merit functions other than, or in addition to, the previous condition of constant phase of the complex Fourier transform independent of the mirror position in the reference arm. One such exemplary function can rely on the state of polarization of light (e.g., a Stokes vector) incident on the spectrometer. The stokes vector can be determined as described in J. F. de Boer et al., “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Optics Letters, 1999, Vol. 24(5), pp. 300-302. The calibration parameters can be optimized such that the measured state of polarization is constant, independent of the mirror position in the reference arm. The set of calibration parameters and the phase factors for the two cameras may be subsequently used for correct mapping of the spectra in patient measurements and for dispersion compensation.
According to another exemplary embodiment of the present invention, the rough alignment described above with reference to step 7070 does not have to be performed. The appearance of the artificial birefringence can be eliminated by an appropriate calibration of the mapping parameters for the two cameras. However, without the rough alignment described above with reference to step 7070, the range over which parameters, such as x0, vary, can be substantial. Thus, the rough alignment can make the optimization process easier and more beneficial.
Certain experiments have been performed under a protocol that adhered to the tenets of the Declaration of Helsinki. For such experiments, one healthy volunteer and seven glaucoma patients were enrolled. Patients with various stages of open angle glaucoma (primary, pigmentary, and pseudoexfoliation forms) were obtained, and it was determined whether the patients were eligible for the study. After giving informed consent and determining that the patients were eligible to participate in the study, the eligible eyes of the glaucoma patients were dilated with phenylephrine hydrochloride 5.0% and tropicamide 0.8%. Measurements were performed on all enrolled subjects using the exemplary embodiments of the system, arrangement and method according to the present invention.
Healthy Subjects
For comparison, the healthy volunteer was previously imaged with both the prior polarization-sensitive time-domain system described in B. Cense et al., “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett., 2002, Vol. 27(18), pp. 1610-1612, B. Cense et al., “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” Journal of Biomedical Optics, 2004, Vol. 9(1), pp. 121-125, and B. Cense et al., “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Investigative Ophthalmology & Visual Science, 2004, Vol. 45(8), pp. 2606-2612, as well as the spectral-domain system described in N. Nassif et al., “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Optics Letters, 2004, Vol. 29(5), pp. 480-482, N. A. Nassif et al., “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Optics Express, 2004, Vol. 12(3), pp. 367-376, and B. Cense et al., “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Optics Express, 2004.
For this experiment, the power of the light incident on the volunteer's undialated right eye was equal to 470 μW. Two different types of scans were performed around the optic nerve head. One data set was made with concentric circular scans (12 circular scans of 1000 A-lines equidistantly spaced between 1.5 and 2.6 mm radius), the other data set was made with 250 linear scans of 500 A-lines covering an area of 6.4×6.4 mm. Data was acquired at integration times of either 33 μs or 132 μs per A-line. For the last set, the speed at which the exemplary system was operating has been reduced by a factor of 4, thus improving the sensitivity by a factor of 4. This setting was still almost 45 times faster than the time-domain measurement, therefore reducing the total measurement time for 12 circular scans from 72 seconds to 1.6 s. The eye that was under investigation was stabilized with a fixation spot.
Glaucoma Patients
The power incident on the eye was less than 500 μW for the glaucoma patients. In cases where the patient could only see with one eye, the eye that lacked vision was imaged. The eyes that were imaged were stabilized with the internal fixation light of the slit lamp system. An external fixation light was used for the contralateral eye of the patients who could not see this light. Circular scans of 1000 A-lines with integration times of 33 and 132 μs were performed. In addition, some eyes of these patients were imaged with an integration time of 330 μs. Further, linear scans (200 scans of 1000 A-lines, 6.4×6.4 mm) were performed at 132 μs per A-line.
Exemplary Data Analysis
The polarimetric analysis consisted of several procedures. In the first exemplary procedure, the spectrometer was calibrated as described above. The calibration parameters were used for mapping the measured spectra to wavelength-space, and then to k-space. In addition, the phase curve determined for each camera was used to compensate for chromatic dispersion in the eye and the interferometer, as described in R. Chan et al., “Anisotropic edge-preserving smoothing in carotid B-mode ultrasound for improved segmentation and intima-media thickness measurement,” Computers in Cardiology, Cambridge, Mass., IEEE, 2000. After Fourier transforming the data to z-space, the depth-resolved Stokes parameters were determined as described M. C. Pierce et al., “Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,” Optics Letters, 2002., Vol. 27(17), pp. 1534-1536. The first depth-resolved Stokes parameter corresponds to the structural intensity, e.g., a depth resolved reflectivity. The upper and lower boundaries of the retinal nerve fiber layer were determined from this data as described in R. Chan et al., “Anisotropic edge-preserving smoothing in carotid B-mode ultrasound for improved segmentation and intima-media thickness measurement,” Computers in Cardiology, Cambridge, Mass., IEEE, 2000. In the polarization analysis, the normalized surface Stokes vectors were compared with the normalized Stokes vectors at a certain depth to determine the depth-resolved phase retardation, as described in C. E. Saxer et al., “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Optics Letters, 2000, Vol. 25(18), pp. 1355-1357, B. Cense et al., “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett., 2002, Vol. 27(18), pp. 1610-1612, B. Cense et al., “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” Journal of Biomedical Optics, 2004, Vol. 9(1), pp. 121-125, and B. Cense et al., “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Investigative Ophthalmology & Visual Science, 2004, Vol. 45(8), pp. 2606-2612.
For the data obtained from a healthy volunteer, the surface Stokes vector was selected to be 10 μm below the automatically-detected surface, and for the glaucoma patient, a value of 3 μm has been selected to preserve as many points as possible for accurate data extraction. Moving-average filters were used to reduce the influence of speckle noise. In the horizontal direction over 20 A-lines were averaged, while in the vertical direction over 3 points were averaged which corresponds to 10 μm. The thickness and birefringence of the retinal nerve fiber layer tissue was measured as a function of sector and radius. Each circular scan was divided in 50 sectors of 7.2°. The 50 sectors almost matched the 48 sectors that were used for the time-domain data.
Data sets that were acquired with linear scans were processed into a surface image, substantially equivalent to those made with either a fundus camera, a scanning laser ophthalmoscope or with a scanning laser polarimeter. This was performed by summing intensity values per A-line to one value corresponding to an integrated reflectivity along each depth profile. Fir example, a three-dimensional volume data set can be projected to a two-dimensional image, which appears as a fundus image.
Results Obtained From a Healthy Subject
A set of linear scans (6.4×6.4 mm, 500×250 data points, acquired at 7.5 kHz), processed in a fundus-like image using the exemplary embodiment of the present invention is illustrated in
For example, circular scans made at 30 kHz and 7.5 kHz were analyzed and compared with each other. The 7.5 kHz data set demonstrated a higher signal-to-noise ratio (˜41 dB vs. ˜36 dB), and did not contain noticeable motion artifacts.
The dynamic range of the image is 38.5 dB (in the same data set, images with a dynamic range up to 44 dB were found). Strong reflections are represented by black pixels in
Both data sets were analyzed to compare the thickness and double-pass phase retardation per unit depth (DPPR/UD) as a function of sector and radius. The data set acquired at 30 kHz was compared with the one taken at 7.5 kHz, as well as with the data set that was previously acquired with the time-domain system at 256 Hz.
The spectral-domain OCT measurements averaged over one sector are discussed below, starting with a measurement in the temporal section, taken from the data shown in
For example, in the temporal area, the RNFL is thin and a relatively low DPPR/UD value can be obtained. The superior sector contains thicker RNFL tissue with a higher birefringence. Nasal plots demonstrate thin RNFL and low birefringence, while inferior plots show thick RNFL with high DPPR/UD values. Thickness values were plotted as a function of radius and sector, and data points taken at one radius were connected with a line. The thickness of the line indicates the radius of the scan, with thicker lines of scans closer to the optic nerve head. DPPR/UD values were also plotted as a function of radius and sector, with data points at a certain radius bearing the same symbol. The mean DPPR/UD value per sector was determined and a line connected mean values per sector. The standard error (SE) of the mean was determined and is represented in the graphs by error bars.
Comparing the thickness graphs of
Discussion of Exemplary Results Obtained From the Healthy Subject
Comparing the time-domain DPPR/UD plot shown in
Results of a glaucoma subject
The glaucoma patients were imaged with the exemplary PS-SD-OCT system, arrangement and method. A particular data set had a signal-to-noise ratio that was beneficial to be analyzed. This data set was obtained from the left eye of an 81-year old white female. She had undergone cataract surgery 6 years earlier, which possibly lead to the relatively high image quality. Her best-corrected visual acuity was 20/20, and the internal fixation spot was used to stabilize the eye. The visual field test results showed a superior visual field defect, which should result in a thinner nerve fiber layer in the inferior area (i.e., the vision of the eye may be inverted). The reported field defect was relatively small.
Compared to the scans made in the healthy subjects (e.g., the image shown in
In the structural intensity image shown in
After analyzing all sectors at all radii, thickness and DPPR/UD plots were combined in two graphs. For example, the thickness graph shown in
The DPPR/UD graph shown in
Based on the analysis of the results from the healthy subjects, another averaging procedure has been developed in accordance with a further exemplary embodiment of the present invention to reduce the possible effects of the slightly noisier DPPR graphs. For example, according to this procedure, the data was analyzed again, and an averaging filter has been implemented to average the Stokes parameters of 40 A-lines. Data was consequently mapped over fewer data points in the scan, decreasing the number of sectors by a factor of 2.
The maximum mean DPPR/UD value measured in this patient with the PS-SD-OCT systems and procedures was approximately 0.4°/μm, while the minimum mean value may be approximately 0.15°/μm. These values are approximately equivalent to a birefringence of 4.8×10−4 and 1.8×10−4, respectively, measured at 840 nm.
Discussion of Results of the Glaucoma Subjects
According to the exemplary embodiments of the present invention, it is believed that glaucoma causes a decrease of the RNFL birefringence, since less birefringent amorphous glial cells would replace the well aligned and birefringent nerve fibers. Although the inferior area of the glaucoma patient may be relatively thin as a result of glaucoma, most of the DPPR/UD values in this area appeared normal. There was a slight depression in the region between the inferior and temporal area, which can be observed in some healthy subjects as well, but between the nasal and inferior areas, normal inferior values occur. The peak value of approximately 0.4°/μm is very similar to the DPPR/UD value in the superior area, and those of the inferior and superior area of the healthy subjects.
Most of the RNFL in the inferior area is only slightly thicker than 75 μm. For a time-domain measurement at the same signal-to-noise ratio, the DPPR/UD measurements are generally reliable. However, these measurements were obtained at a lower signal-to-noise ratio than measurements obtained from the healthy subject (shown in
Further, a higher signal-to-noise ratio (SNR) can be achieved in several ways in accordance with the exemplary embodiments of the present invention. As an initial matter, SNR can be improved by increasing the source arm power. The ANSI standards provide for a use of a higher power than 600 μW for the scanning beams. At an acquisition speed of 7.5 kHz, a scan length of 9.4 mm (scan with the shortest radius) and a scan time of 132 ms per scan, the power can be increased by a factor of 15 to approximately 9 mW. Further, it is possible to reduce the scan rate, without increasing the power. For example, reliable DPPR/UD results can be obtained by slowing down the scan rate to about 3 kHz. A longer acquisition time may become problematic for the glaucoma patients, since motion artifacts are more likely to occur. A retina tracker can avoid such artifacts, and also automatically rescan areas that were missed because of blinks, as described in R. D. Ferguson et al., “Tracking optical coherence tomography,” Optics Letters, 2004, Vol. 29(18), pp. 2139-2141. Since spectral-domain measurements in the healthy subject match well with those obtained in the time-domain measurements, another option can be to perform the exemplary procedures according to the present invention on young subjects with glaucoma.
The birefringence of a healthy RNFL tissue, measured in one healthy subject with spectral-domain polarization-sensitive OCT systems, arrangements and methods according to exemplary embodiments of the present invention, can be constant as a function of scan radius, and may vary as a function of position around the ONH, with higher values occurring superior and inferior to the ONH. The measured mean DPPR/UDs around the ONH in one healthy subject varied between 0.20 and 0.45°/μm. These values may be equivalent to birefringence of 2.4×10−4 and 5.4×10−4, measured at a wavelength of 840 nm.
Measurements in a glaucoma subject with a small visual field defect demonstrate nerve fiber layer thinning in inferior sectors due to glaucoma. The polarization-sensitive measurements according to the exemplary embodiments of the present invention likely indicate that a portion of the nerve fiber layer tissue in these sectors is as birefringent as the healthy tissue.
Certain exemplary systems, arrangements, products, processes, services, procedures or research tools which can be used together with or incorporate the exemplary embodiments of the system, arrangement and method according to the present invention can include, but not limited to:
Park et al, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” Journal of Biomedical Optics, 2001, Vol. 6(4), pp. 474-9, and to perform a skin cancer detection by measuring the collagen content of the skin as described in M. C. Pierce et al., “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” Journal of Biomedical Optics, 2004, Vol. 9(2), pp. 287-291, and M. C. Pierce et al., “Advances in Optical Coherence Tomography Imaging for Dermatology,” J Invest Dermatology, 2004, Vol. 123(3), pp. 458-463,
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
This application is based upon and claims the benefit of priority from U.S. Patent Application Ser. No. 60/674,008, filed Apr. 22, 2005, the entire disclosure of which is incorporated herein by reference.
The invention was made with the U.S. Government support under Contract No. RO1 EY014975 and RO1RR019768 awarded by the National Institute of Health, and Contract No. F49620-021-1-0014 awarded by the Department of Defense. Thus, the U.S. Government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
60674008 | Apr 2005 | US |