This application claims the benefit and priority of Chinese Patent Application No. 201510187830.4 filed Apr. 20, 2015. The entire disclosure of the above application is incorporated herein by reference.
The present disclosure relates to the display technical field, and particularly, to an array substrate, display device and image display method.
This section provides background information related to the present disclosure which is not necessarily prior art.
With the continuous development of display technology, Organic Light Emitting Diode (OLED), Plasma Display Panel (PDP) and Liquid Crystal Display (LCD) and other flat panel display are developed rapidly.
Taking existing LCD as an example, on the array substrate side in the existing LCD, as shown in
Therefore, how to improve the presence of poor stripes in a flat panel display is a technical problem those skilled in the art need to solve.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
Embodiments of the present invention provide a substrate array, display device and image display method, for the presence of flat panel displays to improve the presence of poor stripes in a flat panel display.
Therefore, embodiments of the present disclosure provide an array substrate, comprising: a base substrate and a plurality of sub-pixel units arranged in matrix on the base substrate; each of the sub-pixel units is composed of four rows and three columns of sub-pixels; in each of the sub-pixel units, the first row is a first sub-pixel, a second sub-pixel and a third sub-pixel sequentially, the second row is a third sub-pixel, a first sub-pixel and a second sub-pixel sequentially, the third row is a second sub-pixel, a third sub-pixel and a first sub-pixel sequentially, the fourth row of sub-pixels are the same as the second row of sub-pixels; the first sub-pixel, the second sub-pixel and the third sub-pixel have resistance colors different from each other; further comprising: a plurality of gate lines and a plurality of data lines located on the base substrate, intersected and insulated one another;
among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other; in each group, all of the sub-pixels are electrically connected with a same data line; each row of the sub-pixels corresponds to two gate lines, and in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with one of the two gate lines corresponding to this row of the sub-pixels respectively.
In one possible implementation, in the array substrate provided in the embodiments of the present disclosure, in each row of the sub-pixels, odd columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and even columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels; or
in each row of the sub-pixels, even columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and odd columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels.
Embodiments of the present disclosure further provide a display device comprising the array substrate provided in the embodiments of the present disclosure.
With respect to the display device provided in the embodiments of the present disclosure, the embodiments of the present disclosure further provide an image display method, comprising:
when displaying one frame of image, loading a gray scale signal for each of the sub-pixels, so that each of the first sub-pixels displays a first gray scale, each of the second sub-pixels displays a second gray scale, and each of the third sub-pixels displays a third gray scale; wherein, the first gray scale, the second gray scale and the third gray scale are mutually different.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the first sub-pixels is green, in one frame of display image, the first gray scale is less than the second gray scale, and greater than the third gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale is 127, the second gray scale is 255, and the third gray scale is 0.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the second sub-pixels is green, in one frame of display image, the second gray scale is greater than the first gray scale, and less than the third gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale is 0, the second gray scale is 127, and the third gray scale is 255.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the third sub-pixels is green, in one frame of display image, the third gray scale is less than the first gray scale, and greater than the second gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale is 255, the second gray scale is 0, and the third gray scale is 127.
Embodiments of the disclosure further provide an array substrate, comprising: a base substrate and a plurality of sub-pixel units arranged in matrix on the base substrate; each of the sub-pixel units is composed of six rows and four columns of sub-pixels; in each of the sub-pixel units, the first row is a first sub-pixel, a second sub-pixel, a third sub-pixel and a fourth sub-pixel sequentially, the second row is a fourth sub-pixel, a first sub-pixel, a second sub-pixel and a third sub-pixel sequentially, the third row is a third sub-pixel, a fourth sub-pixel, a first sub-pixel and a second sub-pixel sequentially, the fourth row is a second sub-pixel, a third sub-pixel, a fourth sub-pixel and a first sub-pixel sequentially, the fifth row of sub-pixels are the same as the third row of sub-pixels, and the sixth row of sub-pixels are the same as the second row of sub-pixels; the first sub-pixel, the second sub-pixel, the third sub-pixel and the fourth sub-pixel have resistance colors different from each other; further comprising: a plurality of gate lines and a plurality of data lines located on the base substrate, intersected and insulated one another;
among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other; in each group, all of the sub-pixels are electrically connected with a same data line; each row of the sub-pixels corresponds to two gate lines, and in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with one of the two gate lines corresponding to this row of the sub-pixels respectively.
In one possible implementation, in the array substrate provided in the embodiments of the present disclosure, in each row of the sub-pixels, odd columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and even columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels; or
in each row of the sub-pixels, even columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and odd columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels.
Embodiments of the present disclosure further provide a display device comprising: the array substrate provided in the embodiments of the present disclosure.
With respect to the display device provided in the embodiments of the present disclosure, the embodiments of the present disclosure further provide an image display method, comprising:
when displaying one frame of image, loading a gray scale signal for each of the sub-pixels, so that each of the first sub-pixels displays a first gray scale, each of the second sub-pixels displays a second gray scale, each of the third sub-pixels displays a third gray scale, and each of the fourth sub-pixels displays a fourth gray scale; wherein, at least three of the first gray scale, the second gray scale, the third gray scale and the fourth gray scale are mutually different.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the first sub-pixels is green, in one frame of display image, the first gray scale is less than the second gray scale and the third gray scale, and greater than the fourth gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale is 127, the second gray scale and the third gray scale are 255, and the fourth gray scale is 0.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the second sub-pixels is green, in one frame of display image, the second gray scale is greater than the first gray scale, and less than the third gray scale and the fourth gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale is 0, the second gray scale is 127, and the third gray scale and the fourth gray scale are 255.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the third sub-pixels is green, in one frame of display image, the third gray scale is less than the first gray scale and the fourth gray scale, and greater than the second gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale and the fourth gray scale are 255, the second gray scale is 0, and the third gray scale is 127.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the fourth sub-pixels is green, in one frame of display image, the fourth gray scale is less than the first gray scale and the second gray scale, and greater than the third gray scale.
In one possible implementation, in the abovementioned method provided in the embodiments of the present disclosure, in one frame of display image, the first gray scale and the second gray scale are 255, the third gray scale is 0, and the fourth gray scale is 127.
The abovementioned embodiments of the present disclosure provide the array substrate, the display device and the image display method. In the array substrate, among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other; in each group, each sub-pixel is electrically connected with a same data line; each row of the sub-pixels corresponds to two gate lines, and in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with two gate lines corresponding to this row of the sub-pixels respectively; thus, in the process of sequentially loading a gate scanning signal to each grid line within the display time of one frame, charging difference between rows of sub-pixels caused by the jump of voltage loaded on the data line may be reduced, so that display luminance difference between rows of sub-pixels may be reduced, whereby poor stripes present when a flat panel display is displaying a screen may be improved.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts or features throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
In an existing array substrate as shown in
On this basis, the present disclosure provides an array substrate in the embodiments. As shown in
Among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other. In each group, all of the sub-pixels are electrically connected with a same data line. For example, as shown in
In the array substrate provided in the embodiments of the present disclosure, among the sub-pixels, two adjacent columns of sub-pixels are grouped together, and in each group, all of the sub-pixels are electrically connected with a same data line; in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with two gate lines corresponding to this row of the sub-pixels respectively; thus, in the process of sequentially loading a gate scanning signal to each grid line within the display time of one frame, charging difference between rows of sub-pixels caused by the jump of voltage loaded on the data line may be reduced, so that display luminance difference between rows of sub-pixels may be reduced, whereby poor stripes present when a flat panel display is displaying a screen may be improved.
In specific applications, in the array substrate provided in the embodiments of the present disclosure, in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with one of the two gate lines corresponding to this row of the sub-pixels respectively. Specifically, in each row of the sub-pixels, odd columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and even columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels. Or, in each row of the sub-pixels, even columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and odd columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels (as shown in
Of course, in the array substrate provided in the embodiments of the present disclosure, two gate lines corresponding to each row of the sub-pixels are not limited to be located above and below this row of the sub-pixels respectively, and may also be located on the same side of this row of the sub-pixels, while it is not shown in the figure; and, in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with one of the two gate lines corresponding to this row of the sub-pixels respectively, but the connection way is not limited to that as shown in
Based on the same inventive concept, embodiments of the present disclosure further provide a display device comprising the array substrate provided in the embodiments of the present disclosure. The display device may be: mobile phones, tablet computers, televisions, displays, laptops, digital photo frames, navigation systems and any product or part having display function. The implementation of the display device may refer to the embodiment of the array substrate, and the same parts will not be described any more.
With respect to the display device provided in the embodiments of the present disclosure, the embodiments of the present disclosure further provide an image display method, comprising:
when displaying one frame of an image, loading a gray scale signal for each of the sub-pixels, so that each of the first sub-pixels displays a first gray scale, each of the second sub-pixels displays a second gray scale, and each of the third sub-pixels displays a third gray scale; wherein the first gray scale, the second gray scale and the third gray scale are mutually different. For example,
Since the human eye is sensitive to green, the specific mode to carry out the image display method provided in the embodiments of the present disclosure, when the resistance color of the first sub-pixel I, second sub-pixel II, and third sub-pixel III is green respectively, will be described below in detail by means of three specific examples.
When resistance color of the first sub-pixel I is green (G), and resistance colors of the second sub-pixel II and of the third sub-pixel III are red (R) and blue (B), respectively, the arrangement of sub-pixels in the array substrate as shown in
As shown in
In summary, the voltage of one part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel G, and the voltage of the other part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel G, and the voltage of all the sub-pixel G in the fourth and fifth row of sub-pixels is a jump of the voltage of sub-pixel R. Since the displayed first gray scale of the sub-pixel G is less than the displayed second gray scale of the sub-pixel R, the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel R, and the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel R, whereby in one frame of display image, the display luminance of sub-pixel G in the second and third row of sub-pixels is substantially the same as the display luminance of sub-pixel G in the fourth and fifth row of sub-pixels (as shown in
The description will be given below taking the gray scale of the display image of 0-255 as an example. Specially, when the displayed first gray scale of sub-pixel G is 127, the displayed second gray scale of sub-pixel R is 255, and the displayed third gray scale of sub-pixel B is 0, as shown in
Of course, when the resistance color of the first sub-pixel I is green (G), the resistance colors of the second sub-pixel I and third sub-pixel III may also be blue (B) and red (R) respectively, and the specific implementation thereof is similar to that in Example 1 and will not be described herein any more.
resistance color of the second sub-pixel II is green (G), and resistance colors of the first sub-pixel I and of the third sub-pixel III are red (R) and blue (B), respectively, then the arrangement of sub-pixels in the array substrate as shown in
As shown in
In summary, the voltage of one part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel G, and the voltage of the other part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel B, and the voltage of all the sub-pixel G in the fourth and fifth row of sub-pixels is a jump of the voltage of sub-pixel B. Since the displayed first gray scale of the sub-pixel G is less than the displayed second gray scale of the sub-pixel B, the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel B. And, the display luminance of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the display luminance of the sub-pixel G obtained from a jump of the voltage of the sub-pixel B, whereby in one frame of display image, the display luminance of sub-pixel G in the second and third row of sub-pixels is substantially the same as the display luminance of sub-pixel G in the fourth and fifth row of sub-pixels (as shown in
The description will be given below taking the gray scale of the display image of 0-255 as an example. Specially, when the displayed second gray scale of sub-pixel G is 127, the displayed first gray scale of sub-pixel R is 0, and the displayed third gray scale of sub-pixel B is 255, as shown in
Of course, when the resistance color of the second sub-pixel II is green (G), the resistance colors of the first sub-pixel I and third sub-pixel III may also be blue (B) and red (R) respectively, and the specific implementation thereof is similar to that in Example two and will not be described herein any more.
When resistance color of the third sub-pixel III is green (G), and resistance colors of the first sub-pixel I and of the second sub-pixel II are red (R) and blue (B), respectively, the arrangement of sub-pixels in the array substrate as shown in
As shown in
In summary, the voltage of one part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel G, and the voltage of the other part of sub-pixel G in the second and third row of sub-pixels is a jump of the voltage of sub-pixel R, and the voltage of all the sub-pixel G in the fourth and fifth row of sub-pixels is a jump of the voltage of sub-pixel R. Since the displayed third gray scale of the sub-pixel G is less than the displayed first gray scale of the sub-pixel R, the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the charging status of the sub-pixel G obtained from a jump of the voltage of the sub-pixel R. And the display luminance of the sub-pixel G obtained from a jump of the voltage of the sub-pixel G is substantially the same as the display luminance of the sub-pixel G obtained from a jump of the voltage of the sub-pixel R, whereby in one frame of display image, the display luminance of sub-pixel G in the second and third row of sub-pixels is substantially the same as the display luminance of sub-pixel G in the fourth and fifth row of sub-pixels (as shown in
The description will be given below taking the gray scale of the display image of 0-255 as an example. Specially, when the displayed third gray scale of sub-pixel G is 127, the displayed first gray scale of sub-pixel R is 255, and the displayed second gray scale of sub-pixel B is 0, as shown in
Of course, when the resistance color of the third sub-pixel III is green (G), the resistance colors of the first sub-pixel I and second sub-pixel II may also be blue (B) and red (R) respectively, and the specific implementation thereof is similar to that in Example 2 and will not be described herein any more.
Based on the same inventive concept, the embodiments of the disclosure further provide an array substrate. as shown in
among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other. Wherein, in each group, each sub-pixel is electrically connected with a same data line. For example, as shown in
In the array substrate provided in the embodiments of the present disclosure, among the sub-pixels, two adjacent columns of sub-pixels are grouped together, all of the sub-pixels in each group are electrically connected with a same data line, and in each row of sub-pixels two sub-pixels belonging to the same group are electrically connected with two gate lines corresponding to this row of sub-pixels respectively, so that in the process of loading a gate scanning signal to each gate line sequentially in the display time of one frame, the charging difference among rows of sub-pixels caused by a jump of voltage loaded on the data line may be reduced, and whereby the display luminance difference among rows of sub-pixels may be reduced and further poor stripes present when the flat display is displaying the screen.
In specific implementations, in the array substrate provided in the embodiments of the present disclosure, in each row of sub-pixels, two sub-pixels belonging to the same group are electrically connected with two gate lines corresponding to this row of sub-pixels respectively. Specifically, it may be that in each row of sub-pixels, odd columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and even columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels; or it also may be that in each row of the sub-pixels, even columns of sub-pixels are electrically connected with gate lines above this row of the sub-pixels, and odd columns of sub-pixels are electrically connected with gate lines below this row of the sub-pixels (as shown in
Of course, in the array substrate provided in the embodiments of the present disclosure, two gate lines corresponding to each row of the sub-pixels are not limited to be located above and below this row of the sub-pixels respectively as shown in
Based on the same inventive concept, embodiments of the present disclosure further provide a display device comprising the array substrate provided in the embodiments of the present disclosure. The display device may be: mobile phones, tablet computers, televisions, displays, laptops, digital photo frames, navigation systems and any product or part having display function. The implementation of the display device may refer to the embodiment of the array substrate, and the same parts will not be described any more.
With respect to the display device provided in the embodiments of the present disclosure, the embodiments of the present disclosure further provide an image display method, comprising:
when displaying one frame of image, loading a gray scale signal for each of the sub-pixels, so that each of the first sub-pixels displays a first gray scale, each of the second sub-pixels displays a second gray scale, each of the third sub-pixels displays a third gray scale, and each of the fourth sub-pixels displays a fourth gray scale; wherein, at least three of the first gray scale, the second gray scale, the third gray scale and the fourth gray scale are mutually different.
Since the human eye is sensitive to green, the specific mode to carry out the image display method provided in the embodiments of the present disclosure, when the resistance color of the first sub-pixel I, second sub-pixel II, third sub-pixel III and fourth sub-pixel IV is green respectively, will be described below, and its specific implementation is similar to that when the resistance color of the first sub-pixel I, second sub-pixel II, and third sub-pixel III as shown in
In specific implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the first sub-pixels is green, with respect to the display image in which the first gray scale is less than the second and third gray scale and the first gray scale is greater than the fourth gray scale, poor stripes may be improved.
When the gray scale of one frame of display image is 0-255, specially, with respect to the display image in which the first gray scale is 127, the second and third gray scale is 255, and the fourth gray scale is 0, the effect of improvement of poor stripes is optimum.
In specific implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the second sub-pixels is green, with respect to the display image in which the second gray scale is greater than the first gray scale, and less than the third gray scale and the fourth gray scale, poor stripes may be improved.
When the gray scale of one frame of display image is 0-255, specially, with respect to the display image in which the first gray scale is 0, the second gray scale is 127, and the third gray scale and the fourth gray scale are 255, the effect of improvement of poor stripes is optimum.
In specific implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the third sub-pixels is green, with respect to the display image in which the third gray scale is less than the first gray scale and the fourth gray scale, and greater than the second gray scale, poor stripes may be improved.
When the gray scale of one frame of display image is 0-255, specially, with respect to the display image in which the first gray scale and the fourth gray scale are 255, the second gray scale is 0, and the third gray scale is 127, the effect of improvement of poor stripes is optimum.
In specific implementation, in the abovementioned method provided in the embodiments of the present disclosure, when the resistance color of the fourth sub-pixels is green, in one frame of display image, the fourth gray scale is less than the first gray scale and the second gray scale, and greater than the third gray scale, poor stripes may be improved.
When the gray scale of one frame of display image is 0-255, specially, in one frame of display image in which the first gray scale and the second gray scale are 255, the third gray scale is 0, and the fourth gray scale is 127, the effect of improvement of poor stripes is optimum.
The abovementioned embodiments of the present disclosure provide the array substrate, the display device and the image display method. In the array substrate, among the sub-pixels two adjacent columns of sub-pixels are grouped together, and sub-pixels in different groups do not overlap each other. In each group, all of the sub-pixels are electrically connected with a same data line. Each row of the sub-pixels corresponds to two gate lines, and in each row of the sub-pixels, two sub-pixels belonging to the same group are electrically connected with two gate lines corresponding to this row of the sub-pixels respectively. Thus, in the process of sequentially loading a gate scanning signal to each grid line within the display time of one frame, charging difference between rows of sub-pixels caused by the jump of voltage loaded on the data line may be reduced, so that display luminance difference between rows of sub-pixels may be reduced, whereby poor stripes present when a flat panel display is displaying a screen may be improved.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0187830 | Apr 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20030123013 | Han | Jul 2003 | A1 |
20060081850 | Lee | Apr 2006 | A1 |
20070279344 | Kimura | Dec 2007 | A1 |
20080165102 | Tsai | Jul 2008 | A1 |
20100002021 | Hashimoto | Jan 2010 | A1 |
20100109994 | Lee | May 2010 | A1 |
20110102309 | Cho | May 2011 | A1 |
20140266995 | Cho | Sep 2014 | A1 |
20160233234 | Yang | Aug 2016 | A1 |
20170301696 | Yang | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
104483794 | Jan 2015 | CN |
Number | Date | Country | |
---|---|---|---|
20160307525 A1 | Oct 2016 | US |