These and/or other aspects and advantages of the present general inventive concept will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments of the present general inventive concept, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present general inventive concept by referring to the figures.
Referring to
The image dividing unit 100 divides an image into a plurality of images. Here, the image to be printed may be printing data, which is received from a host, such as a computer.
Each of the plurality of images divided from the image to be printed by the image dividing unit 100 has the same size as the entire size (full size) of the image to be printed, and is composed of a portion of entire pixels forming the image to be printed. When the image has a main resolution, the divided images have sub-resolutions.
The image dividing unit 100 may be a firmware, which is built into the array type multi-pass inkjet printer. The firmware may be a program that permanently forms a portion of its device into which the program itself is built.
The image dividing unit 100 divides the image to be printed into the plurality of images, so that each of the plurality of images has the same size as the entire size of the image to be printed, but has the number of dots (pixels) smaller than that of the image to be printed and the dots to be printed arranged in a predetermined dividing direction to be different from those of other divided images. Here, the predetermined dividing direction may be any one of a vertical dividing direction, a horizontal dividing direction, and a random dividing direction.
An image dividing method of the image dividing unit 100 will be described in details later with reference to
Referring to
The printing unit 200 can further includes a position detecting sensor 201, which sense whether the printing medium reversely moved by the feedback unit 300 is positioned at the same position as that thereof in a previous printing operation. The position detecting sensor detects a side edge and/or a front (leading) edge of the printing medium thus to sense whether the printing medium is positioned at the same position as that thereof in the previous printing operation. If the printing medium is positioned at the same position, the printing unit 200 continues to carry out the printing operation, but if not, can correct the position of the printing medium.
The plurality of nozzles is formed in a surface of the head 210, and face the printing medium. An ink outlet to eject ink is formed in an end of each nozzle, and a cap to block the ink outlet is mounted outside ends of the nozzles to cap the head 210.
As a method of ejecting the ink from the nozzles, a thermal transfer ink-ejecting method is widely used to eject the ink using heat. To employ the thermal transfer ink-ejecting method, a thin film heater for generating the heat is formed at a region adjacent to the ink outlet in each nozzle. When the heat is generated by the thin film heater, the ink is heated and changed from a liquid state to a vapor state, that is, ink bubbles are generated, to generate a change in volume. According to this, the ink is pushed by ink bubbles to eject ink droplets through the ink outlet of the nozzle.
The feedback unit 300 reversely moves the printing medium to a preceding end (a left end of
The feedback roller 310 is driven in a direction of returning the printing medium, so that the printing medium on which the one divided image printed is moved to the preceding end (feedback area B) of the printing unit 200 by a driving force of the driving motor 320.
The diverter 330 operates in connection with the feedback roller 310, and determines a path of the printing medium. Operations on the feedback roller 310 and the diverter 330 will be described in details later with reference to
The head moving unit 400 moves the head 210 by a predetermined distance in a horizontal direction. The horizontal direction may be a direction perpendicular to a feeding direction of the printing medium or parallel to a widthwise direction of the printing medium. The head moving unit 400 moves the head 210 by the predetermined distance under a control of the control unit 500 after the printing unit 200 has printed one of the plurality of divided images, so that the printing unit 200 can print another image, i.e., a next image of the plurality of divided images again using the moved head. Accordingly, even though there are dead or defective nozzles of a portion of the head, the next image can be printed again by normal nozzles. As a result, the inkjet printer can compensate for a defective portion of the image. At this time, the predetermined distance can be determined according to the number of nozzles to be moved. It is possible that the predetermined distance may be determined according to a pitch of the adjacent nozzles.
The control unit 500 controls a general operation of the array type multi-pass inkjet printer. That is, the control unit 500 controls signal inputs and signal outputs among the image dividing unit 100, the printing unit 200, the feedback unit 300 and the head moving unit 400.
When the image to be printed is divided into the plurality of images by the image dividing unit 100, the control unit 500 controls the printing unit 200 to print the one of the plurality of divided images on the printing medium in the printing area P. And then, the control unit 500 controls the feedback unit 300 to reversely move the printing medium on which the one divided image is printed to the preceding end B of the printing unit 200, and controls the printing unit 200 to print a divided image next to the printed one image on the reversely moved printing medium in the printing area P. When the printing medium is reversely moved, the printing medium moves in a direction opposite to the feeding direction of the printing medium to be printed, and then moves forward to the printing area P in the feeding direction.
The control unit 500 controls the printing unit 200 and the feedback unit 300, so that until a printing operation for the last image out of the plurality of images divided by the image dividing unit 100 is ready to perform, the above process is repeated to print the one divided image, to reversely move the printing medium on which the one divided image is printed, and to print another divided image next to the printed one image on the reversely moved printing medium.
At this time, the control unit 500 can control the head moving unit 400 to move the head 210 by the predetermined distance whenever the printing unit 200 has printed one divided image. When printing the next divided image after moving the head 210 in respective printing operations as described above, the inkjet printer can obtain the image compensated more than that obtained when the next divided image is printed without moving the head 210 every printing.
Hereinafter, a moving path of the printing medium in the array type multi-pass inkjet printer according to the present embodiment will be described with reference to
The printing medium supplied from a medium-supplying unit āCā is moved below the head 210 in the printing area P along a direction (feeding direction) of an arrow illustrated in
When the printing medium is located under the head 210, the printing unit 200 prints one image of the plurality of images divided by the image dividing unit 100 on the printing medium under a control of the control unit 500. The printing medium on which the one divided image is printed is reversely moved along the direction of the arrow illustrated in
After the printing medium is reversely moved to the preceding end of the printing unit 200 or to an inside of the feedback unit 300, that is, the feedback area B, it is moved again in a direction opposite to the direction of the arrow in
When the printing medium is moved along the direction of the arrow illustrated in
The image dividing unit 100 divides the image to be printed into the plurality of images, so that each of the plurality of divided images has the same size as the entire size of the image to be printed. However, each divided image may have the number of dots smaller than that of the image to be printed. Each divided image may have the dots arranged in any one of a vertical dividing direction, a horizontal dividing direction, and a random dividing direction to be different from those of other divided images. That is, each of the plurality of divided images has the same size as the entire size of the image to be printed, and is composed of a portion of entire pixels forming the image to be printed. A sum of pixels of all of the divided images may be the same as the entire pixels of the image to be printed.
As illustrated in
Referring to
After the printing medium is printed with a first divided image of
In order to explain a principle of the image dividing method of outputting and obtaining the final image as illustrated in
Referring to
As illustrated in
For instance, the head 210 is supposed to move in the widthwise direction by 10 pixels every printing.
As illustrated in
Referring to
When the four divided images, each of which has the dots randomly arranged differently from those of other divided images as illustrated in
The image dividing unit 100 divides an image to be printed into a plurality of images, each of which may have the same size as the entire size of the image to be printed, and may have the number of dots smaller than that of the image to be printed, and the dots are arranged to be different from those of other images (S700).
A printing medium A is supplied from the medium-supplying unit C and moved along a direction of arrow illustrated in
The printing medium A on which the first image is printed is reversely moved along a direction of arrow illustrated in
The head moving unit 400 moves the head 210 by a predetermined distance, for example, a pixel unit or a nozzle pitch, under a control of the control unit 500 (S730). Since the operation S730 is carried out to more largely increase a compensation effect on the image, so that the operation S730 can be omitted as occasion demands.
After reversely moving the printing medium A and moving the head 210, the control unit 500 controls the printing unit 200 to print a second image next to the printed first image on the printing medium A (S740).
After printing the second image, the control unit 500 determines whether the printed image is the last image out of the plurality of divided images (S750). As a result of the determination in the operation S750, if the printed image is the last image, the printing medium A is discharged to the outside (S760). If the printed image is not the last image, operations after the operation S720 are repeated till the last image is printed.
With the operations described above, the array type multi-pass inkjet printer prints the plurality of divided images having different dot arrangements on the same position of the single printing medium A, so that it prevents the final image from being unevenly outputted due to dead or defective nozzles, thereby compensating the image.
The present general inventive concept can also be embodied as computer-readable codes on a computer-readable recording medium. The computer-readable recording medium is any data storage device that can store data which can be thereafter read by a computer system. Examples of the computer-readable recording media include read-only memory (ROM), random-access memory (RAM), CD-ROMs, magnetic tapes, floppy disks, optical data storage devices, and carrier waves (such as data transmission through the Internet). The computer-readable recording medium can also be distributed over network-coupled computer systems so that the computer-readable code is stored and executed in a distributed fashion. Also, functional programs, codes, and code segments to accomplish the present general inventive concept can be easily construed by programmers skilled in the art to which the present general inventive concept pertains.
As apparent from the foregoing description, according to the embodiment of the present general inventive concept, the array type multi-pass inkjet printer and the operation method thereof can compensate the image even though the head is not replaced with a new one when there are dead nozzles in the head, and realize a singling function of the shuttle type inkjet printer, thereby realizing a high-resolution image.
Also, according to the embodiment of the present general inventive concept, the array type multi-pass inkjet printer and the operation method thereof can obtain the larger compensation effect for image, if the printing operation is carried out after moving the head by the predetermined distance prior to printing each of the plurality of images divided from the image to be printed on the printing medium.
Although a few embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the general inventive concept, the scope of which is defined in the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2006-56074 | Jun 2006 | KR | national |