The invention relates to a rail vehicle for transporting people, which is in the form of an articulated train-type multiple unit and has at least two car bodies, wherein adjacent car bodies are supported on a common central running gear and end car bodies are additionally supported on end running gears.
Rail vehicles of this kind are often used as regional vehicles, wherein supporting adjacent car bodies on common central running gears saves on running gears in comparison to a rail vehicle in which each car body has a running gear at each of its ends. A “standard articulated train” typically has a distance between the centers of the bogies of 16 m. Adjacent car bodies share a central running gear and the two car bodies at the rail vehicle ends are additionally supported on dedicated running gears which can be called end running gears. For example, in the case of a 70 m-long vehicle, a standard articulated train consists of four car bodies, wherein the two end car bodies are approximately 19 m long and the two central car bodies are approximately 16 m long. A rail vehicle of this kind has a total of 5 running gears.
A general requirement of a rail vehicle of this kind is to enable a combination of minimizing the number of all components of the rail vehicle and at the same time reducing procurement, energy and/or servicing costs.
Proceeding from the above, the object of the invention is to further develop the rail vehicle mentioned in the introductory part in such a way that the number of all components, in particular the car bodies and running gears used, is reduced while approximately maintaining a people-transporting capacity and the vehicle length.
In the case of the rail vehicle mentioned in the introductory part, this object is achieved by the characterizing features of claim 1.
According to said claim, it is provided that all of the running gears have a distance between the center of the bogies from an adjacent running gear of from 19 to 21 m and the end car bodies have a length in the range of from 24 to 28 m.
In the simplest case, the rail vehicle can therefore be constructed from two end car bodies which are supported on a common central running gear. The weight of a central car body or of the central car bodies, including the additional load and components thereof, is preferably calculated such that two central car bodies which are directly adjacent to one another and share a central running gear do not exceed a maximum permissible axle load either. In this case, the rail vehicle can be extended by further central car bodies as desired.
In comparison to the prior art, it is therefore possible to construct, for example, a 70 m-long rail vehicle from only three car bodies. The reason for this is that the car bodies provided are considerably longer than those known from the prior art. Longer rail vehicles can be realized by adding at least one further central car body and at least one further central running gear.
All of the running gears can be equipped with internally mounted bogie frames in such a way that, in the transverse direction of the running gear, wheels of the running gear are situated further on the outside than longitudinal supports of a frame of the running gear. This has the effect that the total weight of the rail vehicle is considerably reduced owing to the use of internally mounted bogie frames, so that permissible maximum axle loads of, for example, 20 t are not exceeded.
In this way, the number of components, such as air-conditioning systems, car transition points, joints or couplings, can be kept lower than in a known rail vehicle, as is explained above.
Overhangs of the end car bodies preferably extend from a center of the end running gears to the associated rail vehicle end over a length of at least 5 m. The overhangs can preferably have a length of at least 5.5 m, particularly preferably of 6 m. Overhangs of this length of the end car bodies result in the end running gears being subjected to greater loading in favor of the central running gears. This in turn allows the central running gears to be provided with less weight.
Heavy vehicle components, such as transformers, auxiliary systems and/or batteries, components in traction technology, the brake or the compressed air, of the rail vehicle can advantageously be at least partially arranged in the region of the overhangs of the end car bodies. This also leads to the central running gears being relieved of weight.
The central running gears can preferably have more than two axles. This results in the car bodies which are supported by a central running gear being distributed between at least three axles.
In a configuration with more than two, in particular three, axles, the wheel diameter of the central running gears can be smaller than the wheel diameter of the end running gears. This allows step-free passage through the rail vehicle to be achieved overall.
Exemplary embodiments of the invention will be explained in greater detail below with reference to the drawings, with functionally identical components being identified by the same reference numerals. In the drawing:
The central car body 2 rests on the central running gears 4 which are configured as Jacobs bogies with an external running gear frame. The central running gears 4 additionally support the inner ends of the end car bodies 1. In this case, the respective car bodies 1, 2 do not necessarily have to be directly supported on the central running gears 4. It is also possible for vertical forces which occur at the end of one of the car bodies to first be transmitted to the adjacent car body and from there to the relevant central running gear 4. Similarly, a vertical fulcrum between adjacent car bodies does not have to be either physically present or precisely in the center of a running gear.
Distances between the center of bogies between adjacent running gears all lie between 19 and 20 m, while the two end car bodies 1 plus half a car transition point to the central car body 2 have a length of from 25 to 26 m, and the central car body plus a car transition point is 19 to 20 m long. In this case, a length of the end car bodies 1 is at least 24 m, preferably at least 25 m, particularly preferably at least 26 m.
The multiple unit according to
A further embodiment of an articulated train-type multiple unit is illustrated in
As an alternative to this, it is possible, according to the embodiment according to
If required, further measures can be taken in order to reduce the total weight of the rail vehicle, in particular to comply with the axle load limit. For example, a three-point support of the car bodies 1, 2 (not illustrated) can be provided, so that a single spring and damper arrangement suffices. This can also lead to a reduction in an axle base of the central running gears 4, 9 with respect to the end running gears 3, 8. Curve-dependent lateral play limiting for the car bodies 1, 2 can contribute to achieving suitable widths of the car bodies 1, 2. Crowning the car bodies 1, 2 also makes a contribution in this respect. Reducing the design coefficient of friction, that is to say the quotient between a starting traction force which is established in an engine controller of the rail vehicle and the static load on the rail vehicle, to values of up to 0.19 is also beneficial here.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 217 430.9 | Sep 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/069713 | 8/28/2015 | WO | 00 |