Articulation and firing force mechanisms

Information

  • Patent Grant
  • 10022124
  • Patent Number
    10,022,124
  • Date Filed
    Thursday, June 2, 2016
    8 years ago
  • Date Issued
    Tuesday, July 17, 2018
    6 years ago
Abstract
There is provided a surgical instrument incorporating driving force mechanisms capable of transmitting a driving force through an articulated section of the surgical instrument. In one embodiment, a series of racks connect with a transfer gear to pass forces around the articulated section. In an alternative embodiment a series of cable sections and wheels or pulleys are provided to transmit a driving force through the articulated section of the surgical instrument.
Description
BACKGROUND

1. Technical field


The present disclosure relates to firing force mechanisms for use in a surgical instrument. More particularly, the present disclosure relates to firing force mechanisms capable of transmitting a firing or driving force around an angle within a surgical stapling instrument.


2. Background of Related Art


Various surgical instruments are known in the art for performing operations within a body cavity. Certain of these instruments are configured to pass through an access opening in the body of the patient. A handle portion of the instrument remains outside the body while an elongate portion of the instrument passes through the port and into the body cavity. When these types of devices are utilized, it is often difficult to orient the distal end of the elongate portion within body by manipulation of the handle portion of the instrument from outside of the body.


Unique instruments have been developed which allow the elongate portion of the instrument entering the body to bend or move within the body independent of the position of the handle portion of the instrument outside the body. These “articulating” surgical instruments employ various mechanisms to cause the elongate portion to bend or be reoriented within the body.


While it is relatively easy for the elongate portion of instrument to be bent or reoriented within the body, the ability to transmit an actuation or driving force around the bend to an end effector associated with the elongate portion poses difficulties. These difficulties include loss of force due to bowing or flexing of the drive elements as they pass around the bend in the elongate portion, etc.


SUMMARY

There is provided a surgical instrument including a handle having an elongate tubular member extending distally from the handle. The elongate tubular member has a proximal portion, a distal portion and an articulation section positioned between the distal and proximal portions. The articulation section allows the distal portion to move relative to the proximal section.


A drive force mechanism is provided in the surgical instrument and includes a drive element positioned in the proximal portion, a transfer bar positioned in the distal portion and a transfer device positioned in the articulation section. The transfer device receives a driving force from the drive element and reorients the driving force around the articulation section and toward the transfer bar. The transfer device is rotatably mounted in the articulation section.


The transfer device is rotatably mounted in the articulation section. In one embodiment, the drive element is a gear rotatably mounted at a point of articulation. The drive element includes a rack engagable with the gear so as to rotate the gear in response to longitudinal motion of the rack. The transfer bar includes a rack engagable with the gear such that rotation of the gear moves the transfer bar longitudinally within the distal portion.


In an alternative embodiment the transfer device includes at least one wheel rotatably mounted in the articulation section. The drive element is a flexible cable which passes around the at least one wheel. The drive mechanism includes a toggle rotatably mounted in the distal portion, a first end of the toggle being connected to the transfer bar. A second end of the toggle is connected to the cable. The cable has an upper section and a lower section, the upper section being connected to the first end of the toggle and the lower section being connected to the second end of the toggle.


The surgical instrument further includes an actuator positioned in the distal portion to operate an end effector associated with the surgical instrument. The transfer bar is engagable with the actuator and includes a drive tooth engagable with the actuator.


In a specific embodiment, the drive tooth is releasably engagable with the actuator. The actuator includes a plurality of abutments and the drive tooth includes a drive face engagble within the abutments. The drive tooth also includes a proximal sloped face, the proximal sloped face is engagable with the abutments to disengage the drive tooth from the abutments.





DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently driving force mechanisms are disclosed herein with reference to the drawings, wherein:



FIG. 1 is a perspective view of an articulating surgical stapler incorporating a first embodiment of a driving force mechanism;



FIG. 2 is a side view, partially shown in section, of a handle assembly of the surgical stapler of FIG. 1;



FIG. 3 is an enlarged perspective view, partially shown in section, of a distal end portion of the surgical stapler of FIG. 1, in a non-articulated position;



FIG. 4 is a perspective view of force transferring components of the surgical instrument of FIG. 1;



FIG. 5 is a perspective view, partially shown in section, of the distal end portion of the surgical stapler of FIG. 1 shown in an articulated position, positioned about a tissue section;



FIG. 6 is a perspective view similar to FIG. 5 during actuation of the surgical stapler;



FIG. 7 is an enlarged perspective view illustrating a portion of the driving force mechanism resetting for a further actuation of the surgical stapler;



FIG. 8 is an enlarged side view, partially shown in section, of a staple cartridge and anvil of the surgical stapler during initial actuation;



FIG. 9 is an enlarged side view, similar to FIG. 8, illustrating further actuation of the surgical stapler to staple the tissue section;



FIG. 10 is a side view, partially shown in section, of a handle assembly of a surgical stapler incorporating an alternative embodiment of a driving force mechanism;



FIG. 11 is a perspective view, partially shown in section, of a distal end portion of the surgical stapler of FIG. 10, shown in a non-articulated position;



FIG. 12 is a perspective view, partially shown in section, of the distal end portion of the surgical stapler of FIG. 10, shown in an articulated position, positioned about tissue;



FIG. 13 is a perspective view similar to FIG. 12 during actuation; and



FIG. 14 is an enlarged perspective view of a portion of the driving force mechanism resetting for a further actuation.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed driving force mechanisms for use in surgical instruments will now be described in detail with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views. As is common in the art, the term “proximal” refers to that part or component closer to the user or operator, i.e. user, surgeon or physician, while the term “distal” refers to that part or component further away from the user.



FIG. 1 illustrates a surgical stapler 10 incorporating one embodiment of a driving force mechanism. Surgical stapler 10 generally includes a handle 12 and a distal end portion 14 extending distally from handle 12. Distal end portion 14 is configured for endoscopic use and includes an elongate tubular member 16 extending from a distal end 18 of handle 12. A jaw assembly 20 is mounted on a distal end 22 of elongate tubular member 16 and includes a staple cartridge 24 and an anvil 26. Anvil 26 is mounted for movement between an open position spaced apart from staple cartridge to a closed position substantially adjacent staple cartridge 24. A trigger 28 is provided on handle 12 to actuate jaw assembly 20.


Surgical stapler 10 is of the type of surgical instruments that are capable of bending or articulating about an articulation section 30 in elongate tubular member 16. Articulation section 30 is located about midway along elongate tubular member 16 separating elongate tubular member 16 into a distal portion 32 and a proximal portion 34. Elongate tubular member 16 bends about an axis “A” of articulation section 30 through an angle α. An articulation actuator 36 is provided on handle 12 to move distal portion 32 relative to proximal portion 34 about axis A (shown in FIGS. 1, 2). Articulation actuator 36 moves articulators 40 and 42 which extend from articulation actuator 36 to articulation section 30. (See FIG. 5) While not specifically shown, various mechanisms are known in the art which are capable of effecting angular movement of distal portion 32 of elongate tubular member 16 relative to proximal portion 34 of elongate tubular member 16 about axis A and through angle α. For example, linkages, flexible bands, gears, etc. In a particular embodiment angle α can be between about 0° to about 90° or more from the longitudinal axis of the proximal portion 34.


In order to properly orient jaw assembly 20 relative to tissue, surgical stapler 10 includes a rotation knob 44 rotatably mounted on handle 12. Elongate tubular member 16 is mounted in a nose cone portion 46 of rotation knob 44 and a knurled portion 48 is provided on rotation knob 44 to facilitate rotation of distal end portion 14 relative to handle 12.


Referring to FIG. 2, a driver 50 is mounted for longitudinal movement within handle 12. A pair of guide rails 52 and 54 are provided in handle to support driver 50. As noted above, trigger 28 is provided to actuate jaw assembly 20. Trigger 28 is pivotally mounted on a pivot post 56 formed in handle 20. An upper end 58 of trigger 28 is connected to driver 50 by a pivot pin 60. Movement of trigger 28 translates driver 50 within handle 12 to actuate jaw assembly 20. A return spring 62 is positioned over pivot post 56 and is engagable at a first end 64 with a projection 66 formed in handle 12. A second end 68 of guide spring 64 engages trigger 28 to bias trigger 28 to an open or unfired position.


As noted above, surgical stapler 10 includes a drive force mechanism in order to transfer an actuation force from trigger 28 to jaw assembly 20. The drive force mechanism includes a drive bar 70 provided within proximal portion 34 of elongate tubular member 16. Drive bar 70 is connected at its proximal end 72 to a rotation collar 74 rotatably mounted in handle 12. Rotation collar 74 is connected to a distal end 76 of driver 50. Rotation collar 74 is provided to allow drive rod 70, as well as other driving force mechanism components, to rotate as distal end portion 14 is rotated through manipulation of rotation knob 44.


Referring now to FIG. 3, drive rod 70 extends through proximal portion 34 to articulation section 30. A distal end 78 of drive rod 70 includes a first rack 80 to facilitate transfer of a driving force around and through articulation section 30. Drive rod 70 is routed through a guide tube 82 mounted within proximal portion 34 of elongate tubular member 16 to separate driving mechanism components from articulation components. In order to transfer a driving force through articulation section 30, a transfer device, such as transfer gear 84, is rotatably mounted within articulation section 30 on a center spindle 86. Center spindle 86 is mounted within articulation section 30 along axis A. Transfer gear 84 is engagable with drive rod 70 in a manner discussed hereinbelow. A transfer bar 88 is provided within distal portion 32 of elongate tubular member 16 and is provided to transmit forces received from drive rod 70 to jaw assembly 20. Transfer bar 88 includes a second rack 90, at a proximal end 92 thereof, which is engagable with transfer gear 84. A distal end 94 of transfer bar 88 terminates in a drive tooth 96.


Referring to FIG. 4, first rack 80 includes a plurality of first teeth 98 which are engagable with gear teeth 100 formed on transfer gear 84. Likewise, second rack 90 includes a plurality of teeth 102 also engagable with gear teeth 100 on transfer gear 84. Thus, as drive rod 70 moves longitudinally, first rack 80 rotates transfer gear 84 which in turn drives transfer bar 88 longitudinally within distal portion 32.


Referring back to FIG. 3, an actuator 104 is movably mounted within distal portion 32. A distal end 106 of actuator 104 includes a crossbar 108 which is engagable with an angled edge of anvil 26 to move anvil 26 between the open and closed positions. While not specifically shown, a knife is also associated with distal end 106 of actuator 104 to sever tissue captured between anvil 26 and staple cartridge 24. Anvil 26 includes a longitudinal slot 112 to allow passage of the knife through jaw assembly 20.


In order to receive the driving force from transfer bar 88, a proximal end 114 of actuator 104 is provided with a series of abutments 116 engagable with drive tooth 96 at distal end 94 of transfer bar 88. (See FIGS. 3 and 7) Drive tooth 96 repeatedly engages subsequent abutments 116 to incrementally advance actuator 104 within distal portion 32 and thus actuate jaw assembly 20. Actuator 104 is supported for longitudinal motion within distal portion 32 by a pair of guide channels 118 and 120. The abutments 116 may be formed as surfaces defining windows in the actuator 104, notches, pins or teeth.


The use of the disclosed driving force mechanism of surgical stapler 10 to transmit a driving force around a bend in surgical stapler will now be described. Referring initially to FIGS. 2 and 3, surgical stapler 10 is in an initial position with spring 62 biasing trigger 28 to the open or unfired position. Upper end 58 of trigger 28 places driver 50, and thus drive bar 70, in a proximal position within handle 12 (FIG. 2). As shown in FIG. 3, distal portion 32 of elongate tubular member 16 is in longitudinal alignment with proximal portion 34 and anvil 26 is in the open position spaced apart from staple cartridge 24. Transfer bar 88 and actuator 104 are also in proximal positions within distal portion 32.


Referring now to FIGS. 1 and 5, upon actuation of articulation actuator 36 (FIG. 1), articulators 40 and 42 are activated to cause elongate tubular member 16 to bend at axis A in articulation section 30 thereby positioning distal portion 32 of elongate tubular member 16 at an angle of approximately 90° relative to proximal portion 34 (FIG. 5). As noted above, various mechanisms and methods are well known in the art to accomplish the bending or articulation at articulation section 30. Jaw assembly 16 is initially positioned about a tissue section “T” to be operated on.


Referring to FIGS. 1 and 6, trigger 28 is actuated or squeezed proximally causing upper end 58 to drive driver 50 distally within handle 12. As driver 50 moves distally it moves drive bar 70 distally within proximal portion 34 of elongate tubular member 16. As best shown in FIG. 6, distal movement of drive bar 70 rotates transfer gear 84 clockwise about axis A and in the direction of arrow B. Specifically, first teeth 98 of drive bar 70 engages and rotates gear teeth 100 of transfer gear 84. Transfer gear 84 receives the driving force from drive bar 70 and transfers or “redirects” the force through angle α, here 90°, to transfer bar 88. Specifically, gear teeth 10 engage second teeth 102 in second rack 90 forcing transfer bar distally within distal portion 32 of elongate tubular member 16. Thus, the combination of drive bar 70 including first rack 80, transfer gear 84 and transfer bar 88 including second rack 90 form a drive force transfer or “redirecting” mechanism allowing a drive force to be transmitted through an angle formed in a portion of surgical stapler 10. As noted above, drive force mechanisms disclosed herein are equally applicable to other surgical instruments, such as, for example, graspers, cutters, clip appliers, etc. Further, the disclosed drive force mechanisms are equally applicable in other surgical instruments having articulation sections located at other positions on the surgical instrument, for example, at the juncture of a handle and elongate tubular member, adjacent an end effector, etc.


Referring to FIG. 7, as noted above, drive tooth 96 on transfer bar 88 engages sequential abutments 116 in ratchet or incremental fashion to move actuator 104 distally within distal portion 32 thereby actuating jaw assembly 20. In some cases it may be necessary to provide multiple activations of trigger 28 to fully actuate jaw assembly 20. For each activation of trigger 28, transfer bar 88 and specifically drive tooth 96 moves through a stroke length d1. Drive tooth has a distal drive face 122 to engage abutments 116. In order for transfer bar to pass through a return stroke, drive tooth 96 includes a proximal sloped face 124 which allows drive tooth 96 to disconnect from or “slip out of” abutments 116. Further activation of trigger 28 causes distal drive face 122 of drive tooth 96 to engage subsequent abutments 116. Guide rails 126 and 128 are provided within distal portion 32 to allow distal end 94 of transfer bar 88 to move laterally away from abutments 116, as well as guide transfer bar 88 in its longitudinal motion within distal portion 32.


Referring to FIGS. 6 and 8, upon full actuation, cross bar 108 of actuator 104 engages angled edge 110 on anvil 26 moving anvil 26 to the closed position relative to staple cartridge 24.


Referring now to FIG. 9, upon further actuation of surgical stapler 10, a staple bar 130 associated with actuator 104 is moved distally through staple cartridge 24 as actuator 104 moves distally through slot 112 in anvil 26. Staple bar 130 engages pushers 132 positioned within staple pockets 134 in staple cartridge 24. Pushers 132 drive staples 136, also positioned within staple pockets 134, toward anvil 26 such that pointed ends 138, 140 are driven through tissue T and into staple clinching pockets 142 in anvil 26 to thereby staple tissue section T. As noted above, a knife associated with actuator 104 moves distally with cross bar 108 to sever tissue T between the staple lines formed by staples 136.


Referring now to FIGS. 10-14, there is disclosed another embodiment of a drive force mechanism for use in surgical instruments such as surgical stapler 10. With initial reference to FIG. 10, surgical stapler 10 is as described hereinabove. However, in place of drive bars, racks and gears, the disclosed alternative embodiment includes a cable, wheel and/or pulley system to transfer a driving force from trigger 28 around and through articulation section 30 and to jaw assembly 20. Specifically, a wheel 150 is rotatably mounted on a pivot 152 in handle 12. Upper end 58 is connected to drive wheel 150 at pivot pin 60 so as to rotate drive wheel 150 in response to activation of trigger 28. A drive cable 154 passes around wheel 150 and extends through proximal portion 34 of elongate tubular member 16 and through articulation section 30 to distal portion 32 of elongate tubular member 16. Drive cable 154 is formed from a flexible material so as to pass around wheel 150. Drive cable 154 includes an upper section 156 and a lower section 158. As trigger 28 is activated, upper end 58 of trigger 12 rotates wheel 150 clockwise in handle 12 to advance upper section 156 distally and draw lower section 158 proximally within elongate tubular member 16. A collar 160 is provided within handle 12 and allows drive cable 154 to rotate as elongate tubular member 16 rotates in the manner described hereinabove.


Referring to FIG. 11, in order to pass the driving forces from drive cable 154 to actuator 104, a lever 162 is provided within distal portion 32 and pivotally mounted at a pivot point 166 on a centerpost 164. A distal end 168 of upper section 156 of drive cable 154 is connected to a first end 170 of lever 162 and a distal end 172 of lower section 158 is connected to a second end 174 of lever 162.


As noted above, the disclosed drive force mechanisms incorporate transfer devices positioned within articulation section 30 of surgical stapler 10 to transfer and redirect a driving force passing though elongate tubular member 16 as elongate tubular member 16 is bent through an angle α. In this embodiment, the transfer device is in the form of a pair of wheels, including an upper wheel 176 and a lower wheel 178, rotatably mounted on a spindle 180 positioned within articulation section 30. Spindle 180 is located on axis A of surgical stapler 10.


A transfer bar 182 is positioned within distal portion 32 to transfer forces between lever 162 and actuator 104. A proximal end 184 is affixed to first end 178 of lever 162 and a distal end 186 of transfer bar 182 is attached to a drive tooth 188 which functions substantially identically to drive tooth 96, described hereinabove, to engage abutments 116 and advance actuator 104 within distal portion 32.


Referring now to FIGS. 10-14, and initially with reference to FIGS. 10 and 11, in use, trigger 28 is in the unfired position with wheel 150 at rest. Proximal portion 34 of elongate tubular member 16 is in longitudinal alignment with articulation section 30 and distal portion 32. Anvil 26 is in the open position spaced apart from staple cartridge 24.


Referring to FIGS. 10 and 12, as discussed hereinabove, articulation actuator 36 is activated to bend elongate tubular member 16 at articulation section 30 and position jaw assembly 16 relative to a tissue section “T” such that anvil 26 and staple cartridge 24 are positioned about a tissue section T. Trigger 28 is activated to rotate wheel 150 clockwise drawing lower section 158 of drive cable 154 proximally and forcing or allowing upper section 156 to move distally.


As shown in FIG. 12, upper section 156 of drive cable 154 passes around upper wheel 176 in articulation section 30 while lower section 158 passes around lower wheel 178. As lower section 158 is drawn proximally, lower section 158 pulls on second end 174 of lever 162, rotating lever 162 clockwise and driving first end 170 of lever 162 distally. Distal movement of first end 170 drives transfer bar 182 distally causing drive tooth 188 to engage a abutment 116 and advance actuator 104 distally within distal portion 32 of elongate tubular member 16.


Referring to FIG. 13, and as discussed hereinabove, distal movement of actuator 104 forces crossbar 108 against angled edge 110 of anvil 26 to move anvil 26 to the closed position relative to staple cartridge 24. Subsequent activations of trigger 28 will result in further actuation of surgical stapler 10 to staple tissue T in the manner described hereinabove.


Referring to FIG. 14, drive tooth 188 also passes through stroke d1 to incrementally advance actuator 104 by successive engagements with abutments 116. Drive tooth 188 includes a distal drive face 190 for engagement with abutments and a proximal sloped face 192 which allows drive tooth 188 to disengage from a abutment 116 on a return stroke of drive tooth 188 and reengage a subsequent abutment 116.


In this manner the above described drive force mechanisms allow a driving force to be transmitted from a handle of the surgical instrument around an articulated section in the surgical instrument and, ultimately, transmitted to a jaw assembly of the surgical instrument.


It will be understood that various modifications may be made to the embodiments disclosed herein. For example, other activation mechanisms may be provided, such as, for example, gas powered, etc. Further, the disclosed driving force mechanisms are equally suited for use in surgical instruments having articulation point at or close to associated end effectors. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A method for operating a surgical instrument, the method comprising: directing a drive force through a proximal portion of an elongate tubular member of the surgical instrument;redirecting the drive force through a transfer device supported in an articulation portion of the elongate tubular member;transferring the drive force from the transfer device to a transfer bar disposed in a distal portion of the elongate tubular member while the distal portion is articulated relative to the proximal portion; andengaging the transfer bar with an actuator positioned in the distal portion to operate an end effector associated with the surgical instrument.
  • 2. The method of claim 1, further comprising generating the drive force with a drive element positioned in the proximal portion.
  • 3. The method of claim 1, further comprising rotating a gear mounted at a point of articulation in the articulation portion.
  • 4. The method of claim 1, further comprising releaseably engaging a drive tooth of the transfer bar with at least one abutment of the actuator.
  • 5. The method of claim 1, further comprising sequentially engaging a plurality of abutments of the actuator with the transfer bar to ratchet the actuator and sequentially actuate the end effector.
  • 6. The method of claim 1, further comprising rotating at least one wheel mounted at a point of articulation in the articulation portion.
  • 7. The method of claim 6, further comprising passing a flexible cable around the at least one wheel.
  • 8. The method of claim 1, wherein the drive force is a firing force that facilitates firing of the surgical instrument.
  • 9. A method for operating a surgical instrument, the method comprising: directing a drive force through a proximal portion of an elongate tubular member of the surgical instrument;redirecting the drive force through a transfer device supported in an articulation portion of the elongate tubular member;transferring the drive force from the transfer device to a transfer bar disposed in a distal portion of the elongate tubular member while the distal portion is articulated relative to the proximal portion;rotating a gear mounted at a point of articulation in the articulation portion; andaxially moving a rack positioned in the proximal portion to rotate the gear about the point of articulation.
  • 10. A method for operating a surgical instrument, the method comprising: directing a drive force through a proximal portion of an elongate tubular member of the surgical instrument;redirecting the drive force through a transfer device supported in an articulation portion of the elongate tubular member;transferring the drive force from the transfer device to a transfer bar disposed in a distal portion of the elongate tubular member while the distal portion is articulated relative to the proximal portion;rotating a gear mounted at a point of articulation in the articulation portion; andaxially moving the transfer bar within the distal portion in response to rotation of the gear.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/944,913 filed Jul. 18, 2013, now U.S. Pat. No. 9,381,016, which is a continuation of U.S. application Ser. No. 13/623,156 filed Sep. 20, 2012, now U.S. Pat. No. 8,496,152, which is a continuation of U.S. application Ser. No. 13/095,560 filed Apr. 27, 2011, now U.S. Pat. No. 8,292,148, which is a continuation of U.S. application Ser. No. 12/261,283 filed Oct. 30, 2008, now U.S. Pat. No. 7,954,685, which claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/985,663, filed on Nov. 6, 2007, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (394)
Number Name Date Kind
3079606 Bobrov et al. Mar 1963 A
3490675 Green et al. Jan 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4244372 Kapitanov et al. Jan 1981 A
4429695 Green Feb 1984 A
4505414 Filipi Mar 1985 A
4589413 Malyshev et al. May 1986 A
4602634 Barkley Jul 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4892244 Fox et al. Jan 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5246156 Rothfuss et al. Sep 1993 A
RE34519 Fox et al. Jan 1994 E
5282807 Knoepfler Feb 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5376095 Ortiz Dec 1994 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5579107 Wright et al. Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5716366 Yates Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5954259 Viola et al. Sep 1999 A
5980510 Tsonton et al. Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6269977 Moore Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6463623 Ahn et al. Oct 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6612053 Liao Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6731473 Li et al. May 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6808262 Chapoy et al. Oct 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7278563 Green Oct 2007 B1
7328828 Ortiz et al. Feb 2008 B2
7404508 Smith et al. Jul 2008 B2
7419080 Smith et al. Sep 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7543731 Green et al. Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7588176 Timm et al. Sep 2009 B2
7654431 Hueil et al. Feb 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7954685 Viola Jun 2011 B2
8292148 Viola Oct 2012 B2
8496152 Viola Jul 2013 B2
8939343 Milliman Jan 2015 B2
9381016 Viola Jul 2016 B2
9445811 Farascioni Sep 2016 B2
9498216 Williams Nov 2016 B2
9655617 Cappola May 2017 B2
9668728 Williams Jun 2017 B2
9717498 Aranyi Aug 2017 B2
9820737 Beardsley Nov 2017 B2
20020004498 Doherty et al. Jan 2002 A1
20020009193 Deguchi Jan 2002 A1
20020018323 Li et al. Feb 2002 A1
20020032948 Ahn et al. Mar 2002 A1
20020036748 Chapoy et al. Mar 2002 A1
20020045442 Silen et al. Apr 2002 A1
20020069595 Knudson et al. Jun 2002 A1
20020084304 Whitman Jul 2002 A1
20020111621 Wallace et al. Aug 2002 A1
20020143346 McGuckin et al. Oct 2002 A1
20020177843 Anderson et al. Nov 2002 A1
20020188294 Couture et al. Dec 2002 A1
20020190093 Fenton Dec 2002 A1
20030009193 Corsaro Jan 2003 A1
20030105476 Sancoff et al. Jun 2003 A1
20030132268 Whitman Jul 2003 A1
20040004105 Jankowski Jan 2004 A1
20040007608 Ehrenfels et al. Jan 2004 A1
20040050902 Green et al. Mar 2004 A1
20040093029 Zubik et al. May 2004 A1
20040094597 Whitman et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040149802 Whitman Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040232199 Shelton et al. Nov 2004 A1
20040232200 Shelton et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006429 Wales et al. Jan 2005 A1
20050006430 Wales Jan 2005 A1
20050006431 Shelton et al. Jan 2005 A1
20050006432 Racenet et al. Jan 2005 A1
20050006433 Milliman et al. Jan 2005 A1
20050006434 Wales et al. Jan 2005 A1
20050023324 Doll et al. Feb 2005 A1
20050023325 Gresham et al. Feb 2005 A1
20050067457 Shelton et al. Mar 2005 A1
20050067458 Swayze et al. Mar 2005 A1
20050067459 Swayze et al. Mar 2005 A1
20050067460 Milliman et al. Mar 2005 A1
20050072827 Mollenauer Apr 2005 A1
20050103819 Racenet et al. May 2005 A1
20050119669 Demmy Jun 2005 A1
20050127131 Mastri et al. Jun 2005 A1
20050165415 Wales Jul 2005 A1
20050173490 Shelton Aug 2005 A1
20050178813 Swayze et al. Aug 2005 A1
20050184123 Scirica Aug 2005 A1
20050184124 Scirica et al. Aug 2005 A1
20050184125 Marczyk Aug 2005 A1
20050184126 Green et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050263562 Shelton et al. Dec 2005 A1
20050279804 Scirica et al. Dec 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20060000868 Shelton et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060022014 Shelton et al. Feb 2006 A1
20060022015 Shelton et al. Feb 2006 A1
20060049230 Shelton et al. Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060124688 Racenet et al. Jun 2006 A1
20060151567 Roy Jul 2006 A1
20060151568 Weller et al. Jul 2006 A1
20060175375 Shelton et al. Aug 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060201990 Mastri et al. Sep 2006 A1
20060201991 Mastri et al. Sep 2006 A1
20060226195 Scirica et al. Oct 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060289600 Wales et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070023477 Whitman et al. Feb 2007 A1
20070102472 Shelton May 2007 A1
20070102473 Shelton et al. May 2007 A1
20070102474 Shelton et al. May 2007 A1
20070102476 Shelton et al. May 2007 A1
20070106317 Shelton et al. May 2007 A1
Foreign Referenced Citations (69)
Number Date Country
5476586 Sep 1986 AU
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0 324 166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0 760 230 Mar 1997 EP
1 813 203 Aug 2007 EP
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
51-149985 Dec 1976 JP
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
08302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
9814124 Apr 1998 WO
Non-Patent Literature Citations (3)
Entry
European Search Report for corresponding EP 08253619.4-1526 application, date of completion is Apr. 29, 2009 (4 pages).
Canadian Office Action issued in corresponding Canadian Application No. 2,910,005 dated May 3, 2017.
Canadian Office Action issued in corresponding Canadian Application No. 2,910,005 dated Nov. 4, 2016.
Related Publications (1)
Number Date Country
20160310135 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
60985663 Nov 2007 US
Continuations (4)
Number Date Country
Parent 13944913 Jul 2013 US
Child 15171277 US
Parent 13623156 Sep 2012 US
Child 13944913 US
Parent 13095560 Apr 2011 US
Child 13623156 US
Parent 12261283 Oct 2008 US
Child 13095560 US