This invention relates generally to prosthetic devices and artificial limb and joint systems, including robotic, orthotic, exoskeletal limbs, and more particularly, although in its broader aspects not exclusively, to artificial feet and ankle joints.
In the course of the following description, reference will be made to the papers, patents and publications presented in a list of references at the conclusion of this specification. When cited, each listed reference will be identified by a numeral within curly-braces indicating its position within this list.
As noted in {1} {2} {3}, an artificial ankle-foot system ideally needs to fulfill a diverse set of requirements. The artificial system must be a reasonable weight and have a natural morphological shape, but still have an operational time between refueling or battery recharges of at least one full day. The system must also be capable of varying its position, impedance, and motive power in a comparable manner to that of a normal, healthy biological limb. Still further, the system must be adaptive, changing its characteristics given such environmental disturbances as walking speed and terrain variation. The embodiments of the invention that are described in this specification employ novel architectures capable of achieving these many requirements.
From recent biomechanical studies {1} {2}{3}, researchers have determined researchers have determined that early stance period ankle stiffness varies from step-to-step in wag. Furthermore, researchers have discovered that the human ankle performs more positive mechanical work than negative work, especially at moderate to fast wag speeds {1}{2}{3}. The added ankle power is important for providing adequate forward progression of the body at the end of each stance period. In distinction, for stair descent, the ankle behaves as a variable damper during the first half of stance, absorbing impact energies {2}. These biomechanical findings suggest that in order to mimic the actual behavior of the human ankle, joint stiffness, motive power, and damping must be actively controlled in the context of an efficient, high cycle-life, quiet and cosmetic ankle-foot artificial joint.
For level ground ambulation, the ankle behaves as a variable stiffness device during the early to midstance period, storing and releasing impact energies. Throughout terminal stance, the ankle acts as a torque source to power the body forward. In distinction, the ankle varies damping rather than stiffness during the early stance period of stair descent. These biomechanical findings suggest that in order to mimic the actual behavior of a human joint or joints, stiffness, damping, and nonconservative, motive power must be actively controlled in the context of an efficient, high cycle-life, quiet and cosmetic biomimetic limb system, be it for a prosthetic or orthotic device. This is also the case for a biomimetic robotic limb since it will need to satisfy the same mechanical and physical laws as its biological counterpart, and will benefit from the same techniques for power and weight savings.
In the discussion immediately below, the biomechanical properties of the ankle will be described in some detail to explain the insights that have guided the design and development of the specific embodiments of the invention and to define selected terms that will be used in this specification.
Joint Biomechanics: The Human Ankle
Understanding normal walking biomechanics provides the basis for the design and development of the artificial ankle joint and ankle-foot structures that embody the invention. Specifically, the function of human ankle under sagittal plane rotation is described below for different locomotor conditions including level-ground walking and stair/slope ascent and descent. From these biomechanical descriptions, the justifications for key mechanical components and configurations of the artificial ankle structures and functions embodying the invention may be better understood.
Level-Ground Walking
A level-ground walking gait cycle is typically defined as beginning with the heel strike of one foot and ending at the next heel strike of the same foot {8}. The main subdivisions of the gait cycle are the stance phase (about 60% of the cycle) and the subsequent swing phase (about 40% of the cycle) as shown in
Each phase and the corresponding ankle functions which occur when walking on level ground are illustrated in
CP begins at heel-strike illustrated at 103 and ends at foot-flat at 105. Simply speaking, CP describes the process by which the heel and forefoot initially make contact with the ground. In {1, 12}, researchers showed that CP ankle joint behavior was consistent with a linear spring response where joint torque is proportional to joint position. The spring behavior is, however, variable; joint stiffness is continuously modulated by the body from step to step.
After the CP period, the CD phase continues until the ankle reaches a state of maximum dorsiflexion and begins powered plantarflexion PP as illustrated at 107. Ankle torque versus position during the CD period can often be described as a nonlinear spring where stiffness increases with increasing ankle position. The main function of the ankle during CD is to store the elastic energy necessary to propel the body upwards and forwards during the PP phase {9} {3}.
The PP phase begins after CD and ends at the instant of toe-off illustrated at 109. During PP, the ankle can be modeled as a catapult in series or in parallel with the CD spring or springs. Here the catapult component includes a motor that does work on a series spring during the latter half of the CD phase and/or during the first half of the PP phase. The catapult energy is then released along with the spring energy stored during the CD phase to achieve the high plantar flexion power during late stance. This catapult behavior is necessary because the work generated during PP is more than the negative work absorbed during the CP and CD phases for moderate to fast walking speeds {1} {2} {3} {9}.
During the swing phase, the final 40% of the gait cycle, which extends from toe-off at 109 until the next heel strike at 113, the foot is lifted off the ground.
Stair Ascent and Descent
Because the kinematic and kinetic patterns at the ankle during stair ascent/descent are significantly different from that of level-ground walking {2}, a separate description of the ankle-foot biomechanics is presented in
The second phase is Powered Plantar flexion 1 (PP 1), which begins at the instant of foot flat (when the ankle reaches its maximum dorsiflexion at 203) and ends when dorsiflexion begins once again at 205. The human ankle behaves as a torque actuator to provide extra energy to support the body weight.
The third phase is Controlled Dorsiflexion 2 (CD 2), in which the ankle dorsiflexes until heel-off at 207. For the CD 2 phase, the ankle can be modeled as a linear spring.
The fourth and final phase is Powered Plantar flexion 2 (PP 2) which begins at heel-off 207 and continues as the foot pushes off the step, acting as a torque actuator in parallel with the CD 2 spring to propel the body upwards and forwards, and ends when the toe leaves the surface at 209 to being the swing phase that ends at 213.
CD1 begins at foot strike illustrated at 303 and ends at foot-flat 305. In this phase, the human ankle can be modeled as a variable damper. In CD2, the ankle continues to dorsiflex forward until it reaches a maximum dorsiflexion posture seen at 307. Here the ankle acts as a linear spring, storing energy throughout CD2. During PP, which begins at 307, the ankle plantar flexes until the foot lifts from the step at 309. In this final PP phase, the ankle releases stored CD2 energy, propelling the body upwards and forwards. After toe-off at 309, the foot is positioned controlled through the swing phase until the next foot strike at 313.
For stair ascent depicted in
The preferred embodiments of the present invention take the form of an artificial ankle system capable of providing biologically-realistic dynamic behaviors. The key mechanical components of these embodiments, and their general functions, may be summarized as follows:
The above-identified U.S. patent application Ser. No. 11/395,448 filed on Mar. 31, 2006 describes related artificial limbs and joints that employ passive and series-elastic elements and variable-damping elements, and in addition employ active motor elements in arrangements called “Biomimetic Hybrid Actuators” forming biologically-inspired musculoskeletal architectures. The electric motor used in the hybrid actuators supply positive energy to and store negative energy from one or more joints which connect skeletal members, as well as elastic elements such as springs, and controllable variable damper components, for passively storing and releasing energy and providing adaptive impedance to accommodate level ground walking as well as movement on stairs and surfaces having different slopes.
As described in application Ser. No. 11/395,448, an artificial ankle may employ an elastic member operatively connected in series with the motor between the shin member and the foot member to store energy when the relative motion of the foot and shin members is being arrested by a controllable variable damping element and to thereafter apply an additional torque to the ankle joint when the variable damping element no longer arrests the relative motion of the two members.
As further described in application Ser. No. 11/395,448, an artificial ankle may include an elastic member operatively connected in series with the motor between the shin and foot members to store energy when the foot member is moved toward the shin member and to release energy and apply an additional torque to the ankle joint that assists the motor to move the foot member away from the shin member. A controllable damping member may be employed to arrest the motion of the motor to control the amount of energy absorbed by the motor when the foot member is moved toward the shin member.
The Flex-Foot, made by Össur of Reykjavik, Iceland, is a passive carbon-fiber energy storage device that replicates the ankle joint for amputees. The Flex-Foot is described in U.S. Pat. No. 6,071,313 issued to Van L. Phillips entitled “Split foot prosthesis” and in Phillips' earlier U.S. Pat. Nos. 5,776,205, 5,514,185 and 5,181,933, the disclosures of which are incorporated herein by reference. The Flex-foot is a foot prosthesis for supporting an amputee relative to a support surface and consists of a leaf spring having multiple flexing portions configured to flex substantially independently of one another substantially completely along their length. The Flex-Foot has an equilibrium position of 90 degrees and a single nominal stiffness value. In the embodiments described below, a hybrid actuator mechanism of the kind described in the above-noted application Ser. No. 11/395,448 is used to augment a flexing foot member such as the Flex-Foot by allowing the equilibrium position to be set to an arbitrary angle by a motor and locking, or arresting the relative movement of, the foot member with respect to the shin member using a clutch or variable damper. Furthermore, the embodiment of the invention to be described can also change the stiffness and damping of the prosthesis dynamically.
Preferred embodiments of the present invention take the form of an artificial ankle and foot system in which a foot and ankle structure is mounted for rotation with respect to a shin member at an ankle joint. The foot and ankle structure preferably comprises a curved flexible elastic foot member that defines an arch between a heel extremity and a toe extremity, and a flexible elastic ankle member that connects said foot member for rotation at the ankle joint. A variable damper is employed to arresting the motion of said foot and ankle structure with respect to said shin member under predetermined conditions, and preferably includes a stop mechanism that prevents the foot and ankle structure from rotating with respect to the shin member beyond a predetermined limit position. The variable damper may further include a controllable damper, such as a magnetorheological (MR) brake, which arrests the rotation of the ankle joint by controllable amount at controlled times during the walking cycle. Preferred embodiments of the ankle and foot system further include an actuator motor for applying torque to the ankle joint to rotate said foot and ankle structure with respect to said shin member.
In addition, embodiments of the invention may include a catapult mechanism comprising a series elastic member operatively connected in series with the motor between the shin member and the foot and ankle structure. The series elastic member stores energy from the motor during a first portion of each walking cycle and then releases the stored energy to help propel the user forward over the walking surface at a later time in each walking cycle. The preferred embodiments of the invention may employ a controller for operating both the motor and the controllable damper such that the motor stores energy in the series elastic member as the shin member is being arrested by the controllable damper.
The actuator motor which applies torque to the ankle joint may be employed to adjust the position of the foot and ankle structure relative to the shin member when the foot and ankle member is not in contact with a support surface. Inertial sensing means are preferably employed to determine the relative elevation of the foot and angle structure and to actuate the motor in response to changes in the relative elevation, thereby automatically positioning the foot member for toe first engagement if the wearer is descending stairs.
These and other features and advantages of the present invention will be better understood by considering the following detailed description of two illustrative embodiments of the invention. In course of this description, frequent reference will be made to the attached drawings, which are briefly described below.
Two embodiments of an ankle-foot system contemplated by the present invention are described in detail below. The first embodiment (Embodiment 1) provides for elastic energy storage, variable-damping and a variable-orientation foot control. In addition to these capabilities, the second embodiment to be described includes a motor in series with a spring for providing joint spring stiffness control during the CP and CD phases, and a motive torque control during the PP phase of the walking cycle as described above.
Mechanical Components
The mechanical design of embodiment 1 is seen in
The elastic leaf spring seen at 601 and 701 can be made from a lightweight, efficient spring material such as carbon composite, fiberglass or a material of similar properties. As seen in
The variable-damper mechanism seen at 605 and 705 can be implemented using magnetorheological (MR), electrorheological (ER), dry magnetic particles, hydraulic, pneumatic, friction, or any similar strategy to control joint damping. For embodiment 1, a MR system is employed. Here MR fluid is used in the shear mode where a set of rotary plates shear thin layers of MR fluid. When a magnetic field is induced across the MR layers, iron particles suspended in carrier fluid form chains, increasing the shear viscosity and joint damping.
The ribbon stop seen at 603 and 703 prevents the ankle joint from dorsiflexing beyond a certain maximum dorsiflexion limit, ranging from 0 to 30 degrees depending on ankle performance requirements. The ribbon stop is uni-directional, preventing dorsiflexion but not impeding plantarflexion movements.
The actuator motor seen at 607 and 707 is a small, low-power electromagnetic motor that provides foot orientation control. The motor can exert a torque about the ankle joint (indicated at 711) to re-position the foot (the elastic leaf spring 601, 701) relative to the shank depicted at 713 when the foot is not in contact with the ground. As seen in
Control System
For a better understanding of the control sequence of the artificial ankle, a simplified 1D lumped parameter model of embodiment 1 seen in
From
Level-Ground Walking
The control sequence of Embodiment 1 for level-ground walking is depicted in
The state of each element of the ankle-foot system during the four phases of a level ground walking cycle are listed below:
The maximum dorsiflexion ankle torque during level-ground walking is in the range from 1.5 Ng to 2 Nm/kg, i.e. around 150 Nm for a 100 kg person {2}. With current technology, a variable-damper that can provide such high damping torque and additionally very low damping levels is difficult to build at a reasonable weight and size. Fortunately, the maximum controlled plantar flexion torque is small, typically in the range of 0.3 Nm/kg to 0.4 Ng. Because of these factors, a ribbon stop that engages at a small dorsiflexion angle such as 5 degrees would lower the peak torque requirements of the variable-damper since the peak controlled plantar flexion torque is considerably smaller than the peak dorsiflexion torque.
During stair descent/downhill walking, the human ankle behaves like a damper from foot strike to 90° of dorsiflexion {11}. Beyond that, the ankle behaves like a non-linear spring, storing elastic energy during controlled dorsiflexion. Taking advantage of the biomechanics of the human ankle, it is reasonable to add a passive clutch for resisting dorsiflexion movements beyond 90°, thus allowing for a smaller sized variable damper. A ribbon stop is preferred as a unidirectional clutch because it is lightweight with considerable strength in tension.
Stair Ascent
The state of each element of the ankle-foot system during these three phases of a stair ascent are listed below:
Stair Descent
The control sequence for embodiment 1 for stair descent is depicted in
The state of each element of the ankle-foot system during the four phases of stair descent are listed below:
Sensing for Embodiment 1
The ankle foot system preferably employs an inertial navigation system (INS) for the control of an active artificial ankle joint to achieve a more natural gait and improved comfort over the range of human walking and climbing activities.
To achieve these advantages, an artificial ankle joint must be controlled to behave like a normal human ankle. For instance, during normal level ground walking, the heel strikes the ground first; but when descending stairs, it is the toe which first touches the ground. Walking up or down an incline, either the toe or the heel may strike the ground first, depending upon the steepness of the incline.
A difficult aspect of the artificial ankle control problem is that the ankle joint angle must be established before the foot reaches the ground, so that the heel or toe will strike first, as appropriate to the activity. Reliable determination of which activity is underway while the foot is still in the air presents implacable difficulties for sensor systems presently employed on lower leg artificial devices.
The present invention addresses this difficulty by attaching an inertial navigation system below the knee joint, either on the lower leg segment or on the artificial foot. This system is then used to determine the foot's change in elevation since it last left the ground. This change in elevation may be used to discriminate between level ground walking and descending stairs or steep inclines. The ankle joint angle may then be controlled during the foot's aerial phase to provide heel strike for level ground walking or toe strike upon detection of negative elevation, as would be encountered descending stairs or walking down a steep incline.
Inertial navigation systems rely upon accelerometers and gyroscopes jointly attached to a rigid assembly to detect the assembly's motion and change of orientation. In accordance with the laws of mechanics, these changes may be integrated to measure changes of the system's position and orientation, relative to its initial position and orientation. In practice, however, it is found that errors of the accelerometers and gyros produce ever-increasing errors in the system's estimated position. Inertial navigation systems can address this problem in one of two ways: by the use of expensive, high precision accelerometers and gyroscopes, and by incorporating other, external sources of information about position and orientation, for instance GPS, to augment the purely inertial information. But using either of these alternatives would make the resulting system unattractive for an artificial ankle device.
However, we have found that an unaugmented, purely inertial system based on available low cost accelerometers and rate gyros can provide sufficiently accurate trajectory information to support proper control of the angle of an actuated artificial ankle system.
An Illustrative Control Algorithm
Control of an actuated artificial ankle joint may be implemented as follows:
The foot flat phase may be detected by the absence of non-centrifugal, non-gravitational, linear acceleration along the length axis of the lower leg. Push off phase may be detected by the upward acceleration along the axis of the lower leg. Elevation>0 and elevation<0 phases are recognized from the change in relative elevation computed by the INS since the end of foot flat phase.
Mechanical Design
The mechanical design of Embodiment 2 is shown in
The corresponding schematic of Embodiment 2 is seen in
One of the main challenges in the design of an artificial ankle is to have a relatively low-mass actuation system that can provide a large instantaneous output power upwards of 200 Watts during Powered Plantar Flexion (PP) {2, 11} Fortunately, the duration of PP is only 15% of the entire gait cycle, and the average power output of the human ankle during the stance phase is much lower than the instantaneous output power during PP. Hence, a catapult mechanism is a compelling solution to this problem.
The catapult mechanism is mainly composed of three components: an actuator motor, a variable damper and/or clutch and an energy storage element. The actuator can be any type of motor system, including electric, shape memory alloy, hydraulic or pneumatic devices, and the series energy storage element can be any elastic element capable of storing elastic energy when compressed or stretched. The damper can be any type of device including hydraulic, magnetorheological, pneumatic, or electrorheological.
With the parallel damper seen at 2305 in
Control System
The lumped parameter model of Embodiment 2 is shown in
The control sequence of Embodiment 2 for level-ground walking will be discussed in the next section. Stair ascent/descent can be deduced from the earlier descriptions for embodiment 1, and thus, will not be described herein.
Level-Ground Walking
The control sequence of Embodiment 2 for level-ground walking is depicted in
The state of each element of Embodiment 2 of the ankle foot system during the four phases of a level ground walking cycle are listed below:
Sensing for Embodiment 2
As with Embodiment 1, an inertial navigation system for the control of the active artificial ankle joint will be employed to achieve a more natural gait and improved comfort over the range of human walking and climbing activities. The manner in which these navigation sensors will be used is similar to that described for Embodiment 1.
Sensing and Control
As described above, investigations of the biomechanics of human limbs have revealed the functions performed by the ankle during normal walking over level ground, and when ascending or descending a slope or stairs. As discussed above, these functions may be performed in an artificial ankle joint using motors to act as torque actuators and to position the foot relative to the shin member during a specific times of walking cycle, using springs in combination with controllable dampers to act as linear springs and provide controllable damping at other times in the walking cycle. The timing of these different functions occurs during the walking cycle at times described in detail above. The specific mechanical structures, that is the combinations of motors, springs and controllable dampers used in these embodiments are specifically adapted to perform the functions needed, a variety of techniques may be employed to automatically control the motor and controllable dampers at the times needed to perform the functions illustrated, and any suitable control mechanism may be employed.
The sensors used to enable general actuator operation and control can include:
The processor 2900 preferably comprises a microprocessor which is carried on the ankle-foot system and typically operated from the same battery power source 2920 used to power the motor 2930 and the controllable dampers 2932 and 2934. A non-volatile program memory 2941 stores the executable programs that control the processing of the data from the sensors and input controls to produce the timed control signals which govern the operation of the actuator motor and the dampers. An additional data memory seen at 2942 may be used to supplement the available random access memory in the microprocessor 2900.
Instead of directly measuring the deflection of the motor series springs as noted at (4) above, sensory information from the position sensors (1) can be employed. By subtracting the ankle joint angle from the motor output shaft angle, it is possible to calculate the amount of energy stored in the motor series spring. Also, the motor series spring displacement sensor can be used to measure the torque borne by the joint because joint torque can be calculated from the motor series output force.
Many variations exist in the particular sensing methodologies employed in the measurement of the listed parameters. Although this specification describes preferred sensing methods, each has the goal of determining the energy state of the spring elements, the velocities of interior points, and the absolute movement pattern of the ankle joint itself.
The following published materials provide background information relating to the invention. Individual items are cited above by using the reference numerals which appear below and in the citations in curley brackets.
It is to be understood that the methods and apparatus which have been described above are merely illustrative applications of the principles of the invention. Numerous modifications may be made by those skilled in the art without departing from the true spirit and scope of the invention.
This application is a divisional of U.S. application Ser. No. 13/723,743, filed Dec. 21, 2012, now U.S. Pat. No. 8,734,528, which is a continuation of U.S. application Ser. No. 13/348,570, filed Jan. 11, 2012, now abandoned, which is a continuation of U.S. patent application Ser. No. 11/495,140, filed Jul. 29, 2006, now abandoned, which is a non-provisional of, and also claims the benefit of the filing date of, U.S. Provisional Patent Application Ser. No. 60/704,517 filed on Aug. 1, 2005, each of which is herein incorporated by reference. U.S. patent application Ser. No. 11/495,140 is a continuation-in-part of, and claims the benefit of the filing date of, U.S. patent application Ser. No. 11/395,448 filed on Mar. 31, 2006, now abandoned. application Ser. No. 11/395,448 was a non-provisional of, and claimed the benefit of the filing date of, U.S. Provisional Patent Application Ser. No. 60/666,876 filed on Mar. 31, 2005 and U.S. Provisional Patent Application Ser. No. 60/704,517 filed on Aug. 1, 2005, each of which is herein incorporated by reference. This application incorporates the disclosures of each of the foregoing applications herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2489291 | Henschke et al. | Nov 1949 | A |
2529968 | Sartin | Nov 1950 | A |
3016760 | Wrighton et al. | Jan 1962 | A |
3098645 | Owens | Jul 1963 | A |
3207497 | Schoonover | Sep 1965 | A |
3449769 | Mizen | Jun 1969 | A |
3844279 | Konvalin | Oct 1974 | A |
3871032 | Karas | Mar 1975 | A |
3916450 | Minor | Nov 1975 | A |
4442390 | Davis | Apr 1984 | A |
4463291 | Usry | Jul 1984 | A |
4518307 | Bloch | May 1985 | A |
4532462 | Washbourn et al. | Jul 1985 | A |
4546295 | Wickham et al. | Oct 1985 | A |
4546296 | Washbourn et al. | Oct 1985 | A |
4546297 | Washbourn et al. | Oct 1985 | A |
4546298 | Wickham et al. | Oct 1985 | A |
4569352 | Petrofsky et al. | Feb 1986 | A |
4600357 | Coules | Jul 1986 | A |
4657470 | Clarke et al. | Apr 1987 | A |
4843921 | Kremer | Jul 1989 | A |
4865376 | Leaver et al. | Sep 1989 | A |
4872803 | Asakawa | Oct 1989 | A |
4909535 | Clark et al. | Mar 1990 | A |
4921293 | Ruoff et al. | May 1990 | A |
4921393 | Andeen et al. | May 1990 | A |
4923474 | Klasson et al. | May 1990 | A |
4923475 | Gosthnian et al. | May 1990 | A |
4936295 | Crane | Jun 1990 | A |
4964402 | Grim et al. | Oct 1990 | A |
4989161 | Oaki | Jan 1991 | A |
5012591 | Asakawa | May 1991 | A |
5049797 | Phillips | Sep 1991 | A |
5062673 | Mimura | Nov 1991 | A |
5088478 | Grim | Feb 1992 | A |
5092902 | Adams et al. | Mar 1992 | A |
5112296 | Beard et al. | May 1992 | A |
5174168 | Takagi et al. | Dec 1992 | A |
5181933 | Phillips | Jan 1993 | A |
5252102 | Singer et al. | Oct 1993 | A |
5294873 | Seraji | Mar 1994 | A |
RE34661 | Grim | Jul 1994 | E |
5327790 | Levin et al. | Jul 1994 | A |
5367790 | Gamow et al. | Nov 1994 | A |
5383939 | James | Jan 1995 | A |
5405409 | Knoth | Apr 1995 | A |
5442270 | Tetsuaki | Aug 1995 | A |
5443521 | Knoth et al. | Aug 1995 | A |
5456341 | Garnjost et al. | Oct 1995 | A |
5458143 | Herr | Oct 1995 | A |
5476441 | Durfee et al. | Dec 1995 | A |
5502363 | Tasch et al. | Mar 1996 | A |
5514185 | Phillips | May 1996 | A |
5556422 | Powell, III et al. | Sep 1996 | A |
5571205 | James | Nov 1996 | A |
5643332 | Stein | Jul 1997 | A |
5650704 | Pratt et al. | Jul 1997 | A |
5662693 | Johnson et al. | Sep 1997 | A |
5701686 | Herr et al. | Dec 1997 | A |
5718925 | Kristinsson et al. | Feb 1998 | A |
5748845 | Labun et al. | May 1998 | A |
5776205 | Phillips | Jul 1998 | A |
5865770 | Schectman | Feb 1999 | A |
5885809 | Effenberger et al. | Mar 1999 | A |
5888212 | Petrofsky et al. | Mar 1999 | A |
5888213 | Sears et al. | Mar 1999 | A |
5898948 | Kelly et al. | May 1999 | A |
5910720 | Williamson et al. | Jun 1999 | A |
5932230 | DeGrate | Aug 1999 | A |
5944760 | Christensen | Aug 1999 | A |
5971729 | Kristinsson et al. | Oct 1999 | A |
5972036 | Kristinsson et al. | Oct 1999 | A |
5980435 | Joutras et al. | Nov 1999 | A |
6029374 | Herr et al. | Feb 2000 | A |
6056712 | Grim | May 2000 | A |
6067892 | Erickson | May 2000 | A |
6071313 | Phillips | Jun 2000 | A |
6136039 | Kristinsson et al. | Oct 2000 | A |
6144385 | Girard | Nov 2000 | A |
6202806 | Sandrin et al. | Mar 2001 | B1 |
6223648 | Erickson | May 2001 | B1 |
6240797 | Morishima et al. | Jun 2001 | B1 |
6267742 | Krivosha et al. | Jul 2001 | B1 |
6416703 | Kristinsson et al. | Jul 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6456884 | Kenney | Sep 2002 | B1 |
6478826 | Phillips et al. | Nov 2002 | B1 |
6485776 | Janusson et al. | Nov 2002 | B2 |
6507757 | Swain et al. | Jan 2003 | B1 |
6511512 | Phillips et al. | Jan 2003 | B2 |
6517503 | Naft et al. | Feb 2003 | B1 |
6532400 | Jacobs | Mar 2003 | B1 |
6585774 | Dean, Jr. et al. | Jul 2003 | B2 |
6589289 | Ingimarsson | Jul 2003 | B2 |
6592539 | Einarsson et al. | Jul 2003 | B1 |
6610101 | Herr et al. | Aug 2003 | B2 |
6626952 | Janusson et al. | Sep 2003 | B2 |
6660042 | Curcie et al. | Dec 2003 | B1 |
6666796 | MacCready, Jr. | Dec 2003 | B1 |
6706364 | Janusson et al. | Mar 2004 | B2 |
6752774 | Townsend et al. | Jun 2004 | B2 |
6764520 | Deffenbaugh et al. | Jul 2004 | B2 |
6811571 | Phillips | Nov 2004 | B1 |
D503480 | Ingimundarson et al. | Mar 2005 | S |
D503802 | Bjarnason | Apr 2005 | S |
6887279 | Phillips et al. | May 2005 | B2 |
6923834 | Karason | Aug 2005 | B2 |
6936073 | Karason | Aug 2005 | B2 |
6942629 | Hepburn et al. | Sep 2005 | B2 |
6945947 | Ingimundarson et al. | Sep 2005 | B2 |
6966882 | Horst | Nov 2005 | B2 |
6969408 | Lecomte et al. | Nov 2005 | B2 |
7001563 | Janusson et al. | Feb 2006 | B2 |
7025793 | Egilsson | Apr 2006 | B2 |
7029500 | Martin | Apr 2006 | B2 |
7037283 | Karason et al. | May 2006 | B2 |
D523149 | Bjarnason | Jun 2006 | S |
7063727 | Phillips et al. | Jun 2006 | B2 |
7077818 | Ingimundarson et al. | Jul 2006 | B2 |
7094058 | Einarsson | Aug 2006 | B2 |
7094212 | Karason et al. | Aug 2006 | B2 |
D527825 | Ingimundarson et al. | Sep 2006 | S |
D529180 | Ingimundarson et al. | Sep 2006 | S |
7101487 | Hsu et al. | Sep 2006 | B2 |
7105122 | Karason | Sep 2006 | B2 |
7107180 | Karason | Sep 2006 | B2 |
7118601 | Yasui et al. | Oct 2006 | B2 |
7118602 | Bjarnason | Oct 2006 | B2 |
7136722 | Nakamura et al. | Nov 2006 | B2 |
D533280 | Wyatt et al. | Dec 2006 | S |
7144429 | Carstens | Dec 2006 | B2 |
7145305 | Takenaka et al. | Dec 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7161056 | Gudnason et al. | Jan 2007 | B2 |
7169188 | Carstens | Jan 2007 | B2 |
7169189 | Bjarnason et al. | Jan 2007 | B2 |
7169190 | Phillips et al. | Jan 2007 | B2 |
7198071 | Bisbee, III et al. | Apr 2007 | B2 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7217060 | Ingimarsson | May 2007 | B2 |
7220889 | Sigurjonsson et al. | May 2007 | B2 |
7223899 | Sigurjonsson | May 2007 | B2 |
7227050 | Sigurjonsson et al. | Jun 2007 | B2 |
7230154 | Sigurjonsson | Jun 2007 | B2 |
7235108 | Carstens | Jun 2007 | B2 |
7240876 | Doubleday et al. | Jul 2007 | B2 |
7266910 | Ingimundarson | Sep 2007 | B2 |
7270644 | Ingimundarson | Sep 2007 | B2 |
7279009 | Herr et al. | Oct 2007 | B2 |
7288076 | Grim et al. | Oct 2007 | B2 |
7295892 | Herr et al. | Nov 2007 | B2 |
RE39961 | Petrofsky et al. | Dec 2007 | E |
7303538 | Grim et al. | Dec 2007 | B2 |
7304202 | Sigurjonsson et al. | Dec 2007 | B2 |
7311686 | Iglesias et al. | Dec 2007 | B1 |
7313463 | Herr et al. | Dec 2007 | B2 |
D558884 | Ingimundarson et al. | Jan 2008 | S |
7314490 | Bédard et al. | Jan 2008 | B2 |
7335233 | Hsu et al. | Feb 2008 | B2 |
7347877 | Clausen et al. | Mar 2008 | B2 |
D567072 | Ingimundarson et al. | Apr 2008 | S |
7371262 | Lecomte et al. | May 2008 | B2 |
7377944 | Janusson et al. | May 2008 | B2 |
RE40363 | Grim et al. | Jun 2008 | E |
7381860 | Gudnason et al. | Jun 2008 | B2 |
7393364 | Martin | Jul 2008 | B2 |
7396975 | Sigurjonsson et al. | Jul 2008 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7411109 | Sigurjonsson et al. | Aug 2008 | B2 |
D576781 | Chang et al. | Sep 2008 | S |
D577828 | Ingimundarson et al. | Sep 2008 | S |
7423193 | Sigurjonsson et al. | Sep 2008 | B2 |
7427297 | Patterson et al. | Sep 2008 | B2 |
7429253 | Shimada et al. | Sep 2008 | B2 |
7431708 | Sreeramagiri | Oct 2008 | B2 |
7431737 | Ragnarsdottir et al. | Oct 2008 | B2 |
7438843 | Asgeirsson | Oct 2008 | B2 |
7449005 | Pickering et al. | Nov 2008 | B2 |
7455696 | Bisbee, III et al. | Nov 2008 | B2 |
D583956 | Chang et al. | Dec 2008 | S |
7459598 | Sigurjonsson et al. | Dec 2008 | B2 |
7465281 | Grim et al. | Dec 2008 | B2 |
7465283 | Grim et al. | Dec 2008 | B2 |
7468471 | Sigurjonsson et al. | Dec 2008 | B2 |
7470830 | Sigurjonsson et al. | Dec 2008 | B2 |
7485152 | Haynes et al. | Feb 2009 | B2 |
7488349 | Einarsson | Feb 2009 | B2 |
7488864 | Sigurjonsson et al. | Feb 2009 | B2 |
D588753 | Ingimundarson et al. | Mar 2009 | S |
7503937 | Asgeirsson et al. | Mar 2009 | B2 |
7513880 | Ingimundarson et al. | Apr 2009 | B2 |
7513881 | Grim et al. | Apr 2009 | B1 |
D592755 | Chang et al. | May 2009 | S |
D592756 | Chang et al. | May 2009 | S |
7527253 | Sugar et al. | May 2009 | B2 |
7531006 | Clausen et al. | May 2009 | B2 |
7531711 | Sigurjonsson et al. | May 2009 | B2 |
7534220 | Cormier et al. | May 2009 | B2 |
7544214 | Gramnas | Jun 2009 | B2 |
7549970 | Tweardy | Jun 2009 | B2 |
D596301 | Campos et al. | Jul 2009 | S |
7578799 | Thorsteinsson et al. | Aug 2009 | B2 |
7581454 | Clausen et al. | Sep 2009 | B2 |
7597672 | Kruijsen et al. | Oct 2009 | B2 |
7597674 | Hu et al. | Oct 2009 | B2 |
7597675 | Ingimundarson et al. | Oct 2009 | B2 |
7618463 | Oddsson et al. | Nov 2009 | B2 |
7632315 | Egilsson | Dec 2009 | B2 |
7637957 | Ragnarsdottir et al. | Dec 2009 | B2 |
7637959 | Clausen et al. | Dec 2009 | B2 |
7641700 | Yasui | Jan 2010 | B2 |
7650204 | Dariush | Jan 2010 | B2 |
7662191 | Asgeirsson | Feb 2010 | B2 |
D611322 | Robertson | Mar 2010 | S |
7674212 | Kruijsen et al. | Mar 2010 | B2 |
7691154 | Asgeirsson et al. | Apr 2010 | B2 |
7696400 | Sigurjonsson et al. | Apr 2010 | B2 |
7704218 | Einarsson et al. | Apr 2010 | B2 |
D616555 | Thorgilsdottir et al. | May 2010 | S |
D616556 | Hu | May 2010 | S |
7713225 | Ingimundarson et al. | May 2010 | B2 |
D616996 | Thorgilsdottir et al. | Jun 2010 | S |
D616997 | Thorgilsdottir et al. | Jun 2010 | S |
D618359 | Einarsson | Jun 2010 | S |
7727174 | Chang et al. | Jun 2010 | B2 |
7736394 | Bedard et al. | Jun 2010 | B2 |
7745682 | Sigurjonsson et al. | Jun 2010 | B2 |
D620124 | Einarsson | Jul 2010 | S |
7749183 | Ingimundarson et al. | Jul 2010 | B2 |
7749281 | Egilsson | Jul 2010 | B2 |
7762973 | Einarsson et al. | Jul 2010 | B2 |
7771488 | Asgeirsson et al. | Aug 2010 | B2 |
7780741 | Janusson et al. | Aug 2010 | B2 |
7794418 | Ingimundarson et al. | Sep 2010 | B2 |
7794505 | Clausen et al. | Sep 2010 | B2 |
7811333 | Jonsson et al. | Oct 2010 | B2 |
7811334 | Ragnarsdottir et al. | Oct 2010 | B2 |
D627079 | Robertson | Nov 2010 | S |
7833181 | Cormier et al. | Nov 2010 | B2 |
7842848 | Janusson et al. | Nov 2010 | B2 |
D628696 | Robertson | Dec 2010 | S |
D629115 | Robertson | Dec 2010 | S |
7846213 | Lecomte et al. | Dec 2010 | B2 |
7862620 | Clausen et al. | Jan 2011 | B2 |
7863797 | Calley | Jan 2011 | B2 |
7867182 | Iglesias et al. | Jan 2011 | B2 |
7867284 | Bedard | Jan 2011 | B2 |
7867285 | Clausen et al. | Jan 2011 | B2 |
7867286 | Einarsson | Jan 2011 | B2 |
7868511 | Calley | Jan 2011 | B2 |
7879110 | Phillips | Feb 2011 | B2 |
7891258 | Clausen et al. | Feb 2011 | B2 |
7892195 | Grim et al. | Feb 2011 | B2 |
D634438 | Hu | Mar 2011 | S |
D634852 | Hu | Mar 2011 | S |
7896826 | Hu et al. | Mar 2011 | B2 |
7896827 | Ingimundarson et al. | Mar 2011 | B2 |
7896927 | Clausen et al. | Mar 2011 | B2 |
7909884 | Egilsson et al. | Mar 2011 | B2 |
7910793 | Sigurjonsson et al. | Mar 2011 | B2 |
7914475 | Wyatt et al. | Mar 2011 | B2 |
7918765 | Kruijsen et al. | Apr 2011 | B2 |
D637942 | Lee et al. | May 2011 | S |
7935068 | Einarsson | May 2011 | B2 |
D640380 | Tweardy et al. | Jun 2011 | S |
D640381 | Tweardy et al. | Jun 2011 | S |
7955398 | Bedard et al. | Jun 2011 | B2 |
7959589 | Sreeramagiri et al. | Jun 2011 | B2 |
D641482 | Robertson et al. | Jul 2011 | S |
D641483 | Robertson et al. | Jul 2011 | S |
7981068 | Thorgilsdottir et al. | Jul 2011 | B2 |
7985193 | Thorsteinsson et al. | Jul 2011 | B2 |
D643537 | Lee | Aug 2011 | S |
7992849 | Sugar et al. | Aug 2011 | B2 |
7998221 | Lecomte et al. | Aug 2011 | B2 |
8002724 | Hu et al. | Aug 2011 | B2 |
8007544 | Jonsson et al. | Aug 2011 | B2 |
8016781 | Ingimundarson et al. | Sep 2011 | B2 |
8021317 | Arnold et al. | Sep 2011 | B2 |
8025632 | Einarsson | Sep 2011 | B2 |
8025699 | Lecomte et al. | Sep 2011 | B2 |
8026406 | Janusson et al. | Sep 2011 | B2 |
D646394 | Tweardy et al. | Oct 2011 | S |
D647622 | Lee et al. | Oct 2011 | S |
D647623 | Thorgilsdottir et al. | Oct 2011 | S |
D647624 | Thorgilsdottir et al. | Oct 2011 | S |
8034120 | Egilsson et al. | Oct 2011 | B2 |
8038636 | Thorgilsdottir et al. | Oct 2011 | B2 |
8043244 | Einarsson et al. | Oct 2011 | B2 |
8043245 | Campos et al. | Oct 2011 | B2 |
RE42903 | Deffenbaugh et al. | Nov 2011 | E |
8048007 | Roy | Nov 2011 | B2 |
8048013 | Ingimundarson et al. | Nov 2011 | B2 |
8048172 | Jonsson et al. | Nov 2011 | B2 |
8052760 | Egilsson et al. | Nov 2011 | B2 |
8057550 | Clausen et al. | Nov 2011 | B2 |
8075633 | Herr et al. | Dec 2011 | B2 |
8202325 | Albrecht-Laatsch et al. | Jun 2012 | B2 |
8287477 | Herr et al. | Oct 2012 | B1 |
8371691 | Herr et al. | Feb 2013 | B2 |
8376971 | Herr et al. | Feb 2013 | B1 |
8419804 | Herr et al. | Apr 2013 | B2 |
8500823 | Herr et al. | Aug 2013 | B2 |
8512415 | Herr et al. | Aug 2013 | B2 |
8734528 | Herr et al. | May 2014 | B2 |
8864846 | Herr et al. | Oct 2014 | B2 |
8870967 | Herr et al. | Oct 2014 | B2 |
9149370 | Herr et al. | Oct 2015 | B2 |
20010029400 | Deffenbaugh et al. | Oct 2001 | A1 |
20020052663 | Herr et al. | May 2002 | A1 |
20020092724 | Koleda | Jul 2002 | A1 |
20020138153 | Koniuk | Sep 2002 | A1 |
20030093021 | Goffer | May 2003 | A1 |
20030125814 | Paasivaara et al. | Jul 2003 | A1 |
20030139783 | Kilgore et al. | Jul 2003 | A1 |
20030163206 | Yasui et al. | Aug 2003 | A1 |
20030195439 | Caselnova | Oct 2003 | A1 |
20040039454 | Herr et al. | Feb 2004 | A1 |
20040049290 | Bedard | Mar 2004 | A1 |
20040054423 | Martin | Mar 2004 | A1 |
20040064195 | Herr | Apr 2004 | A1 |
20040088025 | Gesotti | May 2004 | A1 |
20040181118 | Kochamba | Sep 2004 | A1 |
20040181289 | Bedard et al. | Sep 2004 | A1 |
20050007834 | Hidaka | Jan 2005 | A1 |
20050038525 | Doddroe et al. | Feb 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050049652 | Tong | Mar 2005 | A1 |
20050059908 | Bogert | Mar 2005 | A1 |
20050085948 | Herr et al. | Apr 2005 | A1 |
20050155444 | Otaki et al. | Jul 2005 | A1 |
20050192677 | Ragnarsdottir et al. | Sep 2005 | A1 |
20050209707 | Phillips et al. | Sep 2005 | A1 |
20050228515 | Musallam et al. | Oct 2005 | A1 |
20060004307 | Horst | Jan 2006 | A1 |
20060064047 | Shimada et al. | Mar 2006 | A1 |
20060069448 | Yasui | Mar 2006 | A1 |
20060094989 | Scott et al. | May 2006 | A1 |
20060122711 | Bedard et al. | Jun 2006 | A1 |
20060213305 | Sugar et al. | Sep 2006 | A1 |
20060224246 | Clausen et al. | Oct 2006 | A1 |
20060249315 | Herr et al. | Nov 2006 | A1 |
20060258967 | Fujil et al. | Nov 2006 | A1 |
20060264790 | Kruijsen et al. | Nov 2006 | A1 |
20060276728 | Ashihara et al. | Dec 2006 | A1 |
20070016329 | Herr et al. | Jan 2007 | A1 |
20070043449 | Herr et al. | Feb 2007 | A1 |
20070050044 | Haynes et al. | Mar 2007 | A1 |
20070123997 | Herr et al. | May 2007 | A1 |
20070129653 | Sugar et al. | Jun 2007 | A1 |
20070145930 | Zaier | Jun 2007 | A1 |
20070162152 | Herr et al. | Jul 2007 | A1 |
20070267791 | Hollander et al. | Nov 2007 | A1 |
20080114272 | Herr et al. | May 2008 | A1 |
20080155444 | Pannese et al. | Jun 2008 | A1 |
20080169729 | Asai | Jul 2008 | A1 |
20090030530 | Martin | Jan 2009 | A1 |
20090222105 | Clausen | Sep 2009 | A1 |
20090265018 | Goldfarb et al. | Oct 2009 | A1 |
20100113980 | Herr et al. | May 2010 | A1 |
20100113988 | Matsuoka et al. | May 2010 | A1 |
20100241242 | Herr et al. | Sep 2010 | A1 |
20100324699 | Herr et al. | Dec 2010 | A1 |
20110040216 | Herr et al. | Feb 2011 | A1 |
20110224804 | Clausen et al. | Sep 2011 | A1 |
20110245931 | Clausen et al. | Oct 2011 | A1 |
20110260380 | Hollander et al. | Oct 2011 | A1 |
20110264230 | Herr et al. | Oct 2011 | A1 |
20110278857 | Sugar et al. | Nov 2011 | A1 |
20120136459 | Herr et al. | May 2012 | A1 |
20120209405 | Herr et al. | Aug 2012 | A1 |
20120271433 | Galea et al. | Oct 2012 | A1 |
20130110256 | Herr et al. | May 2013 | A1 |
20130158444 | Herr et al. | Jun 2013 | A1 |
20130197318 | Herr | Aug 2013 | A1 |
20130310979 | Herr et al. | Nov 2013 | A1 |
20140046455 | Herr et al. | Feb 2014 | A1 |
20140088729 | Herr et al. | Mar 2014 | A1 |
20150051710 | Herr, et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
101061984 | Oct 2007 | CN |
101111211 | Jan 2008 | CN |
1393866 | Mar 2004 | EP |
2008-87143 | Apr 2008 | JP |
WO 0154630 | Aug 2001 | WO |
WO 03005934 | Jan 2003 | WO |
WO 03068453 | Aug 2003 | WO |
WO 2004017872 | Mar 2004 | WO |
WO 2004019832 | Mar 2004 | WO |
WO 2010027968 | Mar 2010 | WO |
WO 2010088616 | Aug 2010 | WO |
WO 2010088635 | Aug 2010 | WO |
Entry |
---|
Türker, K., “Electromyography: Some Methodological Problems and Issues,” Phys. Ther., 73: 698-710 (1993). |
Van den Bogert, A.J., “Exotendons for Assistance of Human Locomotion,” Biomedical Engineering OnLine, BioMed Central, 2(17):1-8 (2003). |
Van den Bogert, A. J., et al., “A Method for Inverse Dynamic Analysis Using Accelerometry,” J. Biochemechanics, 29(7): 949-954 (1996). |
Veltink, P.H., et al., “The Feasibility of Posture and Movement Detection by Accelerometry,” paper presented at the IEEE meeting (1993). |
Vukobratovic, M., and Juricic, D., “Contribution to the Synthesis of Biped Gait,” paper presented at the IEEE Transactions on Bio-Medical Engineering, BME-16(1) (Jan. 1969). |
Vukobratovic, M., and Stepanenko, J., Mathematical Models of General Anthropomorphic Systems, Mathematical Biosciences, 17: 191-242 (1973). |
Walsh, C.J., et al., “Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation,” Unpublished Master's thesis, Massachusetts Institute of Technology, Cambridge, MA (2006). |
Waters, R.L., et al., “Energy Cost of Walking of Amputees: The Influence of Level of Amputation,” The Journal of Bone and Joint Surgery, 58A(1): 42-46 (1976). |
Wilkenfeld, A., “Biologically Inspired Autoadaptive Control of a Knee Prosthesis,” unpublished doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA (2000). |
Wilkenfeld, A., and Herr, H., “An Auto-Adaptive External Knee Prosthesis,” MIT Lab., (No date given). |
Willemsen, A.Th.M., et al., “Automatic Stance-Swing Phase Detection from Accelerometer Data for Peroneal Nerve Stimulation,” presented at the meeting of IEEE Transactions on Biomedical Engineering, 37(12):1201-1208 (1990). |
Willemsen, A.Th.M., et al., “Real-Time Gait Assessment Utilizing a New Way of Accelerometry,” J. Biomechanics, 23(8):859-863 (1990). |
Williams, B.C., et al., “Mode Estimation of Model-Based Programs: Monitoring Systems with Complex Behavior,” paper submitted to Massachusetts Institute of Technology, Cambridge, MA, (No date given). |
Williamson, M.M., “Series Elastic Actuators,” A.I. Technical Report # 1524 submitted to Massachusetts Institute of Technology, Cambridge, Massachusetts (Jan. 1995). |
Winter, D.A., “Energy Generation and Absorption at the Ankle and Knee during Fast, Natural, and Slow Cadences,” Clinical Orthopedics and Related Research, 175: 147-154 (1983). |
Winter, D.A., and Robertson, D.G.E., “Joint Torque and Energy Patterns in Normal Gait,” Biol. Cybernetics, 29:137-142 (1978). |
Winter, D.A., and Sienko, S.E., “Biomechanics of Below-Knee Amputee Gait,” J. Biomechanics, 21(5):361-367 (1988). |
Wisse, M., “Essentials of Dynamic Walking: Analysis and Design of Two-legged Robots,” 195 pgs, (2004). |
Woodward, M.I. and Cunningham, J.L., “Skeletal Accelerations Measured During Different Exercises,” Proc. Instn. Mech. Engrs., 207: 79-85 (1993). |
Wu, G. and Ladin, Z., “The Study of Kinematic Transients in Locomotion Using the Integrated Kinematic Sensor,” IEEE Transactions on Rehabilitation Engineering, 4(3):193-200 (1996). |
Yakovenko, S., et al., “Contribution of Stretch Reflexes to Locomotor Control: A Modeling Study,” Biol. Cybern., 90: 146-155 (2004). |
Yun, X., “Dynamic State Feedback Control of Constrained Robot Manipulators.” Paper presented at the Proceedings of the 27th Conference on Decision and Control, Austin, TX (Dec. 1988). |
Zlatnik, D., et al., “Finite-State Control of a Trans-Femoral (TF) Prosthesis,” IEEE Transactions on Control Systems Technology, 10(3): 408-420 (2002). |
Abbas, J.J. et al., “Neural Network Control of Functional Neuromuscular Stimulation Systems: Computer Simulation Studies,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 11, pp. 1117-1127, Nov. 1995. |
Abul-Haj, C.J. et al., “Functional Assessment of Control Systems for Cybernetic Elbow Prostheses-Part II: Application of the Technique,” IEEE Transactions on Biomedical Engineering, vol. 17, No. 11, pp. 1037-1047, Nov. 1990. |
Akazawa, K. et al., “Biomimetic EMG-Prosthesis-Hand, 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,” Amsterdam pp. 535 and 536, 1996. |
Aminian, K. et al., “Estimation of Speed and Incline of Walking Using Neural Network,” IEEE Transactions of Instrumentation and Measurement, 44(3): 743-746 (1995). |
Anderson, F.C. et al., “Dynamic Optimization of Human Walking,” Journal of Biomechanical Engineering, 123: 381-390 (2001). |
Andrews, B.J. et al., “Hybrid FES Orthosis Incorporating Closed Loop Control and Sensory Feedback,” J. Biomed. Eng., 10: 189-195(1988). |
Arakawa, T. et al., “Natural Motion Generation of Biped Locomotion Robot Using Hierarchical Trajectory Generation Method Consisting of GA, EP Layers,” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, NM., pp. 375-379. |
Au, et al., “Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis,” Workshop on Dynamic Walking: Mechanics and Control of Human and Robot Locomotion, May 2006, Ann Arbor, MI, p. 1. |
Au, S. et al., “Powered Ankle-Foot Prosthesis to Assist Level-Ground and Stair-Descent Gaits,” Neural Networks, 21: 654-666 (2008). |
Au, S.K. et al., “An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, May 2006, pp. 2939-2945. |
Au, S.K. et al., “An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL., pp. 375-379. |
Au, S.K. et al., “Biomechanical Design of a Powered Ankle-Foot Prosthesis,” Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, pp. 298-303, Jun. 12-15, 2007. |
Au, S.K. et al., “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation,” paper presented at the Proceedings of the 29th Annual International Conference of the IEEE Eng. Med. Bio. Soc., Cité Internationale, Lyon, France, (Aug. 2007). |
Au, S.K. et al., “Powered Ankle-Foot Prosthesis Improves Walking Metabolic Economy,” IEEE Transactions on Robotics, 25(1): 51-66 (2009). |
Barth, D.G. et al., “Gait Analysis and Energy Cost of Below-Knee Amputees Wearing Six Different Prosthetic Feet,” JPO, 4(2): 63 (1992). |
Baten, Chris T.M. et al., “Inertial Sensing in Ambulatory Back Load Estimation,” paper presented at the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, 1996, pp. 497-498. |
Bateni, H. et al., “Kinematic and Kinetic Variations of Below-Knee Amputee Gait,” JPO, 14(1):1-12 (2002). |
Blaya, J. et al., “Active Ankle Foot Orthoses (AAFO),” Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, pp. 275-277. (no date given). |
Blaya, J.A. et al., “Active Ankle Foot Orthoses (AAFO),” Retrieved from: http://www.ai.mit.edu. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, pp. 251-253 (no date given). |
Blaya, J.A. et al., “Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop Foot Gait,” Artificial Intelligence Lab and Harvard-MIT Division Health Sciences and Technology, Boston, MA, 30 pages, no date given. |
Blaya, J.A. et al., “Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1): 24-31 (2004). |
Blaya, J.A. et al., “Force-Controllable Ankle-Foot Orthosis (AFO) to Assist Drop Foot Gait,” Massachusetts Institute of Technology, Feb. 2003, pp. 1-96. |
Blaya, J.A., “Force-Controllable Ankle Foot Orthosis (AFO) to Assist Drop Foot Gait,” submitted to the Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feb. 2003), 88 pages. |
Blickhan, R., “The Spring-Mass Model for Running and Hopping,” J. Biomechanics, 22(11 /12): 1217-1227 (1989). |
Bortz, J.E. “A New Mathematical Formulation for Strapdown Inertial Navigation,” IEEE Transactions on Aerospace and Electronic Systems, AES-7(1): 61-66 (1971). |
Bouten, C.V. et al., “Assessment of Energy Expenditure for Physical Activity Using a Triaxial Accelerometer,” Medicine and Science in Sports and Exercise, 26(12): 1516- 1523 (1994). |
Brockway, J.M., “Derivation of Formulae Used to Calculate Energy Expenditure in Man,” Human Nutrition: Clinical Nutrition 41C, pp. 463-471 (1987). |
Brown, T.G., “On the Nature of the Fundamental Activity of the Nervous Centres; Together with an Analysis of the Conditioning of Rhythmic Activity in Progression, and a Theory of the Evolution of Function in the Nervous System,” pp. 24-46 (no date given). |
Chu, A. et al., “On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton,” paper presented at the Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, (Apr. 2005) pp. 4556-4363. |
Colborne, G.R., et al., “Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees,” Am. J. Phys. Med. Rehabil., vol. 92, pp. 272-278, Oct. 1992. |
Colgate, J.E., “The Control of Dynamically Interacting Systems,” Massachusetts Institute of Technology, pp. 1-15, Aug. 1988. |
Collins, S.H. et al., “Controlled Energy Storage and Return Prosthesis Reduces Metabolic Cost of Walking,” ISB XXth Congress-ASB 29th Annual Meeting, Jul. 31-Aug. 5, Cleveland, Ohio, pp. 804 (no year given). |
Collins, S.H., et al., “A Bipedal Walking Robot with Efficient and Human-Like Gait,” 2005 IEEE, Int'l Conference on Robotics and Automation, Barcelona, Spain, pp. 1983-1988, (Apr. 2005). |
Collins, S.H., et al., Supporting Online Material for “Efficient Bipedal Robots Based on Passive-Dynamic Walkers,” Mechanical Engineering, University of Michigan, Feb. 11, 2005, Ann Arbor, MI, pp. 1-8. |
Crago, P.E. et al., “New Control Strategies for Neuroprosthetic Systems,” Journal of Rehabilitation Research and Development, vol. 33, No. 2, Apr. 1996, pp. 158-172. |
Pratt, J.E., et al., “The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking.” Paper presented at the Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA (Apr. 2004). |
Prochazka, A. and Yakovenko, S., “The Neuromechanical Tuning Hypothesis,” Progress in Brain Research, 165: 257-267 (2007). |
Prochazka, A., et al., “Positive Force Feedback Control of Muscles,” The American Physiological Society 77:3226-3236 (1997). |
Prochazka, A., et al., “Sensory Control of Locomotion: Reflexes Versus Higher-Level Control,” Sensorimotor Control of Movement and Posture, pp. 357-367 (2002). |
Raibert, M.H., “Legged Robots that Balance,” MIT Press, Cambridge, MA, p. 89 (1985). |
Rassier, D.E., et al., “Length Dependence of Active Force Production in Skeletal Muscle,” The American Physiological Society, pp. 1445-1457 (1999). |
Riener, R., et al., “Stair Ascent and Descent at Different Inclinations,” Gait and Posture, 15: 32-44 (2002). |
Rietman, J.S., et al., “Gait Analysis in Prosthetics: Opinions, Ideas and Conclusions,” Prosthetics and Orthotics International, 26: 50-57 (2002). |
Robinson, D.W., “Design and Analysis of Series Elasticity in Closed-Loop Actuator Force Control.” Unpublished doctoral dissertation, Massachusetts Institute of Technology (2000). |
Robinson, D.W., et al., “Series Elastic Actuator Development for a Biomimetic Walking Robot.” Paper presented at the IEEE/ASME International Conf. on Adv. Intelligent Mechatronics (Sep. 19-22, 1999). |
Rosen, J., et al., “A Myosignal-Based Powered Exoskeleton System,” IEEE Transaction on Systems, Man, and Cybernetics—Part A: Systems and Humans, 31(3):210-222 (2001). |
Ruina, A., et al., “A Collisional Model of the Energetic Cost of Support Work Qualitatively Explains Leg Sequencing in Walking and Galloping, Pseudo-Elastic Leg Behavior in Running and the Walk-To-Run Transition,” J. of Theoretical Biology, 237: 170-192 (2005). |
Rybak, I.A., et al., “Modelling Spinal Circuitry Involved in Locomotor Pattern Generation: Insights from Deletions During Fictive Locomotion,” J. Physiol., 577(2):617-639 (2006). |
Rybak, I.A., et al., “Modelling Spinal Circuitry Involved in Locomotor Pattern Generation: Insights from the Effects of Afferent Stimulation,” J. Physiol., 577(2):641-658 (2006). |
Sanderson, D.J. and Martin. P.E., “Lower Extremity Kinematic and Kinetic Adaptations in Unilateral Below-Knee Amputees During Walking,” Gait & Posture, 6(2):126-136 (1997). |
Sanger, T.D., “Human Arm Movements Described by a Low-Dimensional Superposition of Principal Components,” The J. of Neuroscience, 20(3):1066-1072 (2000). |
Saranli, U., et al., “RHex: A Simple and Highly Mobile Hexapod Robot,” The International Journal of Robotics Research, pp. 616-631 (2001). |
Sarrigeorgidis, K. and Kyriakopoulos, K.J., “Motion Control of the N.T.U.A. Robotic Snake on a Planar Surface.” Paper presented at the Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium (May 1998). |
Schaal, S. and Atkeson, C.G., “Constructive Incremental Learning from Only Local Information,” Neural Computation, 10(8): 2047-2084 (1998). |
Schaal, S., “Is Imitation Learning the Route to Humanoid Robots?”, Trends in Cognitive Sciences, 3: 233-242 (1999). |
Scott, S.H. and Winter, D.A., “Biomechanical Model of the Human Foot: Kinematics and Kinetics During the Stance Phase of Walking,” J. Biomechanics, 26(9): 1091-1104 (1993). |
Sentis, L. and Khatib, O., “Task-Oriented Control of Humanoid Robots Through Prioritization.” Paper presented at the IEEE-RAS/RSJ International Conference on Humanoid Robots, pp. 1-16 (no date given). |
Seyfarth, A., et al., “A Movement Criterion for Running,” J. of Biomechanics, 35: 649-655 (2002). |
Seyfarth, A., et al., “Stable Operation of an Elastic Three-Segment Leg,” Biol. Cybern., 84: 365-382 (2001). |
Seyfarth, A., et al., “Swing-Leg Retraction: A Simple Control Model for Stable Running,” The J. of Experimental Biology, 206: 2547-2555 (2003). |
Sinkjaer, T., et al., “Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man,” Journal of Physiology, 523.3: 817-827 (2000). |
Skinner, H.B., and Effeney, D.J., “Gait Analysis in Amputees,” American Journal of Physical Medicine, 64(2): 82-89 (1985). |
Smidt, G.L., et al., “An Automated Accelerometry System for Gait Analysis,” J. Biomechanics, 10: 367-375 (1977). |
Srinivasan, M., “Energetics of Legged Locomotion: Why is Total Metabolic Cost Proportional to the Cost of Stance Work.” ISB XXth Congress—ASB 29th Annual Meeting, Cleveland, OH (Jul. 31-Aug. 5 (no year given). |
Stepien, J., et al., “Activity Levels Among Lower-Limb Amputees: Self-Report Versus Step Activity Monitor,” Arch. Phys. Med. Rehabil., 88: 896-900 (2007). |
Sugano, S., et al., “Force Control of the Robot Finger Joint equipped with Mechanical Compliance Adjuster,” Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC (Jul. 1992). |
Sugihara, T., et al., “Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, Washington, DC (May 2002). |
Sup, F., et al., “Design and Control of a Powered Transfemoral Prosthesis,” The International Journal of Robotics Research, 27(2): 263-273 (2008). |
Supplementary European Search Report Application No. 10736533.0, “Powered Artificial Knee with Agonist-Antagonist Actuation,” dated Aug. 16, 2013. |
Supplementary European Search Report Application No. 10736550.0, “Model-Based Neuromechanical Controller for a Robotic Leg,” dated Aug. 1, 2013. |
Taga, G., “A model of the neuro-musculo-skeletal system for human locomotion,” Biol. Cybern., 73: 97-111 (1995). |
Takayuki, F., et al., “Biped Locomotion using Multiple Link Virtual Inverted Pendulum Model,” T.IEE Japan, 120-C (2): 208-214 (2000). |
Thoroughman, K., and Shadmehr, R., “Learning of action through adaptive combination of motor primitives,” Nature, 407: 742-747(2000). |
Tomovie, R., and McHee, R.B., “A Finite State Approach to the Synthesis of Bioengineering Control Systems,” IEEE Transactions on Human Factors in Electronics, 7(2): 65-69 (1966). |
Tong, K., and Granat, M., “A practical gait analysis system using gyroscopes,” Medical Engineering & Physics, 21: 87-94 (1999). |
Koganezawa, K. et al., Biomedical Engineering 1987, 2.3: Control Aspects of Artificial Leg, pp. 71-85 (1987). |
Kondak, K. et al., “Control and Online Computation of Stable Movement for Biped Robots,” Proceedings of the 2003 IEEE/RSJ, Int'l Conference on Intelligent Robots and Systems, Las Vegas, Nevada, Oct. 2003, pp. 874-879. |
Kostov, A. et al., “Machine Learning in Control of Functional Electrical Stimulation Systems for Locomotion,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 6, pp. 541-551 (Jun. 1995). |
Kuo, A.D., “A Simple Model of Bipedal Walking Predicts the Preferred Speed—Step Length Relationship,” Transactions of the ASME, vol. 123, pp. 264-269 (Jun. 2001). |
Kuo, A.D., “Energetics of Actively Powered Locomotion Using the Simplest Walking Model,” Journal of Biomechanical Engineering, vol. 124, pp. 113-120 (Feb. 2002). |
Lafortune, M.A., “Three-Dimensional Acceleration of the Tibia During Walking and Running,” J. Biomechanics, vol. 24, No. 10, pp. 877-886 (1991). |
LeBlanc, M.K. et al., “Generation and Transfer of Angular Momentum in the Javelin Throw,” American Society of Biomechanics, Presented at the 20th Annual Meeting of the American Society of Biomechanics, Atlanta, Georgia, Oct. 17-19, 1996, 4 pages. |
Li, C. et al., “Research and Development of the Intelligently-Controlled Prosthetic Ankle Joint,” Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Jun. 25-28, 2006, Luoyana, China, pp. 1114-1119. |
Light, L.H. et al., “Skeletal Transients on Heel Strike in Normal Walking with Different Footwear,” J. Biomechanics, vol. 13, pp. 477-480 (1980). |
Liu, X. et al., “Development of a Lower Extremity Exoskeleton for Human Performance Enhancement,” Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 28-Oct. 2, 2004, Sendai, Japan, 3889-3894. |
Lloyd, R. et al., “Kinetic changes associated with load carriage using two rucksack designs,” Ergonomics, vol. 43, No. 9, pp. 1331-1341 (2000). |
Luinge, H.J., Inertial Sensing of Human Movement, Twente University Press, Enschede, the Netherlands, 80 pages (Feb. 15, 1973). |
Lundberg, A., “Reflex control of stepping,” The Norwegian Academy of Science and Letters, The Nansen Memorial Lecture, Oct. 10, 1968, 40 pages. |
Macfarlane, P.A. et al., “Gait Comparisons for Below-Knee Amputees Using a Flex-Foot(TM) Versus a Conventional Prosthetic Foot,” JPO 1991, vol. 3, No. 4, pp. 150, htt://www.oandp.org/jpo/library/printArticle.asp?printArticleId=1991—04—150, Retrieved on: Feb. 9, 2012, 10 pages. |
Maganaris, C.N., “Force-length characteristics of in vivo human skeletal muscle,” Acta Physiol Scand, 172: 279-285 (2001). |
Maganaris, C.N., “Force-Length Characteristics of the In Vivo Human Gastroenemius Muscle,” Clinical Anatomy, 16: 215-223 (2003). |
Martens, W.L.J., “Exploring the Information Content and Some Applications of Body Mounted Piezo-Resistive Accelerometers,” PhyVision b.v., Gernert, The Netherlands, pp. 9-12, no date given. |
Maufroy, C. et al., “Towards a general neural controller for quadrupedal locomotion,” Neural Networks, 21: 667-681 (2008). |
Mayagoitia, R.E. et al., “Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems,” Journal of Biomechanics, 35: 537-542 (2002). |
McFadyen, B.J. et al., “An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent,” J. Biomechanics, vol. 21, No. 9, pp. 733-744 (1988). |
McGeer, T., “Passive Dynamic Walking,” The International Journal of Robotics Research, 9, pp. 62-88 (1990). |
McGeer, T., Chapter 4: “Principles of Walking and Running,” Advances in Comparative and Environmental Physiology, Chapter 4, pp. 113-139 (1992). |
McIntosh, A.S. et al., “Gait dynamics on an inclined walkway,” J. Biomechanics, vol. 39, Issue 13, pp. 2491-2502 (2006). |
McMahon, T.A. et al.,“Groucho Running,” J. Appl. Physiol. 62(6) pp. 2326-2337 (1987). |
McMahon, T.A. et al., “The Mechanics of Running: How Does Stiffness Couple with Speed?” J. Biomechanics, vol. 23, Suppl. 1, pp. 65-78 (1990). |
Minassian, K. et al., “Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity,” Human Movement Science, 26: 275-295 (2007). |
Mochon, S. et al., “Ballistic Walking,” J. Biomechanics, vol. 13, pp. 49-57 (1980). |
Molen, N.H., “Energy/Speed Relation of Below-Knee Amputees Walking on a Motor-Driven Treadmill,” Physiol, 31: 173-185 (1973). |
Morris, J.R.W., “Accelerometry—A Technique for the Measurement of Human Body Movements,” J. Biomechanics, vol. 6, pp. 729-736 (1973). |
Muraoka, T. et al., “Muscle fiber and tendon length changes in the human vastus lateralis during show pedaling,” J. Appl. Physiol., 91: 2035-2040 (2001). |
Nakagawa, A., “Intelligent Knee Mechanism and the Possibility to Apply the Principle to the Other Joints,” paper presented at the Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 20(5): 2282-2287 (1998). |
Neal, R. M. et al., “A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants,” pp. 1-14, no date given. |
Ng, S.K. et al., “Fuzzy Model Identification for Classification of Gait Events in Paraplegics,” IEEE Transactions on Fuzzy Systems, 5(4) (1997). |
Nielsen, D.H. et al., “Comparison of Energy Cost and Gait Efficiency during Ambulation in Below-Knee Ampuees Using Different Prosthetic Feet,” JPO, 1:24-31, http://www.oandp.org/jpo/library/1989—01—024.asd, Retrieved on: Feb. 7, 2012. |
Notice of Allowance from U.S. Appl. No. 13/723,743, dated Jan. 16, 2014*. |
Oda, T. et al. “In Vivo Length-Force Relationships on Muscle Fiber and Muscle Tendon Complex in the Tibialis Anterior Muscle,” International Journal of Sport and Health Sciences, 3:245-252 (2005). |
Ogihara, N., and Yamazaki, N., “Generation of Human Bipedal Locomotion by a Bio-Mimetic Neuro-Musculo-Skeletal Model,” Biol. Cybern., 84: 1-11 (2001). |
Palmer, M.L., “Sagittal Plane Characterization of Normal Human Ankle Function Across a Range of Walking Gait Speeds,” Unpublished master's thesis, Massachusetts Institute of Technology, Massachusetts, 71 pages (2002). |
Paluska, D., and Herr H., “The Effect of Series Elasticity on Actuator Power and Work Output: Implications for Robotic and Prosthetic Joint Design,” Robotics and Autonomous Systems, 54:667-673 (2006). |
Paluska, D., and Herr, H., “Series Elasticity and Actuator Power Output,” paper presented at the Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 4 pages (May 2006). |
Pang, M.Y.C. and Yang, J.F., “The Initiation of the Swing Phase in Human Infact Stepping: Importance of Hip Position and Leg Loading,” Journal of Physiology, 528(2):389-404 (2000). |
Pasch, K.A., et al., “On the drive systems for high performance machines,” AMSE J. Mechanisms, Transmissions, and Automation in Design 106(1):102-108 (Mar. 1984). |
Paul, C., et al., “Development of a Human Neuro-Musculo-Skeletal Model for Investigation of Spinal Cord Injury,” Biol. Cybern., 93:153-170 (2005). |
Pearson, K., et al., “Assessing Sensory Function in Locomotor Systems Using neurp-mechanical Simulations,” Trends in Neurosciences, 29(11): 626-631 (2006). |
Pearson, K.G., “Generating the Walking Gait: Role of Sensory Feedback,” Progress in Brain Research, 143:123-129 (2004). |
Perry, J., et al., “Efficiency of Dynamic Elastic Response Prosthetic Feet,” Journal of Rehabilitation Research, 30(1):137-143 (1993). |
Petrofsky, J.S.., et al., “Feedback Control System for Walking in Man,” Comput. Biot. Med. 14(2):135-149 (1984). |
Pfeffer, L.E., et al., “Experiments with a Dual-Armed, Cooperative, Flexible-Drivetrain Robot System,” paper presented at the IEEE, Aerospace Robotics Laboratory, Department of Aeronautics and Astronautics, Stanford University (1993). |
Popovic, D. and Sinkjaer, T., “Control of Movement for the Physically Disabled: Control for Rehabilitation Technology,” (Springer Publisher) pp. 270-302, No date given. |
Popovic, D., et al., “Control Aspects of Active Above-Knee Prosthesis,” Int. J. Man-Machine Studies, 35:751-767 (1991). |
Popovic, M., et al., “Angular Momentum Primitives for Human Walking: Biomechanics and Control,” paper presented at the Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, pp. 1685-1691 (2004). |
Popovic, M., et al., “Angular Momentum Regulation During Human Walking: Biomechanics and Control,” paper presented at the Proceedings IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 2405-2411 (2004). |
Popovic, M., et al., “Conservation of Angular Momentum During Human Locomotion,” MIT Artificial Intelligence Laboratory, pp. 231-232 (2002). |
Popovic, M.B. and Herr, H., “Global Motion Control and Support Base Planning,” MIT pp. 1-8, no date given. |
Popovic, M.B. and Herr, H., “Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications,” Mobile Robots Towards New Applications, ISBN 3-86611-314-5, pp. 79-104 (2006). |
Popovic, M.B., et al., “Zero Spin Angular Momentum Control: Definition and Applicability,” MIT, pp. 1-16, no date given. |
Popovic, M.R., et al., “Gait Identification and Recognition Sensor,” paper presented at the Proceedings of 6th Vienna International Workshop on Functional Electrostiumlation (Sep. 1998). |
Pratt, G.A. and Williamson, M.M., “Series Elastic Actuators.” Paper presented at the meeting of the IEEE, pp. 399-406 (1995). |
Pratt, G.A., “Legged Robots at MIT: What's New Since Raibert.” Paper presented at the meeting of the IEEE, Robotics and Automation Magazine (Sep. 2000). |
Pratt, G.A., “Low Impedance Walking Robots,” Integ. and Comp. Biol., 42: 174-181 (2002). |
Daley, M.A. et al., “Running Stability is Enhanced by a Proximo-Distal Gradient in Joint Neuromechanical Control,” The Journal of Experimental Biology, vol. 210, pp. 383-394 (Feb. 2007). |
Dapena, J. et al., “A Three-Dimensional Analysis of Angular Momentum in the Hammer Throw,” Biomechanics Laboratory, Indiana University, IN, Medicine and Science in Sports and Exercise, vol. 21, No. 2, pp. 206-220 (1988). |
Davids, J.R., “Book Reviews” Journal of Pediatric Orthopedics 12, pp. 815, 1992. |
Dietz, V. “Proprioception and Locomotor Disorders,” Nature Reviews, vol. 3, pp. 781-790 (Oct. 2002). |
Dietz, V. “Spinal Cord Pattern Generators for Locomotion,” Clinical Neurophysiology, vol. 114, Issue 8, pp. 1-12 (Aug. 2003). |
Doerschuk, P.C. et al., “Upper Extremity Limb Function Discrimination Using EMG Signal Analysis,” IEEE Transactions on Biomedical Engineering, vol. BME-30, No. 1, Jan. 1983, pp. 18-28. |
Doke, J. et al., “Mechanics and Energetics of Swinging the Human Leg,” The Journal of Experimental Biology, vol. 208, pp. 439-445 (2005). |
Dollar, A.M. et al., “Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art,” IEEE Transactions on Robotics, vol. 24, No. 1, pp. 1-15, Feb. 2008. |
Donelan, J.M. et al., “Force Regulation of Ankle Extensor Muscle Activity in Freely Walking Cats,” Journal of Neurophysiology, vol. 101, pp. 360-371 (2009). |
Donelan, J.M. et al., “Mechanical work for Step-to-Step Transitions is a Major Determinant of the Metabolic Cost of Human Walking,” The Journal of Experimental Biology, vol. 205, pp. 3717-3727 (2002). |
Donelan, J.M. et al., “Simultaneous Positive and Negative External Mechanical Work in Human Walking,” Journal of Biomechanics, vol. 35, 2002, pp. 117-124 (2002). |
Drake, C., “Foot & Ankle Splints or Orthoses,” HemiHelp Information Sheet, London, United Kingdom, 3 pages, http://www.hemihelp.org.uk/leaflets/hbleaflets90.htm Retrieved on: Jun. 20, 2003. |
Drake, C., “Ankle & Foot Splints or Orthoses (AFOs),” HemiHelp Information Sheet, pp. 1-6, last revision Dec. 2011. |
Drake, C., “Foot & Ankle Splints or Orthoses,” HemiHelp Information Sheet No. 13, pp. 1-5, last update Jun. 2009. |
Eilenberg, et al., Control of a Powered Ankle-Foot Prosthesis Based on a Neuromuscular Model, “IEEE Transactions on Neural Systems & Rehabilitation Eng.”, vol. 18(2):164-173 (2010). |
Eilenberg, M.F. “A Neuromuscular-Model Based Control Strategy for Powered Ankle-Foot Prostheses,” Massachusetts Institute of Technology, pp. 1-90. Jul. 20, 2010. |
Ekeberg, Ö et al., “Computer Simulation of Stepping in the Hind Legs of the Cat: An Examination of Mechanisms Regulating the Stance-to-Swing Transition,” J. Neurophysical, vol. 94, pp. 4256-4268 (2005). |
Ekeberg, Ö et al., “Simulations of Neuromuscular Control in Lamprey Swimming,” The Royal Society, Phil. Trans. R. Soc. Land, vol. 354, pp. 895-902 (1999). |
Endo, K. et al.,“A Quasi-Passive Model of Human Leg Function in Level-Ground Walking,” Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 9-15, 2006, Beijing, China, pp. 4935-4939. |
Eppinger, S.D. et al., “Three Dynamic Problems in Robot Force Control,” IEEE Transactions on Robotics and Automation, vol. 8, No. 6, pp. 772-778 (Dec. 1992). |
Esquenazi, M.D., A., et al., “Rehabilitation After Amputation,” J Am Podiatr Med Assoc vol. 91, No. 1, pp. 13-22 (Jan. 2001). |
Farley, C.T. et al., “Energetics of Walking and Running: Insights From Simulated Reduced-Gravity Experiments,” J. Appl. Physiol. 73(6):2709-2712 (1992). |
Farry, K.A. et al., “Myoelectric Teleoperation of a Complex Robotic Hand,” IEEE Transactions on Robotics and Automation, vol. 12, No. 5, pp. 775-778 (Oct. 1996). |
Featherstone, R., “Robot Dynamics Algorithms,” Edinburgh University, pp. 1-173, 1987. |
Final Office Action from U.S. Appl. No. 13/171,307 dated Nov. 25, 2013*. |
Fite, K. et al., “Design and Control of an Electrically Powered Knee Prosthesis,” Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Jun. 12-15, The Netherlands, pp. 902-905. |
Flowers, W.C., “A Man-Interactive Simulator System for Above-Knee Prosthetics Studies,” Partial fulfillment for Doctor of Philosophy, MIT, pp. 1-94 Aug. 1972. |
Fod, A. et al., “Automated Derivation of Primitives for Movement Classification,” Autonomous Robots, vol. 12, No. 1, pp. 39-54 (Jan. 2002). |
Frigon, A. et al., “Experiments and Models of Sensorimotor Interactions During Locomotion,” Biological Cybernetics, vol. 95, pp. 606-627 (2006). |
Fujita et al., “Joint Angle Control with Command Filter for Human Ankle Movement Using Functional Electrical Stimulation,” Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, Nov. 13-16, 1987. |
Fukuda, O. et al., “A Human-Assisting Manipulator Teleoperated by EMG Signals and Arm Motions,” IEEE Transactions on Robotics and Automation, vol. 19, No. 2, pp. 210-222 (Apr. 2003). |
Gates, D.H. Thesis: “Characterizing Ankle Function During Stair Ascent, Descent, and Level Walking for Ankle Prosthesis and Orthosis Design,” Boston University, pp. 1-84 (2004). |
Gcrritsen, K.G.M. et al., “Direct Dynamics Simulation of the Impact Phase in Heel-Toe Running,” J. Biomechanics, vol. 28, No. 6, pp. 661-668 (1995). |
Geyer, H. et al., “A Muscle-Reflex Model That Encodes Principles of Legged Mechanics Predicts Human Walking Dynamics and Muscle Activities,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 18, No. 3, pp. 263-273 (Jun. 2010). |
Geyer, H. et al., “A Muscle-Reflex Model that Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. X, No. X, pp. 1-10 (2010). |
Geyer, H. et al., “Compliant Leg Behavior Explains Basic Dynamics of Walking and Running,” Proc. R. Soc. B, vol. 273, pp. 2861-2867 (2006). |
Geyer, H. et al., “Positive Force Feedback in Bouncing Gaits?,” Proc. R. Soc. Lond, B, vol. 270, pp. 2173-2183 (2003). |
Ghigliazza, R.M. et al., “A Simply Stabilized Running Model,” University of Pennsylvania, SIAM Journal on Applied Dynamical Systems, vol. 2, Issue 2, pp. 187-218 (May 8, 2004). |
Giszter, S., et al., “Convergent Force Fields Organized in the Frog's Spinal Cord,” Journal of Neuroscience, 13(2): 467-491 (1993). |
Godha, S. et al., “Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment,” ION GNSS, Fort Worth, TX, Sep. 26-29, 2006 pp. 1-14. |
Goswami, A. et al., “Rate of Change of Angular Momentum and Balance Maintenance of Biped Robots,” Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, Apr. 2004, pp. 3785-3790. |
Goswami, A., “Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point,” The International Journal of Robotics Research, vol. 18, No. 6, pp. 523-533 (Jun. 1999). |
Graupe, D. et al., “A Microprocessor System for Multifunctional Control of Upper-Limb Prostheses via Myoelectric Signal Identification,” IEEE Transactions on Automatic Control, vol. 23, No. 4, pp. 538-544 (Aug. 1978). |
Gregoire, L. et al., “Role of Mono- and Biarticular Muscles in Explosive Movements,” International Journal of Sports Medicine, vol. 5, No. 6, pp. 299-352 (Dec. 1984). |
Grillner, S. and Zangger, P., “On the Central Generation of Locomotion in the Low Spinal Cat,” Experimental Brain Research, 34: 241-261 (1979). |
Grimes, D.L., “An Active Multi-Mode Above-Knee Prosthesis Controller,” unpublished doctoral dissertation, Massachusetts Institute of Technology (1979). |
Gu, W.J., “The Regulation of Angular Momentum During Human Walking,” unpublished doctoral dissertation, Massachusetts Institute of Technology, 42 pages. (2003). |
Gunther, M. et al., “Human Leg Design: Optimal Axial Alignment Under Constraints,” J. Math. Biol., 48: 623-646 (2004). |
Günther, M., and Ruder, H., “Synthesis of Two-Dimensional Human Walking: a test of the λ-model,” Biol. Cybern., 89: 89-106 (2003). |
Hanafusa, et al., “A Robot Hand with Elastic Fingers and Its Application to Assembly Process,” pp. 337-359, Robot Motion, Brady, et al., MIT Press, Cambridge, MA 1982. |
Hansen, A.H., et al., “The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses,” Journal of Biomechanics, 37: 1467-1474 (2004). |
Hayes, W.C., et al., “Leg Motion Analysis During Gait by Multiaxial Accelerometry: Theoretical Foundations and Preliminary Validations,” Journal of Biomechanical Engineering, 105: 283-289 (1983). |
Heglund, N. et al., “A Simple Design for a Force-Plate to Measure Ground Reaction Forces,” J. Exp. Biol., 93: 333-338 (1981). |
Herr, H.M. et al., “A Model of Scale Effects in mammalian Quadrupedal Running,” The Journal of Experimental Biology, 205: 959-967 (2002). |
Herr, H.M., and McMahon, T.A., “A Trotting Horse Model,” The International Journal of Robotics Research, 19: 566-581 (2000). |
Herr, H.M., and Popovic, M., “Angular Momentum in Human Walking,” The Journal of Experimental Biology, 211: 467-481 (2008). |
Herr, H.M., and Wilkenfeld, A., “User-adaptive Control of a Magnetorheological Prosthetic Knee,” Industrial Robot: An International Journal, 30(1): 42-55 (2003). |
Herr, Hugh et al. “New Horizons for Orthotic and Prosthetic Technology: Artificial Muscle for Ambulation,” The MIT Media Laboratory, pp. 1-9, 2004. |
Heyn, A., et al., “The Kinematics of the Swing Phase Obtained From Accelerometer and Gyroscope Measurements,” paper presented at the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam (1996). |
Hill, A.V., “The Heat of Shortening and the Dynamic Constants of Muscle,” Proc. R. Soc. Lond., 126: 136-195 (1938). |
Hirai, K., et al., “The Development of Honda Humanoid Robot,” paper presented at the IEEE International Conference on Robotics & Automation, Leuven, Belgium (1998). |
Hitt et al., “The Sparky (Spring Ankle with Regenerative Kinetics) Projects: Design and Analysis of a Robotic Transtibial prosthesis with Regenerative Kinetics,” in Proc. IEEE Int. Conf. Robot. Autom., Orlando, Fla., pp. 2939-2945, May 2006. |
Hitt, J.K., et al., “The Sparky (Spring Ankle with Regenerative Kinetics) Project: Design and Analysis of a Robotic Transtibial Prosthesis with Regenerative Kinetics,” Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 5 Part C, DETC2007-34512, pp. 1587-1596, Las Vegas, Nevada (Sep. 2007). |
Hof, A.L., et al., “Calf Muscle Moment, Work and Efficiency in Level Walking: Role of Series Elasticity,” J. Biochem., 16: 523-537 (1983). |
Hofbaur, M.W., and Williams, B.C., “Mode Estimation of Probabilistic Hybrid Systems,” MIT Space Systems and Artificial Intelligence Laboratories and Graz University of Technology, Department of Automatic Control, (No Date given). |
Hofbaur, M.W., et al., “Hybrid Diagnosis with Unknown Behavioral Modes,” Proceedings of the 13th International Workshop on Principles of Diagnosis (DX02) (2002). |
Hofmann, A., et al., “A Sliding Controller for Bipedal Balancing Using Integrated Movement of Contact and Non-Contact Limbs,” Proceedings of the 2004 IEEE/RSJ International Conference on Intelligence Robots and Systems, Japan (2004). |
Hofmann, A.G., “Robust Execution of Bipedal Walking Tasks From Biomechanical Principles,” unpublished doctoral dissertation for Massachusetts Institute of Technology (2006). |
Hogan, N., “Impedance Control: An Approach to Manipulation,” Dept. of Mechanical Engineering and Labortory of Manufacturing and Productivity, Massachusetts Institute of Technology, Cambridge MA, pp. 304-313 (Jun. 1984). |
Hogan, N., “Impedance Control: An Approach to Manipulation: Part II—Implementation,” Journal of Dynamic Systems, Measurement, and Control,107: 8-16 (1985). |
Hogan, N., “A Review of the Methods of Processing EMG for Use As a Proportional Control Signal,” Biomedical Engineering, 11(3): 81-86 (1976). |
Hogan, N., “Impedance Control: An Approach to Manipulation: Part I—Theory,” Journal of Dynamic Systems, Measurement, and Control, 107: 1-7 (1985). |
Hogan, N., “Impedance Control: An Approach to Manipulation: Part III—Application,” Journal of Dynamics Systems, Measurement and Control, 107: 17-24 (1985). |
Hogan, N., and Buerger, S.P., “Impedance and Interaction Control, Robots and Automation Handbook, Chapter 19, © 2005 by CRC Press LLC, 24 pgs.” |
Holgate, M.A., et al., “The SPARKy (Spring Ankle with Regenerative Kinetics) Project: Choosing a DC Motor Based Actuation Method,” Proceedings of the 2nd Biennial IEEE-EMBS International Conf. on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, pp. 163-168, Oct. 19-22, 2008. |
Hollander, K.W. et al., “Adjustable Robotic Tendon using a ‘Jack Spring’™,” Proceedings of the 2005 IEEE, 9th International Conference on Rehabilitation Robotics, Jun. 28-Jul. 1, 2005, Chicago, IL, USA, pp. 113-118. |
Howard, R.D., Thesis: “Joint and Actuator Design for Enhanced Stability in Robotic Force Control,” Submitted to the Dept. of Aeronautics and Astronautics on Aug. 8, 1990 in partial fulfillment of the requirements for the degree of Doctor of Philosophy. |
Huang, H.-P. et al., “Development of a Myoelectric Discrimination System for a Multi-Degree Prosthetic Hand,” Proceedings of the 1999 IEEE, International Conference on Robotics & Automation, Detroit, Michigan, (1999). |
Huang, Q. et al., “Planning Walking Patterns for a Biped Robot,” IEEE Transactions on Robotics and Automation,17(3): 280-289 (Jun. 2001). |
Hultborn, H., “Spinal reflexes, mechanisms and concepts: From Eccles to Lundberg and beyond,” Progress in Neurobiology,78: 215-232 (2006). |
Ijspeert, A.J. et al., “From swimming to walking with a salamander robot driven by a spinal cord model,” pp. 1-5 (no further info). |
Ijspeert, A.J., “Central pattern generators for locomotion control in animals and robots: a review,” Preprint of Neural Networks, vol. 21, No. 4, pp. 642-653 (2008). |
International Preliminary Report on Patentability for International Application No. PCT/US2010/047279; Mailed: Mar. 15, 2012. |
International Search Report and Written Opinion for International Application No. PCT/US2009/055600, Mailed: Apr. 29, 2010. |
International Search Report and Written Opinion for International Application No. PCT/US2010/047279; Mailed: Jan. 19, 2011. |
International Search Report and Written Opinion for International Application No. PCT/US2011/031105, Mailed: Oct. 11, 2011. |
International Search Report for PCT/US2010/022783, “Model-Based Neuromechanical Controller for a Robotic Leg”, dated May 4, 2010. |
Ivashko, D.G. et al., “Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion,” Neurocomputing, 52-54, pp. 621-629 (2003). |
Johansson, J.L. et al., “A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices,” Variable-Damping vs. Mechanically Passive Prosthetic Knees, Am J Phys Med Rehabil 84(8):1-13, (Aug. 2005). |
Johnson, C.T. et al., “Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms,” IEEE Transactions on Industry Applications, vol. 28, No. 6, pp. 1392-1398 (Nov./Dec. 1992). |
Jonic, S. et al., “Three Machine Learning Techniques for Automatic Determination of Rules to Control Locomotion,” IEEE Transactions on Biomedical Engineering, vol. 46, No. 3, pp. 300-310 (Mar. 1999). |
Kadaba, M.P. et al., “Measurement of Lower Extremity Kinematics During Level Walking,” Journal of Orthapedic Research, pp. 383-392, 1990. |
Kadaba, M.P. et al., “Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait,” Journal of Orthapedic Research, pp. 849-860, 1989. |
Kajita, S. et al., “A Hop towards Running Humanoid Biped,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, pp. 629-635, 2004. |
Kajita, S. et al., “Biped Walking on a Low Friction Floor,” Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots & Systems, pp. 3546-3552, Sep. 28-Oct. 2, 2004, Sendai, Japan. |
Kajita, S. et al., “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots & Systems, pp. 1644-1650 (2003). |
Kaneko, K. et al., “Humanoid Robot HRP-2,” Proceedings of the 2004 IEEE International Conference on Robotics & Automation, pp. 1083-1090 (Apr. 2004). |
Kapti, A.O. et al., “Design and control of an active artificial knee joint,” Mechanism and Machine Theory, vol. 41, pp. 1477-1485 (2006). |
Katic, D. et al., “Survey of Intelligent Control Techniques for Humanoid Robots,” Journal of Intelligent and Robotic Systems, vol. 37, pp. 117-141 (2003). |
Kerrigan, D.C. et al., “A refined view of the determinants of gait: Significance of heel,” Archives of Physical Medicine and Rehabilitation, vol. 81, Issue 8, pp. 1077-1080 (Aug. 2000). |
Kerrigan, D.C. et al., “Quantification of pelvic rotation as a determinant of gait,” Archives of Physical Medicine and Rehabilitation, vol. 82, Issue 2, pp. 217-220 (Feb. 2001). |
Khatib, O. et al., “Coordination and Decentralized Cooperation of Multiple Mobile Manipulators,” Journal of Robotic Systems, 13(11): 755-764 (1996). |
Khatib, O. et al., “Whole-Body Dynamic Behavior and Control of Human-Like Robots,” International Journal of Humanoid Robotics, vol. 1, No. 1, pp. 29-43 (2004). |
Kidder, S.M. et al., “A System for the Analysis of Foot and Ankle Kinematics During Gait,” IEEE Transactions on Rehabilitation Engineering, vol. 4, No. 1, pp. 25-32 (Mar. 1996). |
Kim, J.-H. et al., “Realization of Dynamic Walking for the Humaniod Robot Platform KHR-1,” Advanced Robotics, 18(7): 749-768, (2004). |
Kirkwood, C.A. et al., “Automatic detection of gait events: a case study using inductive learning techniques,” J. Biomed. Eng., vol. 11, pp, 511-516 (Nov. 1989). |
Kitayama, I. et al., “A Microcomputer Controlled Intelligent A/K Prosthesis—Fundamental Development,” Proceedings, Seventh World Congress of ISPO, Jun. 28-Jul. 3, 1992, Chicago, Illinois, USA, 25 pages. |
Klute, G.K. et al, “Intelligent transtibial prostheses with muscle-like actuators,” 2002 American Physiological Society Intersociety Meeting: The Power of Comparative Physiology: Evolution, Integration, and Applied, 1 page abstract. |
Klutc, G.K. et al., “Artificial Muscles: Actuators for Biorobotic Systems,” The International Journal of Robotics Research, 21(4): 295-309 (2002). |
Klute, G.K. et al., “Artificial Tendons: Biomechanical Design Properties for Prosthetic Lower Limbs,” Chicago 2000 World Congress on Medical Physics and Biomedical Engineering, Chicago on Jul. 24-28, 2000, 4 pages. |
Klute, G.K. et al., “Lower Limb Prostheses Powered by Muscle-Like Pneumatic Actuator,” Submitted to Oleodinamica e Pneumatica, Publishe Tecniche Nuove, Milamo, Italy, Mar. 15, 2000, 6 pages. |
Klute, G.K. et al., “McKibben Artificial Muscles: Pneumatic Actuators with Biomechanical Intelligence,” IEEE/ASME 1999 International Conference on Advanced Intelligent Mechatronics, Atlanta, GA, pp. 221-226 (Sep. 1999). |
Klutc, G.K. et al., “Muscle-Like Pneumatic Actuators for Below-Knee Prostheses,” Actuator 2000: 7th International Conference on New Actuators, Bremen, Germany on Jun. 9-21, 2000, pp. 289-292. |
Klute, G.K. et al., “Powering Lower Limb Prosthestics with Muscle-Like Actuators,” Abstract in: Proceeding of the 1st Annual Meeting of the VA Rehabilitation Research and Development Service, “Enabling Veterans: Meeting the Challenge of Rehabilitation in the Next Millennium,” Washington, D.C., p. 52 (Oct. 1998). |
Klute, G.K. et al., “Variable Stiffness Prosthesis for Transtibial Amputees,” Dept of Veteran Affairs, Seattle, WA USA, 2 pages (2003). |
Klute, G.K. et al., “Artificial Muscles: Actuators for Lower Limb Prostheses,” Abstract in: Proceedings of the 2nd Annual Meeting of the VA Rehabilitation Research and Development Service, Washington, D.C., Feb. 20-22, 2000, p. 107. |
Klute, G.K. et al., “Mechanical properties of prosthetic limbs: Adapting to the patient,” Journal of Rehabilitation Research and Development, vol. 38, No. 3, pp. 299-307 (May/Jun. 2001). |
Aeyels, B., et al., “An EMG-Based Finite State Approach for a Microcomputer-Controlled Above-Knee Prosthesis,” Engineering in Medicine and Biology Society 1995, pp. 1315-1316 (1997). |
Peeraer, L., et al., “Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis,” J. Biomed. Eng., 12: 178-182 (1990). |
Saxena, S. C., and Mukhopadhyay, P., “E.M.G. operated electronic artificial-leg controller,” Med. & Biol. Eng. & Comput., 15: 553-557 (1977). |
Final Office Action from U.S. Appl. No. 13/171,307, mailed Feb. 20, 2015. |
Au, et al., “Powered Ankle-Foot Prosthesis: The Importance of Series and Parallel Motor Elasticity,” IEEE Robotics & Automation Magazine, pp. 52-59, Sep. 2008. |
Notice of Allowance for U.S. Appl. No. 13/171,307; “Artificial Human Limbs and Joints Employing Actuators, Springs, and Variable-Damper Elements”, Date Mailed: Jan. 20, 2016, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20140257519 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
60704517 | Aug 2005 | US | |
60666876 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13723743 | Dec 2012 | US |
Child | 14283323 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13348570 | Jan 2012 | US |
Child | 13723743 | US | |
Parent | 11495140 | Jul 2006 | US |
Child | 13348570 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11395448 | Mar 2006 | US |
Child | 13348570 | US |