Aseptic coupling devices can be used to connect two or more sterilized pathways. For example, aseptic coupling devices can be used to couple a fluid pathway from a first piece of processing equipment or container to a fluid pathway from a second piece of processing equipment or container to establish a sterile pathway for fluid transfer therebetween.
Typical aseptic coupling devices require a “dry-to-dry” or “dry connection” that is created using one or more pathway clamping devices placed upstream of the aseptic coupling devices so that the aseptic coupling devices are kept free of fluid while the connection between the aseptic coupling devices is made. Once the sterile connection between the aseptic coupling devices is made, the clamping devices are removed to allow fluid to flow through the aseptic coupling devices.
According to one aspect, an aseptic coupling device includes an inner member defining a fluid passage therethrough, a seal member coupled to a front surface of the inner member, a membrane coupled to the front surface of the inner member to cover the seal member, and a locking ring positioned to rotate about the inner member. The inner member is sized to be received in a member of another aseptic coupling device to form a pre-coupled state. When the membrane is removed, the seal member engages a second seal member of the other aseptic coupling device, and, upon turning of the locking ring, the seal member and the second seal member are compressed to form a coupled state in which a sterile flow path is created between the aseptic device and the other aseptic device.
According to another aspect, an aseptic coupling device includes a main body defining a fluid passage therethrough, a front portion coupled to the main body, the front portion defining a plurality of channels therein, a seal member coupled to a front surface of the main body, a membrane coupled to the front surface of the main body to cover the seal member, and a slot defined in the main body sized to receive a clip. The front portion is sized to a receive portion of another aseptic coupling device so that the clip engages the other aseptic coupling device to form a pre-coupled state. When the membrane is removed, the seal member engages a second seal member of the other aseptic device, and, upon turning of a locking ring on the other aseptic coupling device, barbs of the locking ring are received within the channels of the front portion to compress the seal member with the second seal member to form a coupled state in which a sterile flow path is created between the aseptic coupling device and the other aseptic coupling device.
In yet another aspect, a method for forming a sterile connection includes: inserting a first aseptic coupling device into a second aseptic coupling device; removing a first membrane from the first aseptic coupling device and a second membrane from the second aseptic coupling device; and rotating a locking clip on the first aseptic coupling device to compress a first seal member of the first aseptic coupling device with a second seal member of the second aseptic coupling device to form a sterile fluid passageway.
Non-limiting and non-exhaustive embodiments are described with reference to the following figures, which are not necessarily drawn to scale, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Various embodiments will be described in detail with reference to the drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims.
As used herein, the term “sterilize” means a process of freeing, to a specified degree, a surface or volume from microorganisms. In example embodiments, the sterility of various components can be achieved using one or more sterilization techniques, including gamma irradiation, E-beam, ethylene oxide (EtO), and/or autoclave technologies.
As used herein, the term “aseptic” refers to any process that maintains a sterilized surface or volume.
As used herein, the term “fluid” means any substance that can be made to flow including, but is not limited to, liquids, gases, granular or powdered solids, mixtures or emulsions of two or more fluids, suspensions of solids within liquids or gases, etc.
Referring now to
Equipment 110 includes a fluid pathway 112 extending therefrom that is terminated by an aseptic coupling arrangement 121 including a first aseptic coupling device 114. Likewise, equipment 120 includes a fluid pathway 122 extending therefrom that is terminated by a second aseptic coupling device 124 of the aseptic coupling arrangement 121. In example embodiments, the environment within pathways 112 and 122 and aseptic coupling devices 114 and 124 are sterile.
Aseptic coupling device 114 can be connected to aseptic coupling device 124. Once aseptic coupling device 114 is connected to aseptic coupling device 124, a sterile fluid pathway is established between equipment 110 and equipment 120. Once the sterile fluid pathway is established, fluid can be transferred from equipment 110 to equipment 120, or vice versa.
Referring now to
In the example shown, aseptic coupling device 114 is a male coupling device, and aseptic coupling device 124 is a female coupling device. In the example shown, the devices 114, 124 are keyed so that the devices 114, 124 can only be coupled in one manner, as described below. In alternative embodiments, other configurations are possible.
In the example shown, the male aseptic coupling device 114 includes an inner member 201, a locking ring 202, and a membrane 204. See
Inner member 201 defines a fluid passage 502 through aseptic coupling device 114. Inner member 201 is coupled to a portion 214. In the example shown, portion 214 is barbed so that portion 214 can be connected to a fluid pathway (e.g., 112) such as a hose. Inner member 201 also includes a circular channel 504 that is formed to allow inner member 201 to be rotatably coupled to locking ring 202, as described below.
Inner member 201 also defines a channel 304. See
Membrane 204 is coupled, using, for example, an adhesive, to a front surface 802 of inner member 201. As shown in
Inner member 201 also has stops 313 formed adjacent front surface 802. As described further below, stops 313 engage complementary structures on the mating device to define a coupled position.
In example embodiments, a seal member 532 is positioned in a window 531 formed by the inner member 201. Seal member 532 is positioned to engage a corresponding seal member 533 positioned in a window 535 on aseptic coupling device 124 when aseptic coupling devices 114, 124 are connected and membranes 204, 206 are removed, as described below. See
As shown in
Locking ring 202 includes a tab portion 506 that is positioned to be received in channel 504 formed by inner member 201. See
Locking ring 202 also includes barbs 203 (see
Aseptic coupling device 124 includes a front portion 530 configured to be coupled to aseptic coupling device 114, and a barbed portion 216 configured to be coupled to a fluid source. A fluid passage 503 is formed therethrough.
Front portion 530 includes channels 306 that extend from a front edge 307 of front portion 530. In the example show, each channel 306 includes an inlet portion 902 that extends generally axially, and a locking portion 904 that extends generally radially. The inlet portion 902 is sized to receive one barb 203 of locking ring 202 of aseptic coupling device 114. When the locking ring 202 is rotated in direction 508, barb 203 extends into and is captured by locking portion 904 of channel 306. In example embodiments, three channels 306 are spaced axially about front portion 530 to correspond to barbs 203 of locking ring 202.
Front portion 530 also defines slots 311 that are positioned to receive clip 212. Barbs 1002 on clip 212 engage a bottom surface 317 of device 124 (see
Membrane 206 is coupled to a front surface 910 of aseptic coupling device 124. See
Adjacent front surface 910 are formed stops 913. The stops 913 engage stops 313 on the device 114 when the device is positioned in the coupled state. The stops 313, 813 define the closes position that the devices 114, 124 can come together. See
An end 554 of membrane 206 includes a handle portion 552 that includes attachment members 210 that are positioned to engage attachment members 208 on the corresponding membrane 206 of the aseptic coupling device 124, as described further below.
Referring now to
First, at operation 1102, front portion 530 of aseptic coupling device 114 is inserted into aseptic coupling device 124 along centerline 302. During insertion, the membrane 204 (while hanging downward as shown in
Next, at operation 1104, the attachment members 210 on handle portion 552 of membrane 206 are connected to attachment members 208 on handle portion 520 of membrane 204. Once connected, handle portions 520, 552 are grasped, and a force in a direction 559 is applied. As membranes 204, 206 are pulled in direction 559, membranes 204, 206 roll in on one another and seals 532, 533 in ends 201 and 540 of each of aseptic coupling devices 114, 124 engage to form a sterile connection.
Once membranes 204, 206 are removed, locking ring 202 is rotated (stage 1106) in direction 508 so that barbs 203 enter locking portions 904 of channels 306. As barbs 203 move along locking portions 904, aseptic coupling device 114 is pulled slightly closer to aseptic coupling device 124 to compress the seal members 532, 533 together. At this position (referred to as “coupled”), an aseptic pathway exists through passages 502, 503 of the aseptic coupling devices 114, 124. See
Referring now to
However, aseptic coupling device 1124 includes a separate inner member 1102 and outer member 1104. Inner member 1102 is identical in shape to inner member 201 of aseptic coupling device 114. This allows both components to be molded using the same machinery.
Outer member 1104 includes a tab portion 1106 with a plurality of members 1107 that are positioned to be received in a channel 1108 formed by inner member 1102. This allows outer member 1104 to be coupled to inner member 1102 and spin relative thereto. Other configurations are possible.
Referring now to
In this example, an aseptic coupling device 2152 includes a termination 2154 that is sized to be coupled to another coupling device, such as a quick disconnect coupler 1902. Examples of such couplers are described in U.S. Pat. Nos. D357,307; D384,731; 5,316,041; and 5,494,074. The entireties of these patents are hereby incorporated by reference. Other types of couplers can be used.
As shown, an insert member 2156 is connected (e.g., by sonic welding) to the termination 2154. The coupler 1902 is, in turn, connected to the insert member 2156.
In the example shown, the coupler 1902 includes a valving structure 1906, and the insert member 2156 includes a valving structure 2158. These valving structures 1906, 2158 are normally open when the coupler 1902 is connected to the insert member 2156, so that fluid can flow therethrough. In such an example, the entire device 2152 can be sterilized prior to use.
When fluid flow is complete, a latch 1908 of the coupler 1902 can be actuated to disconnect the coupler 1902 from the insert member 2156 positioned between the termination 2154 and the coupler 1902. When disconnected, valving structure 1906 in coupler 1920 stops the flow of fluid through the coupler 1920, and valving structure 2158 in the insert member 2156 stops the flow of fluid through the device 2124. This can result in a disconnect that is also aseptic. The coupler 1902 can thereupon, in turn, be connected to other terminations as desired.
In other embodiments, coupler 1902 can be connected to aseptic coupling device 114. In still further embodiments, both aseptic coupling devices 114 and 124 can each have a coupler connected thereto. In other examples, the coupler 1920 can be welded to the devices 114, 124, and the insert member 2156 can be coupled to the coupler 1920. Other configurations are possible.
Referring now to
As shown in
As shown in
Referring now to
In example embodiments, the aseptic coupling devices are made of a polymeric material. For example, in one embodiment, the aseptic coupling devices are made of polycarbonate and the seal members used therein are made of a silicone rubber. Other materials can be used.
In some embodiments, membranes 204, 206 are autoclavable and gamma stable for sterilization. In various embodiments, membranes 204, 206 are a composite design that consists of two components: 1 tag and 1 vent. The tag is a laminate including: a polyethylene terephthalate (PET) film, polyethylene (PE) foam, aluminum foil, and a sealing layer. The foam and/or foil may or may not exist in the final configuration. The sealing layer allows the tag to be bonded or welded to polycarbonate connectors (e.g., aseptic coupling devices 114 and 124). The vent is an expanded poly(tetrafluoroethylene) (ePTFE) membrane that will be bonded or welded onto the tag. Membranes 204, 206 are located over the center of the flow area of aseptic coupling devices 114 and 124, respectively, when the tags and vents are bonded or welded to connectors. The vent allows air and steam to flow into the system 100 during sterilization. The pore size of membranes 204, 206 are such that membranes 204, 206 filter out microorganisms larger than 0.2 microns.
In another embodiment, membranes 204, 206 are a polyethersulfone (PES) and polyester laminate membrane. This membrane is hydrophobic and breathable. The pore size is such that microorganisms larger than 0.2 microns are filtered out. When bonded, the polycarbonate melts into the polyester fibers, so that the PES acts as the filter, and the polyester acts as the structure.
In other embodiments, membranes 204, 206 are a Tyvek membrane that is coated on one side to allow membranes 204, 206 to be bonded to polycarbonate connectors (e.g., aseptic coupling devices 114 and 124). Tyvek is breathable in nature, so there is no need for an additional vent. Tyvek is a non-woven polyethylene membrane.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the disclosure.
This application claims the benefit of U.S. Patent Application Ser. No. 61/160,603 filed on Mar. 16, 2009, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
913144 | James et al. | Feb 1909 | A |
1913144 | Teeter | Jun 1933 | A |
1947593 | Hamilton | Feb 1934 | A |
2419702 | Barnes | Apr 1947 | A |
2868563 | Wood | Jan 1959 | A |
3758137 | Kershaw | Sep 1973 | A |
3831984 | Kutina et al. | Aug 1974 | A |
3900223 | Schafer et al. | Aug 1975 | A |
3909910 | Rowe et al. | Oct 1975 | A |
4019512 | Tenczar | Apr 1977 | A |
4022205 | Tenczar | May 1977 | A |
4022496 | Crissy et al. | May 1977 | A |
4187846 | Lolachi | Feb 1980 | A |
4418945 | Kellogg | Dec 1983 | A |
4610469 | Wolff-Mooij | Sep 1986 | A |
4621841 | Wakefield | Nov 1986 | A |
4673400 | Martin | Jun 1987 | A |
4738401 | Filicicchia | Apr 1988 | A |
4886303 | Carson et al. | Dec 1989 | A |
4951326 | Barnes et al. | Aug 1990 | A |
5316351 | Czimny et al. | May 1994 | A |
5348570 | Ruppert, Jr. | Sep 1994 | A |
5492147 | Challender et al. | Feb 1996 | A |
5494074 | Ramacier | Feb 1996 | A |
6050613 | Wartluft | Apr 2000 | A |
6655655 | Matkovich | Dec 2003 | B1 |
6679529 | Johnson et al. | Jan 2004 | B2 |
6911025 | Miyahara | Jun 2005 | B2 |
7083605 | Miyahara | Aug 2006 | B2 |
7523918 | Matkovich et al. | Apr 2009 | B2 |
7628772 | McConnell et al. | Dec 2009 | B2 |
7628782 | Adair et al. | Dec 2009 | B2 |
7918243 | Diodati et al. | Apr 2011 | B2 |
8586045 | Zeller et al. | Nov 2013 | B2 |
9364653 | Williams et al. | Jun 2016 | B2 |
20020093192 | Matkovich | Jul 2002 | A1 |
20030030272 | Johnson | Feb 2003 | A1 |
20040168690 | Payne | Sep 2004 | A1 |
20060138069 | Domkowski | Jun 2006 | A1 |
20060252298 | Biddel | Nov 2006 | A1 |
20070001459 | Wells | Jan 2007 | A1 |
20070027437 | Burg | Feb 2007 | A1 |
20090050213 | Biddell | Feb 2009 | A1 |
20090275888 | Kriesel | Nov 2009 | A1 |
20100230950 | Williams | Sep 2010 | A1 |
20100292673 | Korogi | Nov 2010 | A1 |
20110061761 | Muehlemann | Mar 2011 | A1 |
20130197485 | Gardner | Aug 2013 | A1 |
20130207380 | Williams | Aug 2013 | A1 |
20130289517 | Williams | Oct 2013 | A1 |
20140358115 | Chelak | Dec 2014 | A1 |
20150314120 | Gardner | Nov 2015 | A1 |
20160053927 | Whitaker | Feb 2016 | A1 |
20170284584 | Kesselaar | Oct 2017 | A1 |
20180264251 | Lofving | Sep 2018 | A1 |
20180304067 | Ryan | Oct 2018 | A1 |
Number | Date | Country |
---|---|---|
1115965 | Jul 2003 | CN |
24 27 381 | Jul 1975 | DE |
2427381 | Jul 1975 | DE |
2006-117138 | Nov 2006 | WO |
WO 20061117138 | Nov 2006 | WO |
Entry |
---|
International Search Report and Written Opinion in PCT/US2010/027311 dated Aug. 6, 2010,13 pages. |
International Search Report and Written Report in PCT Appln US/2010/027311 dated Aug. 6, 2010 13 pages. |
Number | Date | Country | |
---|---|---|---|
20170143953 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
61160603 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14683662 | Apr 2015 | US |
Child | 15421836 | US | |
Parent | 13693720 | Dec 2012 | US |
Child | 14683662 | US | |
Parent | 12724125 | Mar 2010 | US |
Child | 13693720 | US |