In the United States alone, approximately 14 million people suffer from some form of Chronic Obstructive Pulmonary Disease (COPD). However an additional ten million adults have evidence of impaired lung function indicating that COPD may be significantly underdiagnosed. The cost of COPD to the nation in 2002 was estimated to be $32.1 billion. Medicare expenses for COPD beneficiaries were nearly 2.5 times that of the expenditures for all other patients. Direct medical services accounted for $18.0 billion, and indirect cost of morbidity and premature mortality was $14.1 billion. COPD is the fourth leading cause of death in the U.S. and is projected to be the third leading cause of death for both males and females by the year 2020.
Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease of the airways that is characterized by a gradual loss of lung function. In the United States, the term COPD includes chronic bronchitis, chronic obstructive bronchitis, and emphysema, or combinations of these conditions. In emphysema the alveoli walls of the lung tissue are progressively weakened and lose their elastic recoil. The breakdown of lung tissue causes progressive loss of elastic recoil and the loss of radial support of the airways which traps residual air in the lung. This increases the work of exhaling and leads to hyperinflation of the lung. When the lungs become hyperinflated, forced expiration cannot reduce the residual volume of the lungs because the force exerted to empty the lungs collapses the small airways and blocks air from being exhaled. As the disease progresses, the inspiratory capacity and air exchange surface area of the lungs is reduced until air exchange becomes seriously impaired and the individual can only take short shallow labored breaths (dyspnea).
The symptoms of COPD can range from the chronic cough and sputum production of chronic bronchitis to the severe disabling shortness of breath of emphysema. In some individuals, chronic cough and sputum production are the first signs that they are at risk for developing the airflow obstruction and shortness of breath characteristic of COPD. With continued exposure to cigarettes or noxious particles, the disease progresses and individuals with COPD increasingly lose their ability to breathe. Acute infections or certain weather conditions may temporarily worsen symptoms (exacerbations), occasionally where hospitalization may be required. In others, shortness of breath may be the first indication of the disease. The diagnosis of COPD is confirmed by the presence of airway obstruction on testing with spirometry. Ultimately, severe emphysema may lead to severe dyspnea, severe limitation of daily activities, illness and death.
There is no cure for COPD or pulmonary emphysema, only various treatments for ameliorating the symptoms. The goal of current treatments is to help people live with the disease more comfortably and to prevent the progression of the disease. The current options include: self-care (e.g., quitting smoking), medications (such as bronchodilators which do not address emphysema physiology), long-term oxygen therapy, and surgery (lung transplantation and lung volume reduction surgery). Lung Volume Reduction Surgery (LVRS) is an invasive procedure primarily for patients who have a localized (heterogeneous) version of emphysema; in which, the most diseased area of the lung is surgically removed to allow the remaining tissue to work more efficiently. Patients with diffuse emphysema cannot be treated with LVRS, and typically only have lung transplantation as an end-stage option. However, many patients are not candidates for such a taxing procedure.
A number of less-invasive surgical methods have been proposed for ameliorating the symptoms of COPD. In one approach new windows are opened inside the lung to allow air to more easily escape from the diseased tissue into the natural airways. These windows are kept open with permanently implanted stents. Other approaches attempt to seal off and shrink portions of the hyperinflated lung using chemical treatments and/or implantable plugs. However, these proposals remain significantly invasive and are still in clinical trails. None of the surgical approaches to treatment of COPD has been widely adopted. Therefore, a large unmet need remains for a medical procedure that can sufficiently alleviate the debilitating effects of COPD and emphysema and is accepted by physicians and patients.
In view of the disadvantages of the state of the art, Applicants have developed a method for treating COPD in which an artificial passageway is made through the chest wall into the lung. An anastomosis is formed between the artificial passageway and the lung by creating a pleurodesis between the visceral and parietal membranes surrounding the passageway as it enters the lung. The pleurodesis prevents air from entering the pleural cavity and causing a pneumothorax (deflation of the lung due to air pressure in the pleural cavity). The pleurodesis is stabilized by a fibrotic healing response between the membranes. The artificial passageway through the chest wall also becomes epithelialized. The result is a stable artificial aperture through the chest wall which communicates with the parenchymal tissue of the lung.
The stable artificial aperture into the lung through the chest is referred to herein as a pneumostoma. A pneumostoma provides an extra pathway that allows air to exit the lung while bypassing the natural airways which have been impaired by COPD and emphysema. By providing this ventilation bypass, the pneumostoma allows the stale air trapped in the lung to escape from the lung thereby shrinking the lung (reducing hyperinflation). By shrinking the lung, the ventilation bypass reduces breathing effort (reducing dyspnea), allows more fresh air to be drawn in through the natural airways and increases the effectiveness of all of the tissues of the lung for gas exchange. Increasing the effectiveness of gas exchange allows for increased absorption of oxygen into the bloodstream and also increased removal of carbon dioxide. Reducing the amount of carbon dioxide retained in the lung reduces hypercapnia which also reduces dyspnea. The pneumostoma thereby achieves the advantages of lung volume reduction surgery without surgically removing or sealing off a portion of the lung.
In some situations, mucus/discharge and/or foreign matter may accumulate in the pneumostoma or a medical device implanted in the pneumostoma. An aspirator and methods of use in accordance with embodiments of the present invention are desirable and useful to remove the mucus/discharge and/or foreign matter in order to maintain the patency of the pneumostoma and prevent infection.
In accordance with a general embodiment the present invention provides a pneumostoma aspirator and methods for removing the mucus/discharge and/or foreign matter from a pneumostoma. Some embodiments, of the present invention may also be used to irrigate the pneumostoma instead of or in addition to providing suction.
In accordance with one embodiment, the present invention provides a pneumostoma management system which includes a partially-implantable pneumostoma vent, a chest mount and a pneumostoma aspirator. The pneumostoma aspirator attaches to the pneumostoma management device to safely and effectively apply suction to a pneumostoma.
In accordance with one embodiment, the present invention provides pneumostoma management system which includes a partially-implantable pneumostoma management device which can be placed into a pneumostoma to prevent the entry of foreign substances into the lung, control air flow through the pneumostoma and collect any materials that may exit the lung and a pneumostoma aspirator which attaches to the pneumostoma management device to safely and effectively apply suction to a pneumostoma.
In accordance with one embodiment, the present invention provides a pneumostoma management system which includes a partially-implantable pneumostoma vent, a chest mount and pneumostoma aspirator. The chest mount is secured to the skin of the patient. The partially-implantable pneumostoma vent is placed into a pneumostoma through an aperture in the chest mount. The pneumostoma aspirator attaches to the chest mount in the absence of the pneumostoma vent.
Thus, various systems, components and methods are provided for managing a pneumostoma and thereby treating COPD. Other objects, features and advantages of the invention will be apparent from drawings and detailed description to follow.
The above and further features, advantages and benefits of the present invention will be apparent upon consideration of the present description taken in conjunction with the accompanying drawings.
The following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout. In addition, the first digit of a reference number identifies the drawing in which the reference number first appears.
Pneumostoma Formation and Anatomy
In
A pneumostoma is surgically created by forming an artificial channel through the chest wall and joining that channel with an opening through the visceral membrane of the lung into parenchymal tissue of the lung to form an anastomosis. The anastomosis is joined and sealed by sealing the channel from the pleural cavity using adhesives, mechanical sealing and/or pleurodesis. Methods for forming the channel, opening, anastomosis and pleurodesis are disclosed in applicant's pending and issued patents and applications including U.S. patent application Ser. No. 10/881,408 entitled “Methods and Devices to Accelerate Wound Healing in Thoracic Anastomosis Applications” and U.S. patent application Ser. No. 12/030,006 entitled “Variable Parietal/Visceral Pleural Coupling” which are incorporated herein by reference in their entirety.
An important feature of the pneumostoma is the seal or adhesion surrounding the channel 120 where it enters the lung 130 which may comprise a pleurodesis 124. Pleurodesis 124 is the fusion or adhesion of the parietal membrane 108 and visceral membrane 138. A pleurodesis may be a complete pleurodesis in which the entire pleural cavity 140 is removed by fusion of the visceral membrane 138 with the parietal membrane 108 over the entire surface of the lung 130. However, as shown in
Pleurodesis 124 can be created between the visceral pleura of the lung and the inner wall of the thoracic cavity using chemical methods including introducing into the pleural space irritants such as iodopovidone or silver nitrate, antibiotics (e.g. Doxycycline or Quinacrine), anticancer drugs (e.g. Bleomycin, Mitoxantrone or Cisplatin), cytokines (e.g. interferon alpha-2β and Transforming growth factor-β); pyrogens (e.g. Corynebacterium parvum, Staphylococcus aureus superantigen or OK432); connective tissue proteins (e.g. fibrin or collagen) and minerals (e.g. talc slurry). A pleurodesis can also be created using surgical methods including pleurectomy. For example, the pleural space may be mechanically abraded during thoracoscopy or thoracotomy. This procedure is called dry abrasion pleurodesis. A pleurodesis may also be created using radiotherapy methods, including radioactive gold or external radiation. These methods cause an inflammatory response and or fibrosis, healing, and fusion of the pleural membranes. Alternatively, a seal can be created in an acute manner between the pleural membranes using biocompatible glues, meshes or mechanical means such as clamps, staples, clips and/or sutures. The adhesive or mechanical seal may develop into pleurodesis over time. A range of biocompatible glues are available that may be used on the lung, including light-activatable glues, fibrin glues, cyanoacrylates and two part polymerizing glues. Applicant's copending U.S. patent application Ser. No. 12/030,006 entitled “VARIABLE PARIETAL/VISCERAL PLEURAL COUPLING” discloses methods such as pleurodesis for coupling a channel through the chest wall to the inner volume of the lung without causing a pneumothorax and is incorporated herein by reference for all purposes.
When formed, pneumostoma 110 provides an extra pathway for exhaled air to exit the lung 130 reducing residual volume and intra-thoracic pressure without the air passing through the major natural airways such as the bronchi 138 and trachea. Collateral ventilation is particularly prevalent in an emphysemous lung because of the deterioration of lung tissue caused by COPD. Collateral ventilation is the term given to leakage of air through the connective tissue between the alveoli 134. Collateral ventilation may include leakage of air through pathways that include the interalveolar pores of Kohn, bronchiole-alveolar communications of Lambert, and interbronchiolar pathways of Martin. This air typically becomes trapped in the lung and contributes to hyperinflation. In lungs that have been damaged by COPD and emphysema, the resistance to flow in collateral channels (not shown) of the parenchymal tissue 132 is reduced allowing collateral ventilation to increase. Air from alveoli 134 of parenchymal tissue 132 that passes into collateral pathways of lung 130 is collected in cavity 122 of pneumostoma 110. Pneumostoma 110 thus makes use of collateral ventilation to collect air in cavity 122 and vent the air outside the body via channel 120 reducing residual volume and intra-thoracic pressure and bypassing the natural airways which have been impaired by COPD and emphysema.
By providing this ventilation bypass, the pneumostoma allows stale air trapped in the parenchymal tissue 132 to escape from the lung 130. This reduces the residual volume and intra-thoracic pressure. The lower intra-thoracic pressure reduces the dynamic collapse of airways during exhalation. By allowing the airways to remain patent during exhalation, labored breathing (dyspnea) and residual volume (hyperinflation) are both reduced. Pneumostoma 110 not only provides an extra pathway that allows air to exit the lung 130 but also allows more fresh air to be drawn in through the natural airways. This increases the effectiveness of all of the tissues of the lung 130 and improves gas exchange. Pneumostoma 110 thus achieves many of the advantages sought by lung volume reduction surgery without surgically removing a portion of the lung or sealing off a portion of the lung.
Applicants have found that a pneumostoma management system in accordance with embodiments of the present invention is desirable to maintain the patency of the pneumostoma and control flow of materials between the exterior of the patient and the parenchymal tissue of the lung via a pneumostoma. In accordance with embodiments of the present invention, the pneumostoma management system includes a pneumostoma management device and a pneumostoma aspirator as described herein.
Pneumostoma Management System Including A Pneumostoma Aspirator
As described above, a pneumostoma may be created to treat the symptoms of chronic obstructive pulmonary disease. A patient is typically provided with a pneumostoma management system to protect the pneumostoma and keeps the pneumostoma open on a day-to-day basis. In general terms a pneumostoma management device (“PMD”) comprises a tube which is inserted into the pneumostoma and an external component which is secured to the skin of the patient to keep the tube in place. Gases escape from the lung through the tube and are vented external to the patient. The pneumostoma management device may, in some, but not all cases, include a filter which only permits gases to enter or exit the tube. The pneumostoma management device may, in some, but not all cases, include a one-way valve which allows gases to exit the lung but not enter the lung through the tube. Additional details and variations of pneumostoma management devices are described in applicant's pending and issued patents and applications including those related cases incorporated by reference above.
As shown in
Tube 240 of pneumostoma vent 204 is sufficiently long that it can pass through the thoracic wall and into the cavity of a pneumostoma inside the lung. Pneumostoma vent 204 is not however so long that it penetrates so far into the lung that it might cause injury. The material and thickness of tube 240 of pneumostoma vent 204 is selected such that tube 240 is soft enough that it will deform rather than cause injury to the pneumostoma or lung. Pneumostoma vent 204 has an opening 254 in tip 252 of tube 240. The length of tube 240 required for a pneumostoma vent 204 varies significantly between different pneumostomas. A longer tube 240 is usually required in patients with larger amounts of body fat on the chest. A longer tube 240 is usually required where the pneumostoma is placed in the lateral position 112 rather than the frontal position 110. Because of the variation in pneumostomas, pneumostoma vents 204 are manufactured having tubes 240 in a range of sizes and a patient is provided with a pneumostoma vent 204 having a tube 240 of appropriate length for the patient's pneumostoma.
Pneumostoma vent 204 includes a cap 242 and a hydrophobic filter 248 over the opening 255 in the proximal end of tube 240. Hydrophobic filter 248 is positioned over the proximal opening 255 into lumen 258. Hydrophobic filter 248 is positioned and mounted such that material moving between lumen 258 and the exterior of pneumostoma vent 204 must pass through hydrophobic filter 248. Hydrophobic filter 248 is preferably designed such to fit into a recess in cap 242. As shown in
Hydrophobic filter 248 serves several purposes. In general, hydrophobic filter 248 controls the passage of solid or liquid material between the lumen 258 and the exterior of cap 242. For example, hydrophobic filter 248 prevents the flow of water into the lumen 258 through proximal opening 255. Thus, a patient using PMD 201 may shower without water entering the lung through the pneumostoma. Hydrophobic filter 248 may also be selected so as to prevent the entry of microbes, pollen and other allergens and pathogens into the lumen 258. Hydrophobic filter 248 also prevents the exit of liquid and particulate discharge from lumen 258 to the exterior of pneumostoma vent 204. This is desirable to prevent contact between liquid and particulate discharge and clothing for example.
Chest mount 202 connects to the proximal end of pneumostoma vent 204. In one embodiment, illustrated in
Referring now to
In a preferred embodiment, an aperture plate 228 is embedded in the conformable polymer of flange 222. The aperture plate 228 defines aperture 224 of chest mount 202. Aperture plate 228 is made of a stiffer, less compliant material than flange 222 in order that the dimensions of aperture 224 are tightly controlled. Aperture plate 228 is stiff enough that the size and shape of aperture 224 remains stable even under any reasonably possible application of force to chest mount 202. It should be noted that the outer diameter of each of snap ring 243, hydrophobic filter 248, flange 241 and cap 242 is larger than the diameter of aperture 224 of aperture plate 228. Thus, snap ring 243, hydrophobic filter 248, flange 241 and cap 242 cannot pass through aperture 224 into the pneumostoma 110. Distal tip 252 of tube 240 and the body of tube 240 are small enough to pass through aperture 224 however, flange 241 and/or cap 242 serve to limit the passage of tube 240 through aperture 224. These safety features prevent unsafe entry of any of the components of pneumostoma vent 204 into pneumostoma even in the unlikely event of damage to the device. Likewise all the components of the chest mount 202 such as flange 222 and aperture plate 224 are significantly larger than the aperture of a pneumostoma thus precluding passage of any component of the chest mount 202 into a pneumostoma even in the unlikely event of damage to the device.
Referring now to
As shown in
A range of pneumostoma aspirators may be manufactured each having a size appropriate for a different pneumostoma. To simplify manufacture, pneumostoma aspirator 260 may be designed to use some components in common with pneumostoma vent 204. For example, the range of tubes 240 of the pneumostoma vent 204 may be used as tube 266 of pneumostoma aspirator 260. In some embodiments, the cap 264 may also be a shared component. Thus the only additional components required for pneumostoma aspirator 260 are bulb 262 and (optionally) valves 268 and 269. Alternatively the pneumostoma aspirator 260 may be made in only one size where the single size of tube 266 is short enough so as not to cause injury even in a small pneumostoma.
In some embodiments, pneumostoma aspirator 260 may alternatively or additionally be used to apply irrigation to pneumostoma 112 by manual operation of bulb 262 either by the patient, caregiver or medical practitioner. For irrigation, a sterile but inert solution may be used. For example, sterile saline or sterile water may be used. Alternatively, an antibacterial or mucolytic solution may be used. The cleaning solution may also include a small concentration of an agent for maintaining the patency of the pneumostoma for example, Paclitaxel. The cleaning solution should be formulated carefully to avoid injury or irritation to the lung. The pneumostoma aspirator can be used to push the irrigation fluid through the aperture 261 in the distal end of the aspirator and into the pneumostoma.
Alternative Pneumostoma Aspirators
Flange 314 attached to tube 316 is significantly larger than the diameter of tube 316. Flange 314 is too large to enter a pneumostoma and thus acts as a stop to prevent further insertion of tube 316 when flange 314 makes contact with the skin of the patient's chest. The contact surface 315 of flange 314 may also be used to make a temporary seal surrounding the pneumostoma so that when applying suction to the pneumostoma there is reduced leakage of air/fluid around tube 316. Contact surface 315 may be provided with surface features (for example ridges) to enhance the formation of a temporary seal between flange 314 and the skin of the chest.
Tube 316 extends far enough past flange 314 so that it can pass through the thoracic wall into the pneumostoma. Tube 316 is not, however, so long that it may cause injury to the pneumostoma or lung. The maximum desirable length of tube 316 varies significantly between different pneumostomas. A longer tube 316 may be desirable in patients with larger amounts of body fat on the chest. A longer tube 316 may also be desirable where the pneumostoma is placed in the lateral position 112 rather than the frontal position 110. Because of the variation in pneumostomas, pneumostoma aspirators 310 may be manufactured having tubes 316 in a range of sizes. A patient can thus be provided with a pneumostoma aspirator 310 having a tube 316 of appropriate length for the patient's pneumostoma. Tube 316 may be from 30 mm to 120 mm in length and from 5 mm to 20 mm in diameter depending on the size of a pneumostoma. A typical tube 240 may be between 40 mm and 80 mm in length and between 8 mm and 12 mm in diameter. In alternative embodiments, a pneumostoma aspirator is made with a tube 316 of a single length (such as 120 mm) and tube 316 is then cut to the length appropriate for a particular patient. In alternative embodiments, a pneumostoma aspirator is made with a tube 316 of a single short length (such as 30 mm) which can be used in any pneumostoma without causing injury.
As shown in
Pneumostoma aspirator may be used in accordance with the instructions for use of
The aspirator 410 of
In alternative embodiments, an aspirator 420 is designed to mate with chest mount 202 instead of or in addition to pneumostoma vent 204. For example, as shown in
In the previous embodiments, a flexible bulb (with or without one or more valves) has been provided as the mechanism by which irrigation fluid may be provided or suction applied. In alternative designs a different mechanism may be provided to produce the negative pressure required to extract the fluid/air discharge from the pneumostoma. Such mechanisms include vacuum bottles, pumps, fans and syringes. (Or positive pressure for irrigation). In each case it is desirable that the mechanism have safety features to prevent over insertion of any component into the pneumostoma or the application of positive or negative pressure sufficient to cause injury to the lung. The safety features are particularly desirable in devices intended for use by the patient rather than a trained medical professional.
Note that the end of tube 608 has a valve/filter 620 which prevents entry of discharge into tube 610 and fan/pump 606. Vent 612 may also be provided with a replaceable filter (for example a HEPA filter) to prevent the venting of any pathogens which may be in the gases extracted from the lung. Fan/pump 606 is selected so that it is self-limiting as to the maximum negative pressure it is capable of producing in reservoir 614. The maximum negative pressure is selected to be at a level which will not damage the pneumostoma or lung. A safety valve may additionally or alternatively be provided which opens in the event that the pressure is outside of a preset safe range. Reservoir 614 is preferably translucent so that accumulation of discharge may be observed.
Tube 618 is connected with a flange 622 which limits the depth of insertion of tube 618 into a pneumostoma. In alternative embodiments, tube 618 may comprise a coupling for engaging a chest mount 202 as shown in
In operation, tube 618 is pushed into the pneumostoma until flange 622 engages the chest of the patient to prevent further insertion. The patient (or medical provider) then pushes button 626 which actuates motor 604. Motor 604 drives fan/pump 606 which extracts air from reservoir 614. Air is sucked through tube 618 via tube 616 into reservoir 614. Solid and liquid discharge may also be sucked through the aperture(s) in the tip of tube 618 and thence into reservoir 614. The discharge 634 accumulates in reservoir 614. Gases removed from the pneumostoma are vented through vent 612. After sufficient discharge has been removed from the pneumostoma, the pneumostoma aspirator is removed from the pneumostoma. Reservoir 614 may be then detached from motorized device 602, emptied, cleaned and re-attached. Alternatively, reservoir 614 may be disposable, in which case, the reservoir is detached, disposed of and replaced with a new reservoir. Likewise tube 618 may be detached and cleaned or detached and replaced. Motorized device 602 is preferable a reusable device.
Although pneumostoma aspirator has been illustrated with a flange 622, it should be noted that alternative structures may be connected with motorized device 602 so that it may be coupled to a pneumostoma vent or chest mount as previously shown. For example, motorized device 602 may be used, with appropriate adaptations, in place of the bulb in the embodiments of
Materials
In preferred embodiments, the pneumostoma management device and the pneumostoma aspirator are formed from biocompatible polymers or biocompatible metals. A patient will typically wear the PMD at all times and thus the materials, particularly of tubes entering the pneumostoma, should meet high standards for biocompatibility. In general preferred materials for manufacturing the suction irrigation device and the PMD are biocompatible thermoplastic elastomers that are readily utilized in injection molding and extrusion processing. As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polymer materials can be used without departing from the scope of the invention. Biocompatible polymers may be selected from the group consisting of polyethylenes (HDPE), polyvinyl chloride, polyacrylates (polyethyl acrylate and polymethyl acrylate, polymethyl methacrylate, polymethyl-coethyl acrylate, ethylene/ethyl acrylate), polycarbonate urethane (BIONATEG), polysiloxanes (silicones), polytetrafluoroethylene (PTFE, GORE-TEX®, ethylene/chlorotrifluoroethylene copolymer, aliphatic polyesters, ethylene/tetrafluoroethylene copolymer), polyketones (polyaryletheretherketone, polyetheretherketone, polyetheretherketoneketone, polyetherketoneetherketoneketone polyetherketone), polyether block amides (PEBAX, PEBA), polyamides (polyamideimide, PA-11, PA-12, PA-46, PA-66), polyetherimide, polyether sulfone, poly(iso)butylene, polyvinyl chloride, polyvinyl fluoride, polyvinyl alcohol, polyurethane, polybutylene terephthalate, polyphosphazenes, nylon, polypropylene, polybutester, nylon and polyester, polymer foams (from carbonates, styrene, for example) as well as the copolymers and blends of the classes listed and/or the class of thermoplastics and elastomers in general. Reference to appropriate polymers that can be used for manufacturing PMD 201 can be found in the following documents: PCT Publication WO 02/02158, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275, entitled “Bio-Compatible Polymeric Materials;” and, PCT Publication WO 02/00270, entitled “Bio-Compatible Polymeric Materials” all of which are incorporated herein by reference. Other suitable materials for the manufacture of the PMD include medical grade inorganic materials such stainless steel, titanium, ceramics and coated materials.
Hydrophobic filter 248 should be sufficiently porous to allow air to exit through the filter. Materials for hydrophobic filters are available commercially and filters can be fabricated from any suitable hydrophobic polymer, such as tetrafluoroethylene, PTFE, polyolefins, microglass, polyethylene and polypropylene or a mixture thereof. In preferred examples, the hydrophobic filter is a laminated tetrafluoroethylene e.g. TEFLON®, (E.I. du Pont de Nemours Co.) or GORE-TEX® (W.L. Gore, Inc.) of a controlled pore size. In other examples the hydrophobic filter may comprise a felted polypropylene; PTFE/polypropylene filter media. Hydrophobic filter 248 may additionally comprise an antimicrobial, an anti-bacterial, and/or an anti-viral material or agent.
The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. Embodiments of the present invention may use some or all of the features shown in the various disclosed embodiments where such features are not structurally or functionally incompatible. It is intended that the scope of the invention be defined by the claims and their equivalents.
This application claims priority to all of the following applications including: U.S. Provisional Application No. 61/029,830, filed Feb. 19, 2008, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/032,877, filed Feb. 29, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/038,371, filed Mar. 20, 2008, entitled “SURGICAL PROCEDURE AND INSTRUMENT TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/082,892, filed Jul. 23, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSMETIC AND/OR PROTECTIVE COVER”; U.S. Provisional Application No. 61/083,573, filed Jul. 25, 2008, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”; U.S. Provisional Application No. 61/084,559, filed Jul. 29, 2008, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT”; U.S. Provisional Application No. 61/088,118, filed Aug. 12, 2008, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/143,298, filed Jan. 8, 2009, entitled “METHODS AND APPARATUS FOR THE CRYOTHERAPY CREATION OR RE-CREATION OF PNEUMOSTOMY”; and U.S. Provisional Application No. 61/151,581, filed Feb. 11, 2009, entitled “SURGICAL INSTRUMENTS AND PROCEDURES TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”. All of the afore-mentioned applications are incorporated herein by reference in their entireties. This application is related to all of the above provisional applications and all the patent applications that claim priority thereto including: This application is related to all of the following applications including U.S. patent application Ser. No. 12/388,465, filed Feb. 18, 2009, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,447, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,451, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT METHOD FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,435, filed Feb. 18, 2009, entitled “TWO-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,438, filed Feb. 18, 2009, entitled “ACCELERATED TWO-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,441, filed Feb. 18, 2009, entitled “SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,446, filed Feb. 18, 2009, entitled “PERCUTANEOUS SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMSOTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,460, filed Feb. 13, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSTMETIC AND/OR PROTECTIVE COVER”; U.S. patent application Ser. No. 12/388,455, filed Feb. 18, 2009, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”; U.S. patent application Ser. No. 12/388,461, filed Feb. 18, 2009, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT”; U.S. patent application Ser. No. 12/388,458, filed Feb. 18, 2009, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,459, filed Feb. 18, 2009, entitled “METHODS AND DEVICES FOR FOLLOW-UP CARE AND TREATMENT OF A PNEUMOSTOMA”; U.S. patent application Ser. No. 12/388,453, filed Feb. 18, 2009, entitled “SURGICAL INSTRUMENTS FOR CREATING A PNEUMOSTOMA AND TREATING CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,466, filed Feb. 18, 2009, entitled “ONE-PIECE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,467, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM WITH SECRETION MANAGEMENT FEATURES FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,468, filed Feb. 18, 2009, entitled “MULTI-LAYER PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULJMONARY DISEASE”; U.S. patent application Ser. No. 12/388,469, filed Feb. 18, 2009, entitled “VARIABLE LENGTH PNEUMOSTOMA MANAGEMENT SYSTEM FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; and U.S. patent application Ser. No. 12/388,470, filed Feb. 18, 2009, entitled “SELF-SEALING DEVICE AND METHOD FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”. All of the afore-mentioned applications are incorporated herein by reference in their entireties. This patent application also incorporates by reference all patents, applications, and articles discussed and/or cited herein.
Number | Name | Date | Kind |
---|---|---|---|
733152 | Chisholm | Jul 1903 | A |
953922 | Rogers | Apr 1910 | A |
2206687 | Bloomheart | Jul 1940 | A |
2867213 | Thomas, Jr. | Jan 1959 | A |
2873742 | Shelden | Feb 1959 | A |
2991787 | Shelden et al. | Jul 1961 | A |
3253594 | Matthews et al. | May 1966 | A |
3384087 | Brummelkamp | May 1968 | A |
3463159 | Heimlich | Aug 1969 | A |
3511243 | Toy | May 1970 | A |
3556103 | Calhoun et al. | Jan 1971 | A |
3638649 | Ersek | Feb 1972 | A |
3682166 | Jacobs | Aug 1972 | A |
3688773 | Weiss | Sep 1972 | A |
3777757 | Gray et al. | Dec 1973 | A |
3788326 | Jacobs | Jan 1974 | A |
3817250 | Weiss et al. | Jun 1974 | A |
3908704 | Clement et al. | Sep 1975 | A |
3916903 | Pozzi | Nov 1975 | A |
4153058 | Nehme | May 1979 | A |
4291694 | Chai | Sep 1981 | A |
4439189 | Sargeant et al. | Mar 1984 | A |
4465062 | Versaggi et al. | Aug 1984 | A |
4502482 | DeLuccia et al. | Mar 1985 | A |
4583977 | Shishov et al. | Apr 1986 | A |
4664660 | Goldberg et al. | May 1987 | A |
4799494 | Wang | Jan 1989 | A |
4813929 | Semrad | Mar 1989 | A |
4826495 | Petersen | May 1989 | A |
4828553 | Nielsen | May 1989 | A |
4869717 | Adair | Sep 1989 | A |
4872869 | Johns | Oct 1989 | A |
4889534 | Mohiuddin et al. | Dec 1989 | A |
4931045 | Steer | Jun 1990 | A |
4944724 | Goldberg et al. | Jul 1990 | A |
4959054 | Heimke et al. | Sep 1990 | A |
4976688 | Rosenblum | Dec 1990 | A |
5004456 | Botterbusch et al. | Apr 1991 | A |
5060645 | Russell | Oct 1991 | A |
5078689 | Keller | Jan 1992 | A |
5137509 | Freitas | Aug 1992 | A |
5139485 | Smith et al. | Aug 1992 | A |
5218957 | Strickland | Jun 1993 | A |
5230332 | Strickland | Jul 1993 | A |
5230350 | Fentress | Jul 1993 | A |
5261708 | Steer | Nov 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5312331 | Knoepfler | May 1994 | A |
5315992 | Dalton | May 1994 | A |
5336206 | Shichman | Aug 1994 | A |
5354283 | Bark et al. | Oct 1994 | A |
5356386 | Goldberg et al. | Oct 1994 | A |
5366478 | Brinkerhoff et al. | Nov 1994 | A |
5370625 | Shichman | Dec 1994 | A |
5376376 | Li | Dec 1994 | A |
5389077 | Melinyshyn et al. | Feb 1995 | A |
5401262 | Karwoski et al. | Mar 1995 | A |
5403264 | Wohlers et al. | Apr 1995 | A |
5431633 | Fury | Jul 1995 | A |
5478333 | Asherman, Jr. | Dec 1995 | A |
5484401 | Rodriguez et al. | Jan 1996 | A |
5496297 | Olsen | Mar 1996 | A |
5501677 | Jensen | Mar 1996 | A |
5501678 | Olsen | Mar 1996 | A |
5588424 | Insler et al. | Dec 1996 | A |
5616131 | Sauer et al. | Apr 1997 | A |
5660175 | Dayal | Aug 1997 | A |
5662629 | Steer et al. | Sep 1997 | A |
5728066 | Daneshvar | Mar 1998 | A |
5730735 | Holmberg et al. | Mar 1998 | A |
5738661 | Larice | Apr 1998 | A |
5779649 | Herbert | Jul 1998 | A |
5807341 | Heim | Sep 1998 | A |
5830200 | Steer et al. | Nov 1998 | A |
5843053 | Steer | Dec 1998 | A |
5897531 | Amirana | Apr 1999 | A |
5931821 | Weilbacher et al. | Aug 1999 | A |
5954636 | Schwartz et al. | Sep 1999 | A |
5971962 | Kojima et al. | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
6059816 | Moenning | May 2000 | A |
6083255 | Laufer et al. | Jul 2000 | A |
6174323 | Biggs et al. | Jan 2001 | B1 |
6197010 | Leise, Jr. et al. | Mar 2001 | B1 |
6200333 | Laufer | Mar 2001 | B1 |
6258100 | Alferness et al. | Jul 2001 | B1 |
6273907 | Laufer | Aug 2001 | B1 |
6283988 | Laufer et al. | Sep 2001 | B1 |
6283989 | Laufer et al. | Sep 2001 | B1 |
6287290 | Perkins et al. | Sep 2001 | B1 |
6293930 | Brunsgaard et al. | Sep 2001 | B1 |
6293951 | Alferness et al. | Sep 2001 | B1 |
6299633 | Laufer | Oct 2001 | B1 |
6322536 | Rosengart et al. | Nov 2001 | B1 |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6330882 | French | Dec 2001 | B1 |
6334441 | Zowtiak et al. | Jan 2002 | B1 |
6358269 | Aye | Mar 2002 | B1 |
6398775 | Perkins et al. | Jun 2002 | B1 |
6402754 | Gonzalez | Jun 2002 | B1 |
6411852 | Danek et al. | Jun 2002 | B1 |
6416554 | Alferness et al. | Jul 2002 | B1 |
6432100 | Affeld | Aug 2002 | B1 |
6443156 | Niklason et al. | Sep 2002 | B1 |
6468292 | Mollenauer et al. | Oct 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488673 | Laufer et al. | Dec 2002 | B1 |
6491706 | Alferness et al. | Dec 2002 | B1 |
6514290 | Loomas | Feb 2003 | B1 |
6517519 | Rosen et al. | Feb 2003 | B1 |
6520183 | Amar | Feb 2003 | B2 |
6527761 | Soltesz et al. | Mar 2003 | B1 |
6550475 | Oldfield | Apr 2003 | B1 |
6569121 | Purow et al. | May 2003 | B1 |
6569166 | Gonzalez | May 2003 | B2 |
6585639 | Kotmel et al. | Jul 2003 | B1 |
6589161 | Corcoran | Jul 2003 | B2 |
6592594 | Rimbaugh et al. | Jul 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6609521 | Belani et al. | Aug 2003 | B1 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6632239 | Snyder et al. | Oct 2003 | B2 |
6632243 | Zadno-Azizi et al. | Oct 2003 | B1 |
6634360 | Flodin | Oct 2003 | B1 |
6634363 | Danek et al. | Oct 2003 | B1 |
6638253 | Breznock | Oct 2003 | B2 |
6653525 | Ingenito et al. | Nov 2003 | B2 |
6659961 | Robinson | Dec 2003 | B2 |
6679264 | Deem et al. | Jan 2004 | B1 |
6682506 | Navarro | Jan 2004 | B1 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6694979 | Deem et al. | Feb 2004 | B2 |
6695791 | Gonzalez | Feb 2004 | B2 |
6709401 | Perkins et al. | Mar 2004 | B2 |
6712812 | Roschak et al. | Mar 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6749606 | Keast et al. | Jun 2004 | B2 |
6770063 | Goldberg et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6790172 | Alferness et al. | Sep 2004 | B2 |
6827086 | Shuman | Dec 2004 | B2 |
6837906 | Ginn | Jan 2005 | B2 |
6840243 | Deem et al. | Jan 2005 | B2 |
6843767 | Corcoran et al. | Jan 2005 | B2 |
6846292 | Bakry | Jan 2005 | B2 |
6849061 | Wagner | Feb 2005 | B2 |
6852108 | Barry et al. | Feb 2005 | B2 |
6860847 | Alferness et al. | Mar 2005 | B2 |
6878141 | Perkins et al. | Apr 2005 | B1 |
6886558 | Tanaka | May 2005 | B2 |
6901927 | Deem et al. | Jun 2005 | B2 |
6904909 | Andreas et al. | Jun 2005 | B2 |
6905518 | Ginn | Jun 2005 | B2 |
6916310 | Sommerich | Jul 2005 | B2 |
6929637 | Gonzalez et al. | Aug 2005 | B2 |
6941950 | Wilson et al. | Sep 2005 | B2 |
6997189 | Biggs et al. | Feb 2006 | B2 |
6997918 | Soltesz et al. | Feb 2006 | B2 |
7011094 | Rapacki et al. | Mar 2006 | B2 |
7014628 | Bousquet | Mar 2006 | B2 |
7022088 | Keast et al. | Apr 2006 | B2 |
7033387 | Zadno-Azizi et al. | Apr 2006 | B2 |
7036509 | Rapacki et al. | May 2006 | B2 |
7086398 | Tanaka | Aug 2006 | B2 |
7100616 | Springmeyer | Sep 2006 | B2 |
7135010 | Buckman et al. | Nov 2006 | B2 |
7141046 | Perkins et al. | Nov 2006 | B2 |
7165548 | Deem et al. | Jan 2007 | B2 |
7172581 | Ciok et al. | Feb 2007 | B2 |
7175644 | Cooper et al. | Feb 2007 | B2 |
7182772 | Alferness et al. | Feb 2007 | B2 |
7186259 | Perkins et al. | Mar 2007 | B2 |
7192420 | Whiteford | Mar 2007 | B2 |
7195016 | Loyd et al. | Mar 2007 | B2 |
7195017 | Tanaka | Mar 2007 | B2 |
7207946 | Sirokman | Apr 2007 | B2 |
7232414 | Gonzalez | Jun 2007 | B2 |
7244245 | Purow et al. | Jul 2007 | B2 |
7252086 | Tanaka | Aug 2007 | B2 |
7377278 | Tanaka | May 2008 | B2 |
7398782 | Tanaka | Jul 2008 | B2 |
7406963 | Chang et al. | Aug 2008 | B2 |
7426929 | Tanaka | Sep 2008 | B2 |
7533667 | Tanaka | May 2009 | B2 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20010041906 | Gonzalez | Nov 2001 | A1 |
20010041932 | Scholz et al. | Nov 2001 | A1 |
20020042564 | Cooper et al. | Apr 2002 | A1 |
20020062120 | Perkins et al. | May 2002 | A1 |
20020077593 | Perkins et al. | Jun 2002 | A1 |
20020087153 | Roschak et al. | Jul 2002 | A1 |
20020111619 | Keast et al. | Aug 2002 | A1 |
20020111620 | Cooper et al. | Aug 2002 | A1 |
20020112729 | DeVore et al. | Aug 2002 | A1 |
20020120177 | Borst et al. | Aug 2002 | A1 |
20020165618 | Ingenito et al. | Nov 2002 | A1 |
20020188171 | Alferness et al. | Dec 2002 | A1 |
20030013935 | Alferness et al. | Jan 2003 | A1 |
20030018344 | Kaji et al. | Jan 2003 | A1 |
20030050648 | Alferness et al. | Mar 2003 | A1 |
20030051733 | Kotmel et al. | Mar 2003 | A1 |
20030055331 | Kotmel et al. | Mar 2003 | A1 |
20030065339 | Snyder et al. | Apr 2003 | A1 |
20030069488 | Alferness et al. | Apr 2003 | A1 |
20030078469 | Corcoran | Apr 2003 | A1 |
20030083542 | Alferness et al. | May 2003 | A1 |
20030083671 | Rimbaugh et al. | May 2003 | A1 |
20030127090 | Gifford et al. | Jul 2003 | A1 |
20030130593 | Gonzalez | Jul 2003 | A1 |
20030149446 | Shuman | Aug 2003 | A1 |
20030154988 | DeVore et al. | Aug 2003 | A1 |
20030158515 | Gonzalez et al. | Aug 2003 | A1 |
20030163024 | Corcoran | Aug 2003 | A1 |
20030181356 | Ingenito | Sep 2003 | A1 |
20030181922 | Alferness | Sep 2003 | A1 |
20030183235 | Rimbaugh et al. | Oct 2003 | A1 |
20030186904 | Ruben et al. | Oct 2003 | A1 |
20030195385 | DeVore | Oct 2003 | A1 |
20030195511 | Barry | Oct 2003 | A1 |
20030212337 | Sirokman | Nov 2003 | A1 |
20030212412 | Dillard et al. | Nov 2003 | A1 |
20030216730 | Barry et al. | Nov 2003 | A1 |
20030216769 | Dillard et al. | Nov 2003 | A1 |
20030228344 | Fields et al. | Dec 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20040010209 | Sirokman | Jan 2004 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040016435 | Deem et al. | Jan 2004 | A1 |
20040024356 | Tanaka | Feb 2004 | A1 |
20040031494 | Danek et al. | Feb 2004 | A1 |
20040040555 | Tanaka | Mar 2004 | A1 |
20040047855 | Ingenito | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040059263 | DeVore et al. | Mar 2004 | A1 |
20040073155 | Laufer et al. | Apr 2004 | A1 |
20040073191 | Soltesz et al. | Apr 2004 | A1 |
20040073201 | Cooper et al. | Apr 2004 | A1 |
20040073241 | Barry et al. | Apr 2004 | A1 |
20040078026 | Wagner | Apr 2004 | A1 |
20040078054 | Biggs et al. | Apr 2004 | A1 |
20040087831 | Michels et al. | May 2004 | A1 |
20040097983 | Snyder et al. | May 2004 | A1 |
20040143282 | Dillard et al. | Jul 2004 | A1 |
20040144387 | Amar | Jul 2004 | A1 |
20040158228 | Perkins et al. | Aug 2004 | A1 |
20040167636 | Dillard et al. | Aug 2004 | A1 |
20040173218 | Yamada et al. | Sep 2004 | A1 |
20040199128 | Morris et al. | Oct 2004 | A1 |
20040200484 | Springmeyer | Oct 2004 | A1 |
20040206349 | Alferness et al. | Oct 2004 | A1 |
20040210248 | Gordon et al. | Oct 2004 | A1 |
20040211412 | Alferness et al. | Oct 2004 | A1 |
20040211434 | Loomas et al. | Oct 2004 | A1 |
20040220446 | Corcoran et al. | Nov 2004 | A1 |
20040220556 | Cooper et al. | Nov 2004 | A1 |
20040225254 | Tanaka et al. | Nov 2004 | A1 |
20040231674 | Tanaka | Nov 2004 | A1 |
20040237966 | Tanaka | Dec 2004 | A1 |
20040243140 | Alferness et al. | Dec 2004 | A1 |
20040244802 | Tanaka | Dec 2004 | A1 |
20040244803 | Tanaka | Dec 2004 | A1 |
20050005936 | Wondka | Jan 2005 | A1 |
20050015106 | Perkins et al. | Jan 2005 | A1 |
20050022809 | Wondka | Feb 2005 | A1 |
20050025816 | Tanaka | Feb 2005 | A1 |
20050033310 | Alferness et al. | Feb 2005 | A1 |
20050033344 | Dillard et al. | Feb 2005 | A1 |
20050043745 | Alferness et al. | Feb 2005 | A1 |
20050043751 | Phan et al. | Feb 2005 | A1 |
20050043752 | Phan et al. | Feb 2005 | A1 |
20050049615 | Cooper et al. | Mar 2005 | A1 |
20050056292 | Cooper | Mar 2005 | A1 |
20050060041 | Phan et al. | Mar 2005 | A1 |
20050060042 | Phan et al. | Mar 2005 | A1 |
20050060044 | Roschak et al. | Mar 2005 | A1 |
20050061322 | Freitag | Mar 2005 | A1 |
20050066976 | Wondka | Mar 2005 | A1 |
20050085801 | Cooper et al. | Apr 2005 | A1 |
20050096529 | Cooper et al. | May 2005 | A1 |
20050103340 | Wondka | May 2005 | A1 |
20050107783 | Tom et al. | May 2005 | A1 |
20050131276 | Alferness et al. | Jun 2005 | A1 |
20050137518 | Biggs et al. | Jun 2005 | A1 |
20050137611 | Escudero et al. | Jun 2005 | A1 |
20050137712 | Biggs et al. | Jun 2005 | A1 |
20050137715 | Phan et al. | Jun 2005 | A1 |
20050145253 | Wilson et al. | Jul 2005 | A1 |
20050161040 | Tanaka | Jul 2005 | A1 |
20050166925 | Wilson et al. | Aug 2005 | A1 |
20050171396 | Pankratov et al. | Aug 2005 | A1 |
20050177144 | Phan et al. | Aug 2005 | A1 |
20050178385 | Dellaca' et al. | Aug 2005 | A1 |
20050178389 | Shaw et al. | Aug 2005 | A1 |
20050192526 | Biggs et al. | Sep 2005 | A1 |
20050203483 | Perkins et al. | Sep 2005 | A1 |
20050205097 | Kyle, Jr. | Sep 2005 | A1 |
20050244401 | Ingenito | Nov 2005 | A1 |
20050281797 | Gong et al. | Dec 2005 | A1 |
20050281801 | Gong et al. | Dec 2005 | A1 |
20050281802 | Gong et al. | Dec 2005 | A1 |
20050282748 | Gong et al. | Dec 2005 | A1 |
20050288549 | Mathis | Dec 2005 | A1 |
20050288550 | Mathis | Dec 2005 | A1 |
20050288684 | Aronson et al. | Dec 2005 | A1 |
20050288702 | McGurk et al. | Dec 2005 | A1 |
20060004400 | McGurk et al. | Jan 2006 | A1 |
20060009748 | Mathis | Jan 2006 | A1 |
20060025815 | McGurk et al. | Feb 2006 | A1 |
20060047291 | Barry | Mar 2006 | A1 |
20060076023 | Rapacki et al. | Apr 2006 | A1 |
20060079838 | Walker et al. | Apr 2006 | A1 |
20060095002 | Soltesz et al. | May 2006 | A1 |
20060107961 | Tanaka | May 2006 | A1 |
20060116749 | Willink et al. | Jun 2006 | A1 |
20060118125 | Tanaka | Jun 2006 | A1 |
20060118126 | Tanaka | Jun 2006 | A1 |
20060124126 | Tanaka | Jun 2006 | A1 |
20060130830 | Barry | Jun 2006 | A1 |
20060135947 | Soltesz et al. | Jun 2006 | A1 |
20060135984 | Kramer et al. | Jun 2006 | A1 |
20060142672 | Keast et al. | Jun 2006 | A1 |
20060161233 | Barry et al. | Jul 2006 | A1 |
20060162731 | Wondka et al. | Jul 2006 | A1 |
20060206147 | DeVore et al. | Sep 2006 | A1 |
20060212046 | Pearce et al. | Sep 2006 | A1 |
20060212051 | Snyder et al. | Sep 2006 | A1 |
20060235432 | DeVore et al. | Oct 2006 | A1 |
20060235467 | DeVore | Oct 2006 | A1 |
20060264772 | Aljuri et al. | Nov 2006 | A1 |
20060276807 | Keast et al. | Dec 2006 | A1 |
20060280772 | Roschak et al. | Dec 2006 | A1 |
20060280773 | Roschak et al. | Dec 2006 | A1 |
20060283462 | Fields et al. | Dec 2006 | A1 |
20070005083 | Sabanathan et al. | Jan 2007 | A1 |
20070027434 | Pedersen et al. | Feb 2007 | A1 |
20070043350 | Soltesz et al. | Feb 2007 | A1 |
20070051372 | Tanaka | Mar 2007 | A1 |
20070055175 | Caro | Mar 2007 | A1 |
20070088300 | Cline et al. | Apr 2007 | A1 |
20070123922 | Cooper et al. | May 2007 | A1 |
20070128174 | Kleinsek et al. | Jun 2007 | A1 |
20070142742 | Aljuri et al. | Jun 2007 | A1 |
20070163598 | Chang et al. | Jul 2007 | A1 |
20070185531 | Rimbaugh et al. | Aug 2007 | A1 |
20070186932 | Wondka et al. | Aug 2007 | A1 |
20070186933 | Domingo et al. | Aug 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080281151 | Chang et al. | Nov 2008 | A1 |
20080281295 | Chang et al. | Nov 2008 | A1 |
20080281433 | Chang et al. | Nov 2008 | A1 |
20080283065 | Chang et al. | Nov 2008 | A1 |
20080287878 | Tanaka | Nov 2008 | A1 |
20080287973 | Aster et al. | Nov 2008 | A1 |
20080295829 | Evens | Dec 2008 | A1 |
20090205641 | Tanaka | Aug 2009 | A1 |
20090205643 | Tanaka et al. | Aug 2009 | A1 |
20090205644 | Tanaka et al. | Aug 2009 | A1 |
20090205645 | Tanaka et al. | Aug 2009 | A1 |
20090205646 | Tanaka et al. | Aug 2009 | A1 |
20090205647 | Plough et al. | Aug 2009 | A1 |
20090205648 | Tanaka et al. | Aug 2009 | A1 |
20090205649 | Tanaka et al. | Aug 2009 | A1 |
20090205650 | Tanaka et al. | Aug 2009 | A1 |
20090205651 | Tanaka et al. | Aug 2009 | A1 |
20090205658 | Tanaka et al. | Aug 2009 | A1 |
20090205665 | Tanaka et al. | Aug 2009 | A1 |
20090209856 | Tanaka et al. | Aug 2009 | A1 |
20090209906 | Tanaka et al. | Aug 2009 | A1 |
20090209909 | Tanaka et al. | Aug 2009 | A1 |
20090209917 | Tanaka et al. | Aug 2009 | A1 |
20090209924 | Tanaka | Aug 2009 | A1 |
20090209936 | Tanaka et al. | Aug 2009 | A1 |
20090209970 | Tanaka et al. | Aug 2009 | A1 |
20090209971 | Tanaka et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
0260543 | Mar 1988 | EP |
62-2028747 | Jun 1986 | JP |
2192185 | Oct 2002 | RU |
WO 9639960 | Dec 1996 | WO |
WO 9966975 | Dec 1999 | WO |
WO 0076577 | Dec 2000 | WO |
WO 0145568 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090209936 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
61029830 | Feb 2008 | US | |
61032877 | Feb 2008 | US | |
61038371 | Mar 2008 | US | |
61082892 | Jul 2008 | US | |
61083573 | Jul 2008 | US | |
61084559 | Jul 2008 | US | |
61088118 | Aug 2008 | US | |
61143298 | Jan 2009 | US | |
61151581 | Feb 2009 | US |