Aspirator and method for pneumostoma management

Information

  • Patent Grant
  • 7927324
  • Patent Number
    7,927,324
  • Date Filed
    Wednesday, February 18, 2009
    15 years ago
  • Date Issued
    Tuesday, April 19, 2011
    13 years ago
Abstract
A method for treating a pneumostoma by applying suction to the pneumostoma in order to remove solid or liquid discharge. A pneumostoma aspirator including a bulb or syringe is used to apply negative pressure to a tube which enters the pneumostoma. The pneumostoma aspirator may be used in conjunction with a pneumostoma management device. Alternatively, the pneumostoma aspirator may be used after the pneumostoma management device has been removed. The pneumostoma aspirator may also be used to introduce irrigation fluid into the pneumostoma and/or remove irrigation fluid and discharge from the pneumostoma.
Description
BACKGROUND OF THE INVENTION

In the United States alone, approximately 14 million people suffer from some form of Chronic Obstructive Pulmonary Disease (COPD). However an additional ten million adults have evidence of impaired lung function indicating that COPD may be significantly underdiagnosed. The cost of COPD to the nation in 2002 was estimated to be $32.1 billion. Medicare expenses for COPD beneficiaries were nearly 2.5 times that of the expenditures for all other patients. Direct medical services accounted for $18.0 billion, and indirect cost of morbidity and premature mortality was $14.1 billion. COPD is the fourth leading cause of death in the U.S. and is projected to be the third leading cause of death for both males and females by the year 2020.


Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease of the airways that is characterized by a gradual loss of lung function. In the United States, the term COPD includes chronic bronchitis, chronic obstructive bronchitis, and emphysema, or combinations of these conditions. In emphysema the alveoli walls of the lung tissue are progressively weakened and lose their elastic recoil. The breakdown of lung tissue causes progressive loss of elastic recoil and the loss of radial support of the airways which traps residual air in the lung. This increases the work of exhaling and leads to hyperinflation of the lung. When the lungs become hyperinflated, forced expiration cannot reduce the residual volume of the lungs because the force exerted to empty the lungs collapses the small airways and blocks air from being exhaled. As the disease progresses, the inspiratory capacity and air exchange surface area of the lungs is reduced until air exchange becomes seriously impaired and the individual can only take short shallow labored breaths (dyspnea).


The symptoms of COPD can range from the chronic cough and sputum production of chronic bronchitis to the severe disabling shortness of breath of emphysema. In some individuals, chronic cough and sputum production are the first signs that they are at risk for developing the airflow obstruction and shortness of breath characteristic of COPD. With continued exposure to cigarettes or noxious particles, the disease progresses and individuals with COPD increasingly lose their ability to breathe. Acute infections or certain weather conditions may temporarily worsen symptoms (exacerbations), occasionally where hospitalization may be required. In others, shortness of breath may be the first indication of the disease. The diagnosis of COPD is confirmed by the presence of airway obstruction on testing with spirometry. Ultimately, severe emphysema may lead to severe dyspnea, severe limitation of daily activities, illness and death.


There is no cure for COPD or pulmonary emphysema, only various treatments for ameliorating the symptoms. The goal of current treatments is to help people live with the disease more comfortably and to prevent the progression of the disease. The current options include: self-care (e.g., quitting smoking), medications (such as bronchodilators which do not address emphysema physiology), long-term oxygen therapy, and surgery (lung transplantation and lung volume reduction surgery). Lung Volume Reduction Surgery (LVRS) is an invasive procedure primarily for patients who have a localized (heterogeneous) version of emphysema; in which, the most diseased area of the lung is surgically removed to allow the remaining tissue to work more efficiently. Patients with diffuse emphysema cannot be treated with LVRS, and typically only have lung transplantation as an end-stage option. However, many patients are not candidates for such a taxing procedure.


A number of less-invasive surgical methods have been proposed for ameliorating the symptoms of COPD. In one approach new windows are opened inside the lung to allow air to more easily escape from the diseased tissue into the natural airways. These windows are kept open with permanently implanted stents. Other approaches attempt to seal off and shrink portions of the hyperinflated lung using chemical treatments and/or implantable plugs. However, these proposals remain significantly invasive and are still in clinical trails. None of the surgical approaches to treatment of COPD has been widely adopted. Therefore, a large unmet need remains for a medical procedure that can sufficiently alleviate the debilitating effects of COPD and emphysema and is accepted by physicians and patients.


SUMMARY OF THE INVENTION

In view of the disadvantages of the state of the art, Applicants have developed a method for treating COPD in which an artificial passageway is made through the chest wall into the lung. An anastomosis is formed between the artificial passageway and the lung by creating a pleurodesis between the visceral and parietal membranes surrounding the passageway as it enters the lung. The pleurodesis prevents air from entering the pleural cavity and causing a pneumothorax (deflation of the lung due to air pressure in the pleural cavity). The pleurodesis is stabilized by a fibrotic healing response between the membranes. The artificial passageway through the chest wall also becomes epithelialized. The result is a stable artificial aperture through the chest wall which communicates with the parenchymal tissue of the lung.


The stable artificial aperture into the lung through the chest is referred to herein as a pneumostoma. A pneumostoma provides an extra pathway that allows air to exit the lung while bypassing the natural airways which have been impaired by COPD and emphysema. By providing this ventilation bypass, the pneumostoma allows the stale air trapped in the lung to escape from the lung thereby shrinking the lung (reducing hyperinflation). By shrinking the lung, the ventilation bypass reduces breathing effort (reducing dyspnea), allows more fresh air to be drawn in through the natural airways and increases the effectiveness of all of the tissues of the lung for gas exchange. Increasing the effectiveness of gas exchange allows for increased absorption of oxygen into the bloodstream and also increased removal of carbon dioxide. Reducing the amount of carbon dioxide retained in the lung reduces hypercapnia which also reduces dyspnea. The pneumostoma thereby achieves the advantages of lung volume reduction surgery without surgically removing or sealing off a portion of the lung.


In some situations, mucus/discharge and/or foreign matter may accumulate in the pneumostoma or a medical device implanted in the pneumostoma. An aspirator and methods of use in accordance with embodiments of the present invention are desirable and useful to remove the mucus/discharge and/or foreign matter in order to maintain the patency of the pneumostoma and prevent infection.


In accordance with a general embodiment the present invention provides a pneumostoma aspirator and methods for removing the mucus/discharge and/or foreign matter from a pneumostoma. Some embodiments, of the present invention may also be used to irrigate the pneumostoma instead of or in addition to providing suction.


In accordance with one embodiment, the present invention provides a pneumostoma management system which includes a partially-implantable pneumostoma vent, a chest mount and a pneumostoma aspirator. The pneumostoma aspirator attaches to the pneumostoma management device to safely and effectively apply suction to a pneumostoma.


In accordance with one embodiment, the present invention provides pneumostoma management system which includes a partially-implantable pneumostoma management device which can be placed into a pneumostoma to prevent the entry of foreign substances into the lung, control air flow through the pneumostoma and collect any materials that may exit the lung and a pneumostoma aspirator which attaches to the pneumostoma management device to safely and effectively apply suction to a pneumostoma.


In accordance with one embodiment, the present invention provides a pneumostoma management system which includes a partially-implantable pneumostoma vent, a chest mount and pneumostoma aspirator. The chest mount is secured to the skin of the patient. The partially-implantable pneumostoma vent is placed into a pneumostoma through an aperture in the chest mount. The pneumostoma aspirator attaches to the chest mount in the absence of the pneumostoma vent.


Thus, various systems, components and methods are provided for managing a pneumostoma and thereby treating COPD. Other objects, features and advantages of the invention will be apparent from drawings and detailed description to follow.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further features, advantages and benefits of the present invention will be apparent upon consideration of the present description taken in conjunction with the accompanying drawings.



FIG. 1A shows the chest of a patient indicating alternative locations for a pneumostoma that may be managed using the device and methods of the present invention.



FIG. 1B shows a sectional view of the chest illustrating the relationship between the pneumostoma, lung and natural airways.



FIG. 1C shows a detailed sectional view of a pneumostoma.



FIG. 2A shows a perspective view of components of a pneumostoma management device according to an embodiment of the present invention.



FIG. 2B shows a sectional view of the pneumostoma management device of FIG. 2A partially implanted in a pneumostoma.



FIG. 2C shows a perspective view of a pneumostoma aspirator designed to operate with the pneumostoma management device of FIGS. 2A and 2B according to an embodiment of the present invention.



FIG. 2D shows a sectional view of the pneumostoma aspirator of FIG. 2C mated with the pneumostoma management device of FIGS. 2A and 2B according to an embodiment of the present invention.



FIG. 2E shows a positioning of a pneumostoma management device and pneumostoma aspirator relative to the chest of a patient.



FIG. 2F shows a method of using a pneumostoma aspirator in accordance with an embodiment of the present invention, in the form of instructions for use.



FIG. 3A shows a perspective view of an alternative pneumostoma aspirator according to an embodiment of the present invention.



FIG. 3B shows a sectional view of the pneumostoma aspirator of FIG. 3A.



FIG. 4A shows a perspective view of an alternative pneumostoma aspirator according to an embodiment of the present invention.



FIG. 4B shows a sectional view of the pneumostoma aspirator of FIG. 3A.



FIG. 4C shows a sectional view of an alternative pneumostoma aspirator according to an embodiment of the present invention.



FIG. 4D shows a sectional view of an alternative pneumostoma aspirator according to an embodiment of the present invention.



FIG. 5 shows a perspective view of an alternative pneumostoma aspirator according to an embodiment of the present invention.



FIG. 6 shows a perspective view of a motorized alternative pneumostoma aspirator according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The following description is of the best modes presently contemplated for practicing various embodiments of the present invention. The description is not to be taken in a limiting sense but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be ascertained with reference to the claims. In the description of the invention that follows, like numerals or reference designators will be used to refer to like parts or elements throughout. In addition, the first digit of a reference number identifies the drawing in which the reference number first appears.


Pneumostoma Formation and Anatomy



FIG. 1A shows the chest of a patient identifying alternative locations for creating a pneumostoma that may be managed using the system of the present invention. A first pneumostoma 110 is shown on the front of the chest 100 over the right lung 101 (shown in dashed lines). The pneumostoma is preferably positioned over the third intercostal space on the mid-clavicular line. Thus the pneumostoma 110 is located on the front of the chest between the third and fourth ribs. Although the pneumostoma 110 is preferably located between two ribs, in alternative procedures a pneumostoma can also be prepared using a minithoracotomy with a rib resection.


In FIG. 1A a second pneumostoma 112 is illustrated in a lateral position entering the left lung 103 (shown in dashed lines). The pneumostoma 112 is preferably positioned over the fourth or fifth intercostal space under the left arm 104. In general, one pneumostoma per lung is created; however, more or less than one pneumostoma per lung may be created depending upon the needs of the patient. In most humans, the lobes of the lung are not completely separate and air may pass between the lobes.


A pneumostoma is surgically created by forming an artificial channel through the chest wall and joining that channel with an opening through the visceral membrane of the lung into parenchymal tissue of the lung to form an anastomosis. The anastomosis is joined and sealed by sealing the channel from the pleural cavity using adhesives, mechanical sealing and/or pleurodesis. Methods for forming the channel, opening, anastomosis and pleurodesis are disclosed in applicant's pending and issued patents and applications including U.S. patent application Ser. No. 10/881,408 entitled “Methods and Devices to Accelerate Wound Healing in Thoracic Anastomosis Applications” and U.S. patent application Ser. No. 12/030,006 entitled “Variable Parietal/Visceral Pleural Coupling” which are incorporated herein by reference in their entirety.



FIG. 1B shows a sectional view of chest 100 illustrating the position of the pneumostoma 110. The parenchymal tissue 132 of the lung 130 is comprised principally of alveoli 134. The alveoli 134 are the thin walled air-filled sacs in which gas exchange takes place. Air flows into the lungs through the natural airways including the trachea 136, carina 137, and bronchi 138. Inside the lungs, the bronchi branch into a multiplicity of smaller vessels referred to as bronchioles (not shown). Typically, there are more than one million bronchioles in each lung. Each bronchiole connects a cluster of alveoli to the natural airways. As illustrated in FIG. 1B, pneumostoma 110 comprises a channel through the thoracic wall 106 of the chest 100 between two ribs 107. Pneumostoma 110 opens at an aperture 126 through the skin 114 of chest 100.



FIG. 1C shows a detailed sectional view of the pneumostoma 110. As illustrated in FIG. 1C, pneumostoma 110 comprises a channel 120 through the thoracic wall 106 of the chest 100 between the ribs 107. The channel 120 is joined to cavity 122 in the parenchymal tissue 132 of lung 130. An adhesion or pleurodesis 124 surrounds the channel 120 where it enters the lung 130. The thoracic wall 106 is lined with the parietal membrane 108. The surface of the lung 130 is covered with a continuous sac called the visceral membrane 138. The parietal membrane 108 and visceral membrane 138 are often referred to collectively as the pleural membranes. Between the parietal membrane 108 and visceral membrane 138 is the pleural cavity (pleural space) 140. The pleural cavity usually only contains a thin film of fluid that serves as a lubricant between the lungs and the chest wall. In pleurodesis 124 the pleural membranes are fused and/or adhered to one another eliminating the space between the pleural membranes in that region.


An important feature of the pneumostoma is the seal or adhesion surrounding the channel 120 where it enters the lung 130 which may comprise a pleurodesis 124. Pleurodesis 124 is the fusion or adhesion of the parietal membrane 108 and visceral membrane 138. A pleurodesis may be a complete pleurodesis in which the entire pleural cavity 140 is removed by fusion of the visceral membrane 138 with the parietal membrane 108 over the entire surface of the lung 130. However, as shown in FIG. 1C, the pleurodesis is preferably localized to the region surrounding the channel 120. The pleurodesis 124 surrounding the channel 120 prevents air from entering the pleural cavity 140. If air is permitted to enter pleural cavity 140, a pneumothorax will result and the lung may collapse.


Pleurodesis 124 can be created between the visceral pleura of the lung and the inner wall of the thoracic cavity using chemical methods including introducing into the pleural space irritants such as iodopovidone or silver nitrate, antibiotics (e.g. Doxycycline or Quinacrine), anticancer drugs (e.g. Bleomycin, Mitoxantrone or Cisplatin), cytokines (e.g. interferon alpha-2β and Transforming growth factor-β); pyrogens (e.g. Corynebacterium parvum, Staphylococcus aureus superantigen or OK432); connective tissue proteins (e.g. fibrin or collagen) and minerals (e.g. talc slurry). A pleurodesis can also be created using surgical methods including pleurectomy. For example, the pleural space may be mechanically abraded during thoracoscopy or thoracotomy. This procedure is called dry abrasion pleurodesis. A pleurodesis may also be created using radiotherapy methods, including radioactive gold or external radiation. These methods cause an inflammatory response and or fibrosis, healing, and fusion of the pleural membranes. Alternatively, a seal can be created in an acute manner between the pleural membranes using biocompatible glues, meshes or mechanical means such as clamps, staples, clips and/or sutures. The adhesive or mechanical seal may develop into pleurodesis over time. A range of biocompatible glues are available that may be used on the lung, including light-activatable glues, fibrin glues, cyanoacrylates and two part polymerizing glues. Applicant's copending U.S. patent application Ser. No. 12/030,006 entitled “VARIABLE PARIETAL/VISCERAL PLEURAL COUPLING” discloses methods such as pleurodesis for coupling a channel through the chest wall to the inner volume of the lung without causing a pneumothorax and is incorporated herein by reference for all purposes.


When formed, pneumostoma 110 provides an extra pathway for exhaled air to exit the lung 130 reducing residual volume and intra-thoracic pressure without the air passing through the major natural airways such as the bronchi 138 and trachea. Collateral ventilation is particularly prevalent in an emphysemous lung because of the deterioration of lung tissue caused by COPD. Collateral ventilation is the term given to leakage of air through the connective tissue between the alveoli 134. Collateral ventilation may include leakage of air through pathways that include the interalveolar pores of Kohn, bronchiole-alveolar communications of Lambert, and interbronchiolar pathways of Martin. This air typically becomes trapped in the lung and contributes to hyperinflation. In lungs that have been damaged by COPD and emphysema, the resistance to flow in collateral channels (not shown) of the parenchymal tissue 132 is reduced allowing collateral ventilation to increase. Air from alveoli 134 of parenchymal tissue 132 that passes into collateral pathways of lung 130 is collected in cavity 122 of pneumostoma 110. Pneumostoma 110 thus makes use of collateral ventilation to collect air in cavity 122 and vent the air outside the body via channel 120 reducing residual volume and intra-thoracic pressure and bypassing the natural airways which have been impaired by COPD and emphysema.


By providing this ventilation bypass, the pneumostoma allows stale air trapped in the parenchymal tissue 132 to escape from the lung 130. This reduces the residual volume and intra-thoracic pressure. The lower intra-thoracic pressure reduces the dynamic collapse of airways during exhalation. By allowing the airways to remain patent during exhalation, labored breathing (dyspnea) and residual volume (hyperinflation) are both reduced. Pneumostoma 110 not only provides an extra pathway that allows air to exit the lung 130 but also allows more fresh air to be drawn in through the natural airways. This increases the effectiveness of all of the tissues of the lung 130 and improves gas exchange. Pneumostoma 110 thus achieves many of the advantages sought by lung volume reduction surgery without surgically removing a portion of the lung or sealing off a portion of the lung.


Applicants have found that a pneumostoma management system in accordance with embodiments of the present invention is desirable to maintain the patency of the pneumostoma and control flow of materials between the exterior of the patient and the parenchymal tissue of the lung via a pneumostoma. In accordance with embodiments of the present invention, the pneumostoma management system includes a pneumostoma management device and a pneumostoma aspirator as described herein.


Pneumostoma Management System Including A Pneumostoma Aspirator


As described above, a pneumostoma may be created to treat the symptoms of chronic obstructive pulmonary disease. A patient is typically provided with a pneumostoma management system to protect the pneumostoma and keeps the pneumostoma open on a day-to-day basis. In general terms a pneumostoma management device (“PMD”) comprises a tube which is inserted into the pneumostoma and an external component which is secured to the skin of the patient to keep the tube in place. Gases escape from the lung through the tube and are vented external to the patient. The pneumostoma management device may, in some, but not all cases, include a filter which only permits gases to enter or exit the tube. The pneumostoma management device may, in some, but not all cases, include a one-way valve which allows gases to exit the lung but not enter the lung through the tube. Additional details and variations of pneumostoma management devices are described in applicant's pending and issued patents and applications including those related cases incorporated by reference above.



FIGS. 2A through 2D illustrate views of a pneumostoma management system including a pneumostoma management device (“PMD”) 201 and a pneumostoma aspirator 260 in accordance with an embodiment of the present invention. FIGS. 2C and 2D show pneumostoma aspirator 260 and its interaction with the PMD 201. Referring first to FIGS. 2A and 2B, PMD 201 includes a chest mount 202 which may be mounted to the skin of the patient and a pneumostoma vent 204 which is fitted to the chest mount 202. In a preferred embodiment, pneumostoma vent 204 is mounted through an aperture 224 in chest mount 202. Chest mount 202 has a first coupling that engages a second coupling of the pneumostoma vent to releasably secure the pneumostoma vent 204 to the chest mount 202. As will be further described below, the join between the two components of PMD 201 is engineered to ensure that pneumostoma vent 204 cannot be over-inserted into the lung if it separates from chest mount 202.


As shown in FIG. 2A and FIG. 2B, pneumostoma vent 204 includes a tube 240 sized and configured to fit within the channel of a pneumostoma 110. Tube 240 is stiff enough that it may be inserted into a pneumostoma without collapsing. Over time, a pneumostoma may constrict and it is one function of PMD 201 to preserve the patency of the channel of the pneumostoma by resisting the natural tendency of the pneumostoma to constrict. Tube 240 of pneumostoma vent 204 preferably comprises an atraumatic tip 252 at the distal end. (This application uses the terms proximal and distal regarding the components of the pneumostoma management system in the conventional manner. Thus, proximal refers to the end or side of a device closest to the hand operating the device, whereas distal refers to the end or side of a device furthest from the hand operating the device.) Tip 252 may be rounded, beveled or curved in order to reduce irritation or damage to the tissues of the pneumostoma or lung during insertion or while in position. Opening 254 in tip 252 allows the entry of gases from the cavity of the pneumostoma 110 into lumen 258 of tube 240.Tube 240 is optionally provided with one or more side openings (not shown) positioned near tip 252 and/or along the length of tube 240 to facilitate the flow of gas and/or mucous/discharge into lumen 258.


Tube 240 of pneumostoma vent 204 is sufficiently long that it can pass through the thoracic wall and into the cavity of a pneumostoma inside the lung. Pneumostoma vent 204 is not however so long that it penetrates so far into the lung that it might cause injury. The material and thickness of tube 240 of pneumostoma vent 204 is selected such that tube 240 is soft enough that it will deform rather than cause injury to the pneumostoma or lung. Pneumostoma vent 204 has an opening 254 in tip 252 of tube 240. The length of tube 240 required for a pneumostoma vent 204 varies significantly between different pneumostomas. A longer tube 240 is usually required in patients with larger amounts of body fat on the chest. A longer tube 240 is usually required where the pneumostoma is placed in the lateral position 112 rather than the frontal position 110. Because of the variation in pneumostomas, pneumostoma vents 204 are manufactured having tubes 240 in a range of sizes and a patient is provided with a pneumostoma vent 204 having a tube 240 of appropriate length for the patient's pneumostoma.


Pneumostoma vent 204 includes a cap 242 and a hydrophobic filter 248 over the opening 255 in the proximal end of tube 240. Hydrophobic filter 248 is positioned over the proximal opening 255 into lumen 258. Hydrophobic filter 248 is positioned and mounted such that material moving between lumen 258 and the exterior of pneumostoma vent 204 must pass through hydrophobic filter 248. Hydrophobic filter 248 is preferably designed such to fit into a recess in cap 242. As shown in FIG. 2B, cap 242 comprises a recess 238 into which hydrophobic filter 248 may be fit. Hydrophobic filter 248 may alternatively be fitted into cap 242 using a joint such as a threaded coupling or adhesive or, in some cases, formed integrally with cap 242. Hydrophobic filter 248 may be made from a material such as medical grade GOR-TEX (W. L. Gore & Associates, Inc., Flagstaff, Ariz.). As shown in FIG. 2B, a snap ring 243 locks cap 242 and hydrophobic filter 248 onto the proximal end of tube 240.


Hydrophobic filter 248 serves several purposes. In general, hydrophobic filter 248 controls the passage of solid or liquid material between the lumen 258 and the exterior of cap 242. For example, hydrophobic filter 248 prevents the flow of water into the lumen 258 through proximal opening 255. Thus, a patient using PMD 201 may shower without water entering the lung through the pneumostoma. Hydrophobic filter 248 may also be selected so as to prevent the entry of microbes, pollen and other allergens and pathogens into the lumen 258. Hydrophobic filter 248 also prevents the exit of liquid and particulate discharge from lumen 258 to the exterior of pneumostoma vent 204. This is desirable to prevent contact between liquid and particulate discharge and clothing for example.


Chest mount 202 connects to the proximal end of pneumostoma vent 204. In one embodiment, illustrated in FIGS. 2A and 2B, chest mount 202 comprises a flange 222 and an aperture 224. The aperture 224 is adapted and configured to receive the pneumostoma vent 204. Chest mount 202 is designed to have a smooth surface and a low profile so it is comfortable for the patient to wear. Chest mount 202 should be designed so as not to snag on the patient's clothing or to restrict motion of the patient's arm (if placed in a lateral pneumostoma 112). Flange 222 is significantly wider than pneumostoma vent 204. Flange 222 thus comprises a contact surface 232 which contacts the skin of the patient surrounding the pneumostoma and positions the aperture 224 over the opening of the pneumostoma. Flange 222 is designed such that it is sufficiently flexible that it can conform to the surface of the chest. Contact surface 232 is also provided with a pad of biocompatible adhesive 234, such as a hydrocolloid adhesive, for securing flange 222 to the skin of the patient. The adhesive 234 may be protected by a protector sheet that is removed prior to use of flange 222. Adhesive 234 should be selected so as to secure flange 222 to the chest of the patient in the correct position relative to the pneumostoma without causing undue irritation to the skin of the patient. The adhesive need not create an air tight seal between flange 222 and the skin of the patient. Suitable adhesive pads are available commercially from Avery Dennison (Painesville, Ohio).


Referring now to FIG. 2A which shows a perspective view of chest mount 202 after insertion of pneumostoma vent 204. Flange 222 is generally circular but is provided with one or more tabs 236 to facilitate application and removal of flange 222 from the skin of the patient. As shown in FIG. 2A, chest mount 202 comprises an aperture 224 through which tube 240 of pneumostoma vent 204 may be inserted. Flange 222 is slightly convex on the upper surface 235. Flange 222 includes a recess 226 into which cap 242 of pneumostoma vent 204 may be press fit. Flange 222 is thick enough in the region of aperture 224 to receive the cap 242 of pneumostoma vent 204 so that the cap of pneumostoma vent 204 is flush with the upper surface 235 of flange 222. Recess 226 forms a coupling adapted to releasably secure the cap 242 of pneumostoma vent 204 into flange 222. As shown in FIG. 2B, recess 226 has a lip 227 to releasably secure the cap 242 of pneumostoma vent 204 into flange 222. However, other couplings may be used to releasably secure pneumostoma vent 204 to chest mount 202 including clips, pins, snaps, catches, threaded joints, temporary adhesive and the like. Cap 242 is attached to the proximal end of tube 240. Hydrophobic filter 248 is sandwiched between cap 242 and tube 240. An opening 244 in cap 242 communicates with the lumen 258 of tube 240 via hydrophobic filter 248. As shown in FIGS. 2A and 2B, cap 242 comprises a lip 246 which releasably engages lip 227 of recess 226 of flange 222 to secure pneumostoma vent 204 within the recess 226 of flange 222. Lip 246 forms a coupling element of pneumostoma vent 204 that cooperates with recess 226 to releasably secure pneumostoma vent 204 into chest mount 202 with tube 240 positioned through aperture 224.


In a preferred embodiment, an aperture plate 228 is embedded in the conformable polymer of flange 222. The aperture plate 228 defines aperture 224 of chest mount 202. Aperture plate 228 is made of a stiffer, less compliant material than flange 222 in order that the dimensions of aperture 224 are tightly controlled. Aperture plate 228 is stiff enough that the size and shape of aperture 224 remains stable even under any reasonably possible application of force to chest mount 202. It should be noted that the outer diameter of each of snap ring 243, hydrophobic filter 248, flange 241 and cap 242 is larger than the diameter of aperture 224 of aperture plate 228. Thus, snap ring 243, hydrophobic filter 248, flange 241 and cap 242 cannot pass through aperture 224 into the pneumostoma 110. Distal tip 252 of tube 240 and the body of tube 240 are small enough to pass through aperture 224 however, flange 241 and/or cap 242 serve to limit the passage of tube 240 through aperture 224. These safety features prevent unsafe entry of any of the components of pneumostoma vent 204 into pneumostoma even in the unlikely event of damage to the device. Likewise all the components of the chest mount 202 such as flange 222 and aperture plate 224 are significantly larger than the aperture of a pneumostoma thus precluding passage of any component of the chest mount 202 into a pneumostoma even in the unlikely event of damage to the device.


Referring now to FIGS. 2C and 2D which show a pneumostoma aspirator adapted for use with PMD 201 of FIGS. 2A and 2B as part of pneumostoma management system. FIG. 2C shows a perspective view of pneumostoma aspirator 260. FIG. 2D shows a sectional view through pneumostoma aspirator 260 of FIG. 2C when mounted in a chest mount 202. As shown in FIGS. 2C and 2D, pneumostoma aspirator 260 includes a bulb 262 a coupling 264 and a tube 266. Tube 266 has an opening 261 in the distal end. Opening 261 is adapted to allow entry of gases as well as solid and liquid discharge during operation of aspirator. Tube 266 may be provided with additional openings is the side of tube 266. Pneumostoma aspirator is configured such that tube 266 may be inserted through aperture 224 of chest mount 202 into a pneumostoma. Tube 266 is sufficiently long to enter the pneumostoma but is not so long that it might cause injury to the pneumostoma. Coupling 264 is designed such that it is too large to pass through aperture 224 of the aperture plate 228 of chest mount 202 thereby preventing further insertion of tube 266 into a pneumostoma. Coupling 264 may also be provided with a feature such as a lip 265 for releasably engaging lip 227 of recess 228 of chest mount 202. Bulb 262 is made of a flexible material such that it may be squeezed to reduce the volume of the bulb and when released will return to its previous volume. The re-expansion of bulb 262 may be utilized to apply suction to the pneumostoma to remove fluid and/or discharge. In some embodiments, the reduction in volume of bulb 262 may be used to push the contents of bulb 262 into a pneumostoma, for example an irrigating fluid such as sterile saline or water.


As shown in FIG. 2D, pneumostoma aspirator 260 optionally comprises a one-way valve 268 through which air may pass out of bulb 262. In some embodiments, pneumostoma aspirator 260 may also include a one-way valve 269 configured to allow material to flow from tube 266 into bulb 262. Valve 268 allows air to escape bulb 262 when it is compressed. Thus, valves 268 and 269 prevent air flow into the pneumostoma. In this way device 260 may be designed to provide suction alone instead of suction and irrigation. In some embodiments, it may be desirable to prevent pneumostoma aspirator 260 from expelling material into the pneumostoma. In a simple embodiment, an aperture may be provided in bulb 262 in place of valve 268. The aperture is configured to allow air to escape when bulb 262 is squeezed. The aperture may then be covered with a digit so that air may not enter the aperture when bulb 262 expand and is instead drawn from the pneumostoma through tube 266.


A range of pneumostoma aspirators may be manufactured each having a size appropriate for a different pneumostoma. To simplify manufacture, pneumostoma aspirator 260 may be designed to use some components in common with pneumostoma vent 204. For example, the range of tubes 240 of the pneumostoma vent 204 may be used as tube 266 of pneumostoma aspirator 260. In some embodiments, the cap 264 may also be a shared component. Thus the only additional components required for pneumostoma aspirator 260 are bulb 262 and (optionally) valves 268 and 269. Alternatively the pneumostoma aspirator 260 may be made in only one size where the single size of tube 266 is short enough so as not to cause injury even in a small pneumostoma.



FIG. 2E illustrates the positioning of pneumostoma aspirator 260 over pneumostoma 112 of FIG. 1A. In a preferred embodiment, the chest mount 202 remains attached for up to a week thereby avoiding irritation of the skin caused by daily attachment and removal of a mount. Chest mount may be positioned by the patient by manual alignment of the aperture 224 of chest mount 202 with the aperture of the pneumostoma 112. To use pneumostoma aspirator 260, chest mount 202 is first positioned over a pneumostoma and secured with adhesive to the skin of the patient. Alternatively, a pneumostoma vent or an alignment tool may be used to align the chest mount. Pneumostoma aspirator 260 is then inserted through the aperture in the chest mount until it engages the chest mount 202. As shown in FIG. 2E the pneumostoma aspirator 260 is inserted through chest mount 202 after pneumostoma vent 204 has been removed. Pneumostoma aspirator 260 is then used to apply suction to pneumostoma 112 by manual operation of bulb 262 either by the patient, caregiver or medical practitioner. The application of suction draws discharge from the pneumostoma into the aperture 261 at the distal end of the aspirator 260. Where suction is applied care should be taken to remove any discharge collected to prevent reentry of discharge into the pneumostoma 112.



FIG. 2F illustrates a method for using a pneumostoma aspirator according to an embodiment of the present invention. The method is illustrated in the form of Instructions For Use 270. Instructions For Use are provided to patients with a medical device such as a pneumostoma aspirator. Referring to FIG. 2F the instructions from use include instructions to perform the following steps. At step 272 the tube of the pneumostoma aspirator is inserted into the pneumostoma. At step 274 the tube is pushed into the pneumostoma until the flange of the aspirator engages the chest of the patient and prevents further insertion. At step 276 the aspirator is actuated to collect discharge in the tube. For example, the bulb is squeezed and then allowed to expand sucking air and discharge into the tube. Alternatively the plunger on a syringe is pulled back sucking air and discharge into the tube. Finally at step 278 the aspirator is withdrawn from the pneumostoma. The discharge may then be eliminated. The instructions will be slightly different where the aspirator is designed to operate with a chest mount already in place. In such case, the flange is already engaged with the chest and insertion of the aspirator is limited by engagement of the aspirator with the flange of the chest mount.


In some embodiments, pneumostoma aspirator 260 may alternatively or additionally be used to apply irrigation to pneumostoma 112 by manual operation of bulb 262 either by the patient, caregiver or medical practitioner. For irrigation, a sterile but inert solution may be used. For example, sterile saline or sterile water may be used. Alternatively, an antibacterial or mucolytic solution may be used. The cleaning solution may also include a small concentration of an agent for maintaining the patency of the pneumostoma for example, Paclitaxel. The cleaning solution should be formulated carefully to avoid injury or irritation to the lung. The pneumostoma aspirator can be used to push the irrigation fluid through the aperture 261 in the distal end of the aspirator and into the pneumostoma.


Alternative Pneumostoma Aspirators



FIGS. 3A and 3B show an alternative pneumostoma aspirator 310 designed to apply suction to a pneumostoma. FIG. 3A shows a perspective view of pneumostoma aspirator 310. FIG. 3B shows a sectional view of the pneumostoma aspirator 310. As shown in FIGS. 3A and 3B, pneumostoma aspirator 310 includes a flexible bulb 312 attached to a flange 314 which is attached to a tube 316. Tube 316 has an opening 320 in the distal end. Opening 320 is adapted to allow entry of gases as well as solid and liquid discharge during operation of aspirator 310. Tube 316 may also be provided with additional openings in the side of tube 316. Tube 316 of aspirator 310 preferably has an atraumatic tip 317 at the distal end to prevent injury and/or irritation to the pneumostoma during insertion.


Flange 314 attached to tube 316 is significantly larger than the diameter of tube 316. Flange 314 is too large to enter a pneumostoma and thus acts as a stop to prevent further insertion of tube 316 when flange 314 makes contact with the skin of the patient's chest. The contact surface 315 of flange 314 may also be used to make a temporary seal surrounding the pneumostoma so that when applying suction to the pneumostoma there is reduced leakage of air/fluid around tube 316. Contact surface 315 may be provided with surface features (for example ridges) to enhance the formation of a temporary seal between flange 314 and the skin of the chest.


Tube 316 extends far enough past flange 314 so that it can pass through the thoracic wall into the pneumostoma. Tube 316 is not, however, so long that it may cause injury to the pneumostoma or lung. The maximum desirable length of tube 316 varies significantly between different pneumostomas. A longer tube 316 may be desirable in patients with larger amounts of body fat on the chest. A longer tube 316 may also be desirable where the pneumostoma is placed in the lateral position 112 rather than the frontal position 110. Because of the variation in pneumostomas, pneumostoma aspirators 310 may be manufactured having tubes 316 in a range of sizes. A patient can thus be provided with a pneumostoma aspirator 310 having a tube 316 of appropriate length for the patient's pneumostoma. Tube 316 may be from 30 mm to 120 mm in length and from 5 mm to 20 mm in diameter depending on the size of a pneumostoma. A typical tube 240 may be between 40 mm and 80 mm in length and between 8 mm and 12 mm in diameter. In alternative embodiments, a pneumostoma aspirator is made with a tube 316 of a single length (such as 120 mm) and tube 316 is then cut to the length appropriate for a particular patient. In alternative embodiments, a pneumostoma aspirator is made with a tube 316 of a single short length (such as 30 mm) which can be used in any pneumostoma without causing injury.


As shown in FIGS. 3A and 3B, bulb 312, flange 314 and tube 316 of pneumostoma aspirator 310 are made in one piece. They may alternatively be formed separately and then joined by welding, gluing or otherwise bonding/connecting. Suction irrigation device 310 may also comprise valves 318 and 319. Valves 318 and 319 are flow control devices (for example flapper valves) which allow flow in on one direction only. Thus, where pneumostoma aspirator 310 is a suction device, valves 318 and 319 may be present and configured such that, when bulb 312 is compressed air leaves bulb 312 only via valve 318, and when bulb 312 is released air enters bulb 312 only via tube 316. In this way materials are drawn out of the pneumostoma. Note that, for safety reasons, the components of valves 318 and 319 are too large to fit through tube 316 and thus cannot be aspirated into the lung even in the event of damage to pneumostoma aspirator 310. For ease of assembly, valves 318 and 319 are press fit into recesses in bulb 312. Valve 319 (if present) is smaller than valve 318 so that valve 319 can be inserted into bulb 312 through the aperture for mounting valve 318.


Pneumostoma aspirator may be used in accordance with the instructions for use of FIG. 2F. However, the patient/caregiver should be instructed to remove the pneumostoma management device from the pneumostoma prior to step 272. Also, after step 278, the patient/caregiver should be instructed to promptly place a new pneumostoma management device into the pneumostoma.



FIGS. 4A and 4B show an alternative pneumostoma aspirator 410 designed to apply suction to a pneumostoma. The pneumostoma aspirator 410 operates in conjunction with a pneumostoma management device located within a pneumostoma e.g. PMD 200 of FIGS. 2A-2E. FIG. 4A shows a perspective view of aspirator 410. FIG. 4B shows a sectional view of aspirator 410. As shown in FIGS. 4A and 4B, aspirator 410 includes a flexible bulb 412 attached to a coupling 414 which has two releases 416. Aspirator 410 also has a one-way valve 418 for releasing air from bulb 412. Coupling 414 is designed to releasably attach to cap 242 of pneumostoma vent 204. Releases 416 are release mechanisms which may be operated to release coupling 414 from cap 242 in order to reuse aspirator 410. In an alternative embodiment, aspirator 410 is a single-use device and coupling 414 permanently attaches to cap 242—releases 416 are therefore absent. FIG. 4A shows aspirator 410 aligned for attachment to cap 242 of pneumostoma vent 204. FIG. 4B shows aspirator 410 after it has been attached to cap 242.


The aspirator 410 of FIGS. 4A and 4B may be used at the time of removal of pneumostoma vent 204 in order to remove discharge from the pneumostoma prior to replacement of pneumostoma vent 204. As shown in FIG. 4B, when coupling 414 attaches to cap 242, sufficient seal is made that suction can be applied to pneumostoma vent 204 by aspirator 410. Valve 418 is a flow control device (for example flapper valve) which allows flow in one direction only. Thus, when bulb 412 is compressed, air leaves bulb 412 via valve 418, and when bulb 412 is released, air enters bulb 412 only via pneumostoma vent 204. In this way, materials are drawn out of the pneumostoma through aperture 254 and into pneumostoma vent 204. In the embodiment of FIGS. 4A, 4B, the discharge will accumulate in tube 240 of pneumostoma vent 204 because it cannot pass through the hydrophobic filter 248. In alternative embodiments, hydrophobic filter 248 may be absent or removed and discharge may be withdrawn directly into bulb 412. After applying suction to pneumostoma vent 204, aspirator 410 (or another device) can be used to remove the pneumostoma vent 204 (containing the discharge). Thus aspirator 410 may serve as a combination of aspirator and pneumostoma vent removal tool. A new pneumostoma vent 204 may be inserted in chest mount 202 after removal of the old pneumostoma vent.


In alternative embodiments, an aspirator 420 is designed to mate with chest mount 202 instead of or in addition to pneumostoma vent 204. For example, as shown in FIG. 4C, bulb 422 has a mating section 424, having a mating surface 426 designed to mate and make a temporary seal with the exterior surface of chest mount 202. In use, aspirator 420 is pushed against chest mount 202 to make a temporary seal. Bulb 422 is then compressed, expelling air through one-way valve 428. Bulb 422 is then released such that it expands and withdraws air and discharge into/through aperture 254 in the distal end of pneumostoma vent 204. The discharge collects inside tube 240 of pneumostoma vent 204. After applying suction to pneumostoma vent 204, pneumostoma vent 204 (containing the discharge) may be removed and disposed of. A new pneumostoma vent 204 may then be inserted in chest mount 202. In the embodiment shown in FIG. 4C, bulb 422 is held in contact with chest mount 202 in order to make a temporary seal during aspiration of the pneumostoma.



FIG. 4D illustrates another embodiment having an aspirator 430 designed to mate with a PMD 440 in which tube 442 is formed in one piece with (or permanently attached to) a flange 444. PMD 440 has a hydrophobic filter 446 press fit into the proximal end of tube 442 and has a biocompatible adhesive 448 on the contact surface 449 of flange 444 for releasably securing flange 444 to the skin of the patient's chest. As shown in FIG. 4D, aspirator 430 includes a bulb 432 which has a mating section 434, having a mating surface 436 designed to mate and make a temporary seal with the exterior surface of flange 444. In use, aspirator 430 is pushed against flange 444 to make a temporary seal. Bulb 432 is then compressed, expelling air through one-way valve 438. Bulb 432 is then released such that it expands and withdraws air and discharge into/through aperture 454 in the distal end of tube 442 of PMD 440. The discharge collects inside tube 442 of PMD 440. After applying suction to PMD 440, PMD 440 (containing the discharge) may be removed. A new PMD 440 may then be inserted into the pneumostoma.


In the previous embodiments, a flexible bulb (with or without one or more valves) has been provided as the mechanism by which irrigation fluid may be provided or suction applied. In alternative designs a different mechanism may be provided to produce the negative pressure required to extract the fluid/air discharge from the pneumostoma. Such mechanisms include vacuum bottles, pumps, fans and syringes. (Or positive pressure for irrigation). In each case it is desirable that the mechanism have safety features to prevent over insertion of any component into the pneumostoma or the application of positive or negative pressure sufficient to cause injury to the lung. The safety features are particularly desirable in devices intended for use by the patient rather than a trained medical professional.



FIG. 5 illustrates an alternative embodiment of a pneumostoma aspirator 500 in which the positive and/or negative pressure is applied using a syringe 502. Syringe 502 includes a plunger 504 which can be pushed and pulled by a rod 506 within barrel 508. Rod 506 passes though cap 510 to ring 512 which may be manually operated to move plunger 504. Rings 514 are connected to cap 510 which is connected to barrel 508. As plunger moves up and down in barrel 508 the volume of the space in the barrel distal of plunger 504 is changed applying negative positive or negative pressure. Positive pressure can be used to push irrigating fluid through aperture 520 of nozzle 516 into a pneumostoma. Negative pressure can be used to withdraw fluid, discharge and/or air through aperture 520 of nozzle 516 from the pneumostoma into barrel 508. Note that in this embodiment, a safety valve 518 is provided which opens in the event that the positive or negative pressure is outside of a preset safe range. Furthermore, nozzle 516 comprises a coupling 521 for engaging a chest mount 202 as shown in FIGS. 2A-2E. A tube 522 extends distal of coupling 521 for insertion in the pneumostoma, but coupling 521 limits the depth of insertion of tube 522. In alternative embodiments, nozzle 516 may comprise a flange for preventing over-insertion or mating devices for coupling the syringe to part of a PMD including for example, a chest mount 202 or pneumostoma vent 204 as described above. For example, syringe 502 may be used, with appropriate adaptations, in place of the bulb in the embodiments of FIGS. 2C-E, 3A-B and 4A-D. Pneumostoma aspirator 500 may be a sterilizable reusable device made, for example, from stainless steel and/or glass components. Pneumostoma aspirator 500 may alternatively be a disposable device made, for example, from medical grade plastics.



FIG. 6 illustrates an alternative embodiment of a pneumostoma aspirator 600 in which the positive and/or negative pressure is applied using a motorized device 602. Motorized device 602 includes a motor 604 which turns a fan/pump 606. The power for motor 604 may be provided by batteries 630 in battery housing 632. Batteries 630 may be rechargeable batteries. Fan/pump 606 draws air in through tube 608 and expels it through tube 610 and vent 612. Tube 608 terminates inside removable reservoir 614. Thus operation of fan/pump 606 creates negative pressure inside reservoir 614. Tube 616 connects reservoir 614 to tube 618 which is adapted to enter a pneumostoma. Tube 618 has an a traumatic tip 617 to facilitate insertion into a pneumostoma and one or more apertures 619 in the tip through which air and discharge may enter tube 618 to be sucked via tube 616 into reservoir 614.


Note that the end of tube 608 has a valve/filter 620 which prevents entry of discharge into tube 610 and fan/pump 606. Vent 612 may also be provided with a replaceable filter (for example a HEPA filter) to prevent the venting of any pathogens which may be in the gases extracted from the lung. Fan/pump 606 is selected so that it is self-limiting as to the maximum negative pressure it is capable of producing in reservoir 614. The maximum negative pressure is selected to be at a level which will not damage the pneumostoma or lung. A safety valve may additionally or alternatively be provided which opens in the event that the pressure is outside of a preset safe range. Reservoir 614 is preferably translucent so that accumulation of discharge may be observed.


Tube 618 is connected with a flange 622 which limits the depth of insertion of tube 618 into a pneumostoma. In alternative embodiments, tube 618 may comprise a coupling for engaging a chest mount 202 as shown in FIGS. 2A-2E. Tube 618 extends distal of flange 622 for a distance selected so as not to damage a pneumostoma. Different lengths of tube 618 may be supplied depending on the size of pneumostoma in a particular patient. A coupling 624 (for example, a threaded joint or slip-on fitting) may allow the tube 618 and flange 622 to be removed and replaced.


In operation, tube 618 is pushed into the pneumostoma until flange 622 engages the chest of the patient to prevent further insertion. The patient (or medical provider) then pushes button 626 which actuates motor 604. Motor 604 drives fan/pump 606 which extracts air from reservoir 614. Air is sucked through tube 618 via tube 616 into reservoir 614. Solid and liquid discharge may also be sucked through the aperture(s) in the tip of tube 618 and thence into reservoir 614. The discharge 634 accumulates in reservoir 614. Gases removed from the pneumostoma are vented through vent 612. After sufficient discharge has been removed from the pneumostoma, the pneumostoma aspirator is removed from the pneumostoma. Reservoir 614 may be then detached from motorized device 602, emptied, cleaned and re-attached. Alternatively, reservoir 614 may be disposable, in which case, the reservoir is detached, disposed of and replaced with a new reservoir. Likewise tube 618 may be detached and cleaned or detached and replaced. Motorized device 602 is preferable a reusable device.


Although pneumostoma aspirator has been illustrated with a flange 622, it should be noted that alternative structures may be connected with motorized device 602 so that it may be coupled to a pneumostoma vent or chest mount as previously shown. For example, motorized device 602 may be used, with appropriate adaptations, in place of the bulb in the embodiments of FIGS. 2C-E, 3A-B and 4A-D.


Materials


In preferred embodiments, the pneumostoma management device and the pneumostoma aspirator are formed from biocompatible polymers or biocompatible metals. A patient will typically wear the PMD at all times and thus the materials, particularly of tubes entering the pneumostoma, should meet high standards for biocompatibility. In general preferred materials for manufacturing the suction irrigation device and the PMD are biocompatible thermoplastic elastomers that are readily utilized in injection molding and extrusion processing. As will be appreciated, other suitable similarly biocompatible thermoplastic or thermoplastic polymer materials can be used without departing from the scope of the invention. Biocompatible polymers may be selected from the group consisting of polyethylenes (HDPE), polyvinyl chloride, polyacrylates (polyethyl acrylate and polymethyl acrylate, polymethyl methacrylate, polymethyl-coethyl acrylate, ethylene/ethyl acrylate), polycarbonate urethane (BIONATEG), polysiloxanes (silicones), polytetrafluoroethylene (PTFE, GORE-TEX®, ethylene/chlorotrifluoroethylene copolymer, aliphatic polyesters, ethylene/tetrafluoroethylene copolymer), polyketones (polyaryletheretherketone, polyetheretherketone, polyetheretherketoneketone, polyetherketoneetherketoneketone polyetherketone), polyether block amides (PEBAX, PEBA), polyamides (polyamideimide, PA-11, PA-12, PA-46, PA-66), polyetherimide, polyether sulfone, poly(iso)butylene, polyvinyl chloride, polyvinyl fluoride, polyvinyl alcohol, polyurethane, polybutylene terephthalate, polyphosphazenes, nylon, polypropylene, polybutester, nylon and polyester, polymer foams (from carbonates, styrene, for example) as well as the copolymers and blends of the classes listed and/or the class of thermoplastics and elastomers in general. Reference to appropriate polymers that can be used for manufacturing PMD 201 can be found in the following documents: PCT Publication WO 02/02158, entitled “Bio-Compatible Polymeric Materials;” PCT Publication WO 02/00275, entitled “Bio-Compatible Polymeric Materials;” and, PCT Publication WO 02/00270, entitled “Bio-Compatible Polymeric Materials” all of which are incorporated herein by reference. Other suitable materials for the manufacture of the PMD include medical grade inorganic materials such stainless steel, titanium, ceramics and coated materials.


Hydrophobic filter 248 should be sufficiently porous to allow air to exit through the filter. Materials for hydrophobic filters are available commercially and filters can be fabricated from any suitable hydrophobic polymer, such as tetrafluoroethylene, PTFE, polyolefins, microglass, polyethylene and polypropylene or a mixture thereof. In preferred examples, the hydrophobic filter is a laminated tetrafluoroethylene e.g. TEFLON®, (E.I. du Pont de Nemours Co.) or GORE-TEX® (W.L. Gore, Inc.) of a controlled pore size. In other examples the hydrophobic filter may comprise a felted polypropylene; PTFE/polypropylene filter media. Hydrophobic filter 248 may additionally comprise an antimicrobial, an anti-bacterial, and/or an anti-viral material or agent.


The foregoing description of preferred embodiments of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. Embodiments of the present invention may use some or all of the features shown in the various disclosed embodiments where such features are not structurally or functionally incompatible. It is intended that the scope of the invention be defined by the claims and their equivalents.

Claims
  • 1. A method of treating a pneumostoma wherein the method comprises: (a) receiving a pneumostoma aspirator comprising, a tube having a distal aperture and a lumen wherein the tube is adapted to be inserted into the pneumostoma,a flange connected to the tube at a fixed distance from the distal aperture,a suction device connected to the tube, and(b) inserting the tube into the pneumostoma;(c) engaging a chest of a patient with the flange;(d) operating the suction device to apply negative pressure to the lumen to draw discharge into the lumen from the pneumostoma through the distal aperture; and(e) removing the pneumostoma aspirator and discharge from the pneumostoma.
  • 2. The method of claim 1, wherein the suction device is a manually-operated suction device and wherein step (d) comprises manually operating the suction device to apply negative pressure to the lumen to draw discharge into the lumen from the pneumostoma through the distal aperture.
  • 3. The method of claim 1, wherein the suction device is a flexible bulb and wherein step (d) comprises: (d1) compressing the flexible bulb; and(d2) allowing the flexible bulb to re-expand to apply negative pressure to the lumen to draw discharge into the lumen from the pneumostoma through the distal aperture.
  • 4. The method of claim 1, wherein the suction device is a syringe and wherein step (d) comprises: (d1) withdrawing a plunger of the syringe to apply negative pressure to the lumen to draw discharge into the lumen from the pneumostoma through the distal aperture.
  • 5. The method of claim 1 performed on a pneumostoma having a pneumostoma management device therein, the method further comprising: (f) removing the pneumostoma management device from the pneumostoma prior to step (b).
  • 6. The method of claim 1, further comprising: (f) inserting a pneumostoma management device into the pneumostoma promptly after step (e).
  • 7. The method of claim 1 performed on a pneumostoma having a pneumostoma management device therein, the method further comprising: (f1) removing the pneumostoma management device from the pneumostoma prior to step (b); and(f2) inserting a pneumostoma management device into the pneumostoma promptly after step (e).
  • 8. A method for treating a pneumostoma, which comprises a surgically-created aperture which passes through a chest wall of a patient and into a lung of a patient without communicating with a pleural cavity of the patient and which enables gasses to exit the lung through the chest wall of the patient, wherein the method comprises: (a) providing a pneumostoma management device which includes, a tube having a lumen and a distal aperture and adapted for placement in a pneumostoma, anda flange connected to the tube at a fixed distance from the distal aperture;(b) providing a pneumostoma aspirator which includes a suction device adapted to provide negative pressure;(c) inserting the tube of the pneumostoma management device into the pneumostoma;(d) securing the flange of the pneumostoma management device to a chest of a patient;(e) coupling the pneumostoma aspirator to the pneumostoma management device; and(f) operating the suction device to apply negative pressure to the lumen of the tube thereby drawing discharge into the lumen from the pneumostoma through the distal aperture in the tube.
  • 9. The method of claim 8, wherein the suction device is a manually-operated suction device and wherein step (f) comprises manually operating the suction device to apply negative pressure to the lumen of the tube thereby drawing discharge into the lumen from the pneumostoma through the distal aperture in the tube.
  • 10. The method of claim 8, wherein the suction device includes a flexible bulb and wherein step (f) comprises: (f1) compressing the flexible bulb; and(f2) allowing the flexible bulb to re-expand to apply negative pressure to the lumen of the tube thereby drawing discharge into the lumen from the pneumostoma through the distal aperture in the tube.
  • 11. The method of claim 8, wherein the suction device includes a syringe and wherein step (f) includes withdrawing a plunger of the syringe to apply negative pressure to the lumen of the tube thereby drawing discharge into the lumen from the pneumostoma through the distal opening in the tube.
  • 12. The method of claim 8, further comprising: (g) uncoupling the pneumostoma aspirator from the pneumostoma management device after step (f).
  • 13. The method of claim 8, further comprising: (g) removing the pneumostoma management device from the pneumostoma after step (f).
  • 14. The method of claim 8, further comprising: (g) removing the pneumostoma management device from the pneumostoma after step (f); and(h) inserting another pneumostoma management device into the pneumostoma promptly after step (g).
  • 15. A method for treating a pneumostoma, which comprises a surgically-created aperture which passes through a chest wall of a patient and into a lung of a patient without communicating with a pleural cavity of the patient and which enables gasses to exit the lung through the chest wall of the patient, the pneumostoma having a pneumostoma management device positioned therein, wherein the method comprises: (a) removing the pneumostoma management device from the pneumostoma;(b) inserting a pneumostoma aspirator into the pneumostoma;(c) operating the pneumostoma aspirator to remove discharge from the pneumostoma into the pneumostoma aspirator; and(d) removing the pneumostoma aspirator from the pneumostoma.
  • 16. The method of claim 15, further comprising: (e) inserting another pneumostoma management device into the pneumostoma promptly after step (d).
  • 17. The method of claim 15, wherein the pneumostoma aspirator is a manually-operated pneumostoma aspirator and wherein step (c) comprises manually operating the pneumostoma aspirator to remove discharge from the pneumostoma into the pneumostoma aspirator.
  • 18. The method of claim 15, wherein the pneumostoma aspirator includes a flexible bulb and wherein step (f) comprises: (c1) compressing the flexible bulb of the pneumostoma aspirator; and(c2) allowing the flexible bulb of the pneumostoma aspirator to re-expand to remove discharge from the pneumostoma into the pneumostoma aspirator.
  • 19. The method of claim 15, wherein the pneumostoma aspirator includes a syringe and wherein step (c) includes withdrawing a plunger of the syringe of the pneumostoma aspirator to remove discharge from the pneumostoma into the pneumostoma aspirator.
  • 20. The method of claim 1, performed on a pneumostoma, which comprises a surgically-created aperture which passes through a chest wall of a patient and into a lung of a patient without communicating with a pleural cavity of the patient and which enables gasses to exit the lung through the chest wall of the patient.
CLAIM TO PRIORITY

This application claims priority to all of the following applications including: U.S. Provisional Application No. 61/029,830, filed Feb. 19, 2008, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/032,877, filed Feb. 29, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/038,371, filed Mar. 20, 2008, entitled “SURGICAL PROCEDURE AND INSTRUMENT TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/082,892, filed Jul. 23, 2008, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSMETIC AND/OR PROTECTIVE COVER”; U.S. Provisional Application No. 61/083,573, filed Jul. 25, 2008, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”; U.S. Provisional Application No. 61/084,559, filed Jul. 29, 2008, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT”; U.S. Provisional Application No. 61/088,118, filed Aug. 12, 2008, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. Provisional Application No. 61/143,298, filed Jan. 8, 2009, entitled “METHODS AND APPARATUS FOR THE CRYOTHERAPY CREATION OR RE-CREATION OF PNEUMOSTOMY”; and U.S. Provisional Application No. 61/151,581, filed Feb. 11, 2009, entitled “SURGICAL INSTRUMENTS AND PROCEDURES TO CREATE A PNEUMOSTOMA AND TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”. All of the afore-mentioned applications are incorporated herein by reference in their entireties. This application is related to all of the above provisional applications and all the patent applications that claim priority thereto including: This application is related to all of the following applications including U.S. patent application Ser. No. 12/388,465, filed Feb. 18, 2009, entitled “ENHANCED PNEUMOSTOMA MANAGEMENT DEVICE AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,447, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,451, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT METHOD FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,435, filed Feb. 18, 2009, entitled “TWO-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,438, filed Feb. 18, 2009, entitled “ACCELERATED TWO-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,441, filed Feb. 18, 2009, entitled “SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMOSTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,446, filed Feb. 18, 2009, entitled “PERCUTANEOUS SINGLE-PHASE SURGICAL PROCEDURE FOR CREATING A PNEUMSOTOMA TO TREAT CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,460, filed Feb. 13, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM HAVING A COSTMETIC AND/OR PROTECTIVE COVER”; U.S. patent application Ser. No. 12/388,455, filed Feb. 18, 2009, entitled “DEVICES AND METHODS FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”; U.S. patent application Ser. No. 12/388,461, filed Feb. 18, 2009, entitled “ASPIRATOR FOR PNEUMOSTOMA MANAGEMENT”; U.S. patent application Ser. No. 12/388,458, filed Feb. 18, 2009, entitled “FLEXIBLE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,459, filed Feb. 18, 2009, entitled “METHODS AND DEVICES FOR FOLLOW-UP CARE AND TREATMENT OF A PNEUMOSTOMA”; U.S. patent application Ser. No. 12/388,453, filed Feb. 18, 2009, entitled “SURGICAL INSTRUMENTS FOR CREATING A PNEUMOSTOMA AND TREATING CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,466, filed Feb. 18, 2009, entitled “ONE-PIECE PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,467, filed Feb. 18, 2009, entitled “PNEUMOSTOMA MANAGEMENT SYSTEM WITH SECRETION MANAGEMENT FEATURES FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; U.S. patent application Ser. No. 12/388,468, filed Feb. 18, 2009, entitled “MULTI-LAYER PNEUMOSTOMA MANAGEMENT SYSTEM AND METHODS FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULJMONARY DISEASE”; U.S. patent application Ser. No. 12/388,469, filed Feb. 18, 2009, entitled “VARIABLE LENGTH PNEUMOSTOMA MANAGEMENT SYSTEM FOR TREATMENT OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE”; and U.S. patent application Ser. No. 12/388,470, filed Feb. 18, 2009, entitled “SELF-SEALING DEVICE AND METHOD FOR DELIVERY OF A THERAPEUTIC AGENT THROUGH A PNEUMOSTOMA”. All of the afore-mentioned applications are incorporated herein by reference in their entireties. This patent application also incorporates by reference all patents, applications, and articles discussed and/or cited herein.

US Referenced Citations (374)
Number Name Date Kind
733152 Chisholm Jul 1903 A
953922 Rogers Apr 1910 A
2206687 Bloomheart Jul 1940 A
2867213 Thomas, Jr. Jan 1959 A
2873742 Shelden Feb 1959 A
2991787 Shelden et al. Jul 1961 A
3253594 Matthews et al. May 1966 A
3384087 Brummelkamp May 1968 A
3463159 Heimlich Aug 1969 A
3511243 Toy May 1970 A
3556103 Calhoun et al. Jan 1971 A
3638649 Ersek Feb 1972 A
3682166 Jacobs Aug 1972 A
3688773 Weiss Sep 1972 A
3777757 Gray et al. Dec 1973 A
3788326 Jacobs Jan 1974 A
3817250 Weiss et al. Jun 1974 A
3908704 Clement et al. Sep 1975 A
3916903 Pozzi Nov 1975 A
4153058 Nehme May 1979 A
4291694 Chai Sep 1981 A
4439189 Sargeant et al. Mar 1984 A
4465062 Versaggi et al. Aug 1984 A
4502482 DeLuccia et al. Mar 1985 A
4583977 Shishov et al. Apr 1986 A
4664660 Goldberg et al. May 1987 A
4799494 Wang Jan 1989 A
4813929 Semrad Mar 1989 A
4826495 Petersen May 1989 A
4828553 Nielsen May 1989 A
4869717 Adair Sep 1989 A
4872869 Johns Oct 1989 A
4889534 Mohiuddin et al. Dec 1989 A
4931045 Steer Jun 1990 A
4944724 Goldberg et al. Jul 1990 A
4959054 Heimke et al. Sep 1990 A
4976688 Rosenblum Dec 1990 A
5004456 Botterbusch et al. Apr 1991 A
5060645 Russell Oct 1991 A
5078689 Keller Jan 1992 A
5137509 Freitas Aug 1992 A
5139485 Smith et al. Aug 1992 A
5218957 Strickland Jun 1993 A
5230332 Strickland Jul 1993 A
5230350 Fentress Jul 1993 A
5261708 Steer Nov 1993 A
5263939 Wortrich Nov 1993 A
5312331 Knoepfler May 1994 A
5315992 Dalton May 1994 A
5336206 Shichman Aug 1994 A
5354283 Bark et al. Oct 1994 A
5356386 Goldberg et al. Oct 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5370625 Shichman Dec 1994 A
5376376 Li Dec 1994 A
5389077 Melinyshyn et al. Feb 1995 A
5401262 Karwoski et al. Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5431633 Fury Jul 1995 A
5478333 Asherman, Jr. Dec 1995 A
5484401 Rodriguez et al. Jan 1996 A
5496297 Olsen Mar 1996 A
5501677 Jensen Mar 1996 A
5501678 Olsen Mar 1996 A
5588424 Insler et al. Dec 1996 A
5616131 Sauer et al. Apr 1997 A
5660175 Dayal Aug 1997 A
5662629 Steer et al. Sep 1997 A
5728066 Daneshvar Mar 1998 A
5730735 Holmberg et al. Mar 1998 A
5738661 Larice Apr 1998 A
5779649 Herbert Jul 1998 A
5807341 Heim Sep 1998 A
5830200 Steer et al. Nov 1998 A
5843053 Steer Dec 1998 A
5897531 Amirana Apr 1999 A
5931821 Weilbacher et al. Aug 1999 A
5954636 Schwartz et al. Sep 1999 A
5971962 Kojima et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
6059816 Moenning May 2000 A
6083255 Laufer et al. Jul 2000 A
6174323 Biggs et al. Jan 2001 B1
6197010 Leise, Jr. et al. Mar 2001 B1
6200333 Laufer Mar 2001 B1
6258100 Alferness et al. Jul 2001 B1
6273907 Laufer Aug 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6287290 Perkins et al. Sep 2001 B1
6293930 Brunsgaard et al. Sep 2001 B1
6293951 Alferness et al. Sep 2001 B1
6299633 Laufer Oct 2001 B1
6322536 Rosengart et al. Nov 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6330882 French Dec 2001 B1
6334441 Zowtiak et al. Jan 2002 B1
6358269 Aye Mar 2002 B1
6398775 Perkins et al. Jun 2002 B1
6402754 Gonzalez Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6416554 Alferness et al. Jul 2002 B1
6432100 Affeld Aug 2002 B1
6443156 Niklason et al. Sep 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6485407 Alferness et al. Nov 2002 B2
6488673 Laufer et al. Dec 2002 B1
6491706 Alferness et al. Dec 2002 B1
6514290 Loomas Feb 2003 B1
6517519 Rosen et al. Feb 2003 B1
6520183 Amar Feb 2003 B2
6527761 Soltesz et al. Mar 2003 B1
6550475 Oldfield Apr 2003 B1
6569121 Purow et al. May 2003 B1
6569166 Gonzalez May 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6589161 Corcoran Jul 2003 B2
6592594 Rimbaugh et al. Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6609521 Belani et al. Aug 2003 B1
6629951 Laufer et al. Oct 2003 B2
6632239 Snyder et al. Oct 2003 B2
6632243 Zadno-Azizi et al. Oct 2003 B1
6634360 Flodin Oct 2003 B1
6634363 Danek et al. Oct 2003 B1
6638253 Breznock Oct 2003 B2
6653525 Ingenito et al. Nov 2003 B2
6659961 Robinson Dec 2003 B2
6679264 Deem et al. Jan 2004 B1
6682506 Navarro Jan 2004 B1
6692494 Cooper et al. Feb 2004 B1
6694979 Deem et al. Feb 2004 B2
6695791 Gonzalez Feb 2004 B2
6709401 Perkins et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6736797 Larsen et al. May 2004 B1
6749606 Keast et al. Jun 2004 B2
6770063 Goldberg et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6790172 Alferness et al. Sep 2004 B2
6827086 Shuman Dec 2004 B2
6837906 Ginn Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6843767 Corcoran et al. Jan 2005 B2
6846292 Bakry Jan 2005 B2
6849061 Wagner Feb 2005 B2
6852108 Barry et al. Feb 2005 B2
6860847 Alferness et al. Mar 2005 B2
6878141 Perkins et al. Apr 2005 B1
6886558 Tanaka May 2005 B2
6901927 Deem et al. Jun 2005 B2
6904909 Andreas et al. Jun 2005 B2
6905518 Ginn Jun 2005 B2
6916310 Sommerich Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6941950 Wilson et al. Sep 2005 B2
6997189 Biggs et al. Feb 2006 B2
6997918 Soltesz et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7022088 Keast et al. Apr 2006 B2
7033387 Zadno-Azizi et al. Apr 2006 B2
7036509 Rapacki et al. May 2006 B2
7086398 Tanaka Aug 2006 B2
7100616 Springmeyer Sep 2006 B2
7135010 Buckman et al. Nov 2006 B2
7141046 Perkins et al. Nov 2006 B2
7165548 Deem et al. Jan 2007 B2
7172581 Ciok et al. Feb 2007 B2
7175644 Cooper et al. Feb 2007 B2
7182772 Alferness et al. Feb 2007 B2
7186259 Perkins et al. Mar 2007 B2
7192420 Whiteford Mar 2007 B2
7195016 Loyd et al. Mar 2007 B2
7195017 Tanaka Mar 2007 B2
7207946 Sirokman Apr 2007 B2
7232414 Gonzalez Jun 2007 B2
7244245 Purow et al. Jul 2007 B2
7252086 Tanaka Aug 2007 B2
7377278 Tanaka May 2008 B2
7398782 Tanaka Jul 2008 B2
7406963 Chang et al. Aug 2008 B2
7426929 Tanaka Sep 2008 B2
7533667 Tanaka May 2009 B2
20010025132 Alferness et al. Sep 2001 A1
20010041906 Gonzalez Nov 2001 A1
20010041932 Scholz et al. Nov 2001 A1
20020042564 Cooper et al. Apr 2002 A1
20020062120 Perkins et al. May 2002 A1
20020077593 Perkins et al. Jun 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020112729 DeVore et al. Aug 2002 A1
20020120177 Borst et al. Aug 2002 A1
20020165618 Ingenito et al. Nov 2002 A1
20020188171 Alferness et al. Dec 2002 A1
20030013935 Alferness et al. Jan 2003 A1
20030018344 Kaji et al. Jan 2003 A1
20030050648 Alferness et al. Mar 2003 A1
20030051733 Kotmel et al. Mar 2003 A1
20030055331 Kotmel et al. Mar 2003 A1
20030065339 Snyder et al. Apr 2003 A1
20030069488 Alferness et al. Apr 2003 A1
20030078469 Corcoran Apr 2003 A1
20030083542 Alferness et al. May 2003 A1
20030083671 Rimbaugh et al. May 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030130593 Gonzalez Jul 2003 A1
20030149446 Shuman Aug 2003 A1
20030154988 DeVore et al. Aug 2003 A1
20030158515 Gonzalez et al. Aug 2003 A1
20030163024 Corcoran Aug 2003 A1
20030181356 Ingenito Sep 2003 A1
20030181922 Alferness Sep 2003 A1
20030183235 Rimbaugh et al. Oct 2003 A1
20030186904 Ruben et al. Oct 2003 A1
20030195385 DeVore Oct 2003 A1
20030195511 Barry Oct 2003 A1
20030212337 Sirokman Nov 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20030216730 Barry et al. Nov 2003 A1
20030216769 Dillard et al. Nov 2003 A1
20030228344 Fields et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20040010209 Sirokman Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040016435 Deem et al. Jan 2004 A1
20040024356 Tanaka Feb 2004 A1
20040031494 Danek et al. Feb 2004 A1
20040040555 Tanaka Mar 2004 A1
20040047855 Ingenito Mar 2004 A1
20040055606 Hendricksen et al. Mar 2004 A1
20040059263 DeVore et al. Mar 2004 A1
20040073155 Laufer et al. Apr 2004 A1
20040073191 Soltesz et al. Apr 2004 A1
20040073201 Cooper et al. Apr 2004 A1
20040073241 Barry et al. Apr 2004 A1
20040078026 Wagner Apr 2004 A1
20040078054 Biggs et al. Apr 2004 A1
20040087831 Michels et al. May 2004 A1
20040097983 Snyder et al. May 2004 A1
20040143282 Dillard et al. Jul 2004 A1
20040144387 Amar Jul 2004 A1
20040158228 Perkins et al. Aug 2004 A1
20040167636 Dillard et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040199128 Morris et al. Oct 2004 A1
20040200484 Springmeyer Oct 2004 A1
20040206349 Alferness et al. Oct 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040211412 Alferness et al. Oct 2004 A1
20040211434 Loomas et al. Oct 2004 A1
20040220446 Corcoran et al. Nov 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040225254 Tanaka et al. Nov 2004 A1
20040231674 Tanaka Nov 2004 A1
20040237966 Tanaka Dec 2004 A1
20040243140 Alferness et al. Dec 2004 A1
20040244802 Tanaka Dec 2004 A1
20040244803 Tanaka Dec 2004 A1
20050005936 Wondka Jan 2005 A1
20050015106 Perkins et al. Jan 2005 A1
20050022809 Wondka Feb 2005 A1
20050025816 Tanaka Feb 2005 A1
20050033310 Alferness et al. Feb 2005 A1
20050033344 Dillard et al. Feb 2005 A1
20050043745 Alferness et al. Feb 2005 A1
20050043751 Phan et al. Feb 2005 A1
20050043752 Phan et al. Feb 2005 A1
20050049615 Cooper et al. Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050060041 Phan et al. Mar 2005 A1
20050060042 Phan et al. Mar 2005 A1
20050060044 Roschak et al. Mar 2005 A1
20050061322 Freitag Mar 2005 A1
20050066976 Wondka Mar 2005 A1
20050085801 Cooper et al. Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050103340 Wondka May 2005 A1
20050107783 Tom et al. May 2005 A1
20050131276 Alferness et al. Jun 2005 A1
20050137518 Biggs et al. Jun 2005 A1
20050137611 Escudero et al. Jun 2005 A1
20050137712 Biggs et al. Jun 2005 A1
20050137715 Phan et al. Jun 2005 A1
20050145253 Wilson et al. Jul 2005 A1
20050161040 Tanaka Jul 2005 A1
20050166925 Wilson et al. Aug 2005 A1
20050171396 Pankratov et al. Aug 2005 A1
20050177144 Phan et al. Aug 2005 A1
20050178385 Dellaca' et al. Aug 2005 A1
20050178389 Shaw et al. Aug 2005 A1
20050192526 Biggs et al. Sep 2005 A1
20050203483 Perkins et al. Sep 2005 A1
20050205097 Kyle, Jr. Sep 2005 A1
20050244401 Ingenito Nov 2005 A1
20050281797 Gong et al. Dec 2005 A1
20050281801 Gong et al. Dec 2005 A1
20050281802 Gong et al. Dec 2005 A1
20050282748 Gong et al. Dec 2005 A1
20050288549 Mathis Dec 2005 A1
20050288550 Mathis Dec 2005 A1
20050288684 Aronson et al. Dec 2005 A1
20050288702 McGurk et al. Dec 2005 A1
20060004400 McGurk et al. Jan 2006 A1
20060009748 Mathis Jan 2006 A1
20060025815 McGurk et al. Feb 2006 A1
20060047291 Barry Mar 2006 A1
20060076023 Rapacki et al. Apr 2006 A1
20060079838 Walker et al. Apr 2006 A1
20060095002 Soltesz et al. May 2006 A1
20060107961 Tanaka May 2006 A1
20060116749 Willink et al. Jun 2006 A1
20060118125 Tanaka Jun 2006 A1
20060118126 Tanaka Jun 2006 A1
20060124126 Tanaka Jun 2006 A1
20060130830 Barry Jun 2006 A1
20060135947 Soltesz et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142672 Keast et al. Jun 2006 A1
20060161233 Barry et al. Jul 2006 A1
20060162731 Wondka et al. Jul 2006 A1
20060206147 DeVore et al. Sep 2006 A1
20060212046 Pearce et al. Sep 2006 A1
20060212051 Snyder et al. Sep 2006 A1
20060235432 DeVore et al. Oct 2006 A1
20060235467 DeVore Oct 2006 A1
20060264772 Aljuri et al. Nov 2006 A1
20060276807 Keast et al. Dec 2006 A1
20060280772 Roschak et al. Dec 2006 A1
20060280773 Roschak et al. Dec 2006 A1
20060283462 Fields et al. Dec 2006 A1
20070005083 Sabanathan et al. Jan 2007 A1
20070027434 Pedersen et al. Feb 2007 A1
20070043350 Soltesz et al. Feb 2007 A1
20070051372 Tanaka Mar 2007 A1
20070055175 Caro Mar 2007 A1
20070088300 Cline et al. Apr 2007 A1
20070123922 Cooper et al. May 2007 A1
20070128174 Kleinsek et al. Jun 2007 A1
20070142742 Aljuri et al. Jun 2007 A1
20070163598 Chang et al. Jul 2007 A1
20070185531 Rimbaugh et al. Aug 2007 A1
20070186932 Wondka et al. Aug 2007 A1
20070186933 Domingo et al. Aug 2007 A1
20070299424 Cumming et al. Dec 2007 A1
20080281151 Chang et al. Nov 2008 A1
20080281295 Chang et al. Nov 2008 A1
20080281433 Chang et al. Nov 2008 A1
20080283065 Chang et al. Nov 2008 A1
20080287878 Tanaka Nov 2008 A1
20080287973 Aster et al. Nov 2008 A1
20080295829 Evens Dec 2008 A1
20090205641 Tanaka Aug 2009 A1
20090205643 Tanaka et al. Aug 2009 A1
20090205644 Tanaka et al. Aug 2009 A1
20090205645 Tanaka et al. Aug 2009 A1
20090205646 Tanaka et al. Aug 2009 A1
20090205647 Plough et al. Aug 2009 A1
20090205648 Tanaka et al. Aug 2009 A1
20090205649 Tanaka et al. Aug 2009 A1
20090205650 Tanaka et al. Aug 2009 A1
20090205651 Tanaka et al. Aug 2009 A1
20090205658 Tanaka et al. Aug 2009 A1
20090205665 Tanaka et al. Aug 2009 A1
20090209856 Tanaka et al. Aug 2009 A1
20090209906 Tanaka et al. Aug 2009 A1
20090209909 Tanaka et al. Aug 2009 A1
20090209917 Tanaka et al. Aug 2009 A1
20090209924 Tanaka Aug 2009 A1
20090209936 Tanaka et al. Aug 2009 A1
20090209970 Tanaka et al. Aug 2009 A1
20090209971 Tanaka et al. Aug 2009 A1
Foreign Referenced Citations (7)
Number Date Country
0260543 Mar 1988 EP
62-2028747 Jun 1986 JP
2192185 Oct 2002 RU
WO 9639960 Dec 1996 WO
WO 9966975 Dec 1999 WO
WO 0076577 Dec 2000 WO
WO 0145568 Jun 2001 WO
Related Publications (1)
Number Date Country
20090209936 A1 Aug 2009 US
Provisional Applications (9)
Number Date Country
61029830 Feb 2008 US
61032877 Feb 2008 US
61038371 Mar 2008 US
61082892 Jul 2008 US
61083573 Jul 2008 US
61084559 Jul 2008 US
61088118 Aug 2008 US
61143298 Jan 2009 US
61151581 Feb 2009 US