The present invention relates to an assembling apparatus and a method for adjusting the same.
An assembling apparatus that is provided with transfer mechanisms in three directions orthogonal to one another and that carries out assembling of plural parts using a holding device attached to one of the transfer mechanisms is used. By way of example, such an assembling apparatus is used for assembling of a lens and a lens-barrel. When assembling of a lens and a lens-barrel is carried out, a position of the lens is checked using a camera provided by a holding device, the lens is held by the holding device, the holding device is transferred to a position of the lens-barrel, and the lens is put into the lens-barrel such that the central axis of the lens and that of the lens-barrel agree with each other. If the central axis of the lens and that of the lens-barrel do not agree with each other when the lens is put into the lens-barrel, the inner diameter of the lens-barrel must be greater than the outer diameter of the lens by an amount that depends on a maximum possible value of distance between the central axes. This disadvantageously leads to upsizing of the lens-barrel. In particular, an influence of the distance between the central axes is relatively great when the diameter of the lens is relatively small. For example, when the diameter of the lens is 1 millimeter, the distance between the central axes of 10 micrometers reaches 1% of the diameter. Accordingly, accuracy of alignment of the lens with the lens-barrel adjusted by the holding device should preferably be increased to minimize the above-described distance between the central axes.
Patent document 1 (JP2015530276A) discloses an aligning method of a robot arm using a camera. Patent document 1, however, does not say anything about how a high degree of accuracy is obtained in the aligning method using a camera.
Thus, an assembling apparatus that is provided with transfer mechanisms in three directions orthogonal to one another and that can carry out assembling of plural parts using a holding device attached to one of the transfer mechanisms with a high degree of accuracy and a method for adjusting such an assembling apparatus have not been developed.
Patent Document
Accordingly, there is a need for an assembling apparatus that is provided with transfer mechanisms in three directions orthogonal to one another and that can carry out assembling of plural parts using a holding device attached to one of the transfer mechanisms with a high degree of accuracy and a method for adjusting such an assembling apparatus. The object of the present invention is to provide an assembling apparatus that is provided with transfer mechanisms in three directions orthogonal to one another and that can carry out assembling of plural parts using a holding device attached to one of the transfer mechanisms with a high degree of accuracy and a method for adjusting such an assembling apparatus.
An assembling apparatus according to a first aspect of the present invention includes an x-axis transfer mechanism; a y-axis transfer mechanism; a z-axis transfer mechanism; a holding device for holding a work piece, the holding device being attached to the z-axis transfer mechanism such that the holding device is movable in the z-axis direction; a base having a surface parallel to the x-axis and the y-axis; a first camera attached to the z-axis transfer mechanism such that the optical axis is in the z-axis direction; and a second camera attached to the base such that the optical axis is in the z-axis direction.
By the assembling apparatus according to the present aspect, coordinates of a position of the holding device can be determined with a high degree of accuracy using the first camera and the second camera, and thus assembling of plural parts can be carried out with a high degree of accuracy.
In the assembling apparatus according to a first embodiment of the first aspect of the present invention, each of the first camera and the second camera is configured to rotate around each optical axis.
In the present embodiment, each of the first camera and the second camera is configured to rotate around each optical axis, and thus camera positions can be easily adjusted.
A method for adjusting an assembling apparatus according to a second aspect of the present invention is used for an assembling apparatus provided with an x-axis transfer mechanism; a y-axis transfer mechanism; a z-axis transfer mechanism; a holding device for holding a work piece, the holding device being attached to the z-axis transfer mechanism such that the holding device is movable in the z-axis direction; a base having a surface parallel to the x-axis and the y-axis; a first camera attached to the z-axis transfer mechanism such that the optical axis is in the z-axis direction; and a second camera attached to the base such that the optical axis is in the z-axis direction. The method includes the steps of, adjusting a position of the second camera using an image of the second camera such that transfer of the x-axis transfer mechanism is in the x-axis direction of the image of the second camera, and transfer of the y-axis transfer mechanism is in the y-axis direction of the image of the second camera; placing an alignment mark formed by a first line and a second line that are orthogonal to each other between the first camera and the second camera such that the first and second lines are perpendicular to the z-axis of the assembling apparatus and one of the first and second lines is in one of the x-axis direction and the y-axis direction of the image of the second camera; adjusting a position of the first camera using an image of the first camera such that one of the first and second lines is in one of the x-axis direction and the y-axis direction of the image of the first camera; determining a first set of coordinates of the point of intersection of the first line and the second line with respect to the point of intersection of the x-axis and y-axis of the image of the first camera, using the image of the first camera; determining a second set of coordinates of a reference point of the holding device with respect to the point of intersection of the first line and the second line using the image of the second camera; and determining a third set of coordinates of the reference point of the holding device with respect to the point of intersection of the x-axis and y-axis of the image of the first camera, from the first and second sets of coordinates.
By the method for adjusting the assembling apparatus according to the present aspect, coordinates of a position of the holding device can be determined with a high degree of accuracy using images of the first camera and the second camera, and thus assembling of plural parts can be carried out with a high degree of accuracy.
In the method for adjusting the assembling apparatus according to a first embodiment of the second aspect of the present invention, in the step of adjusting a position of the second camera, a positional relationship between the x-axis and the y-axis of the assembling apparatus is also adjusted.
According to the present embodiment, it is checked whether the x-axis transfer mechanism and the y-axis transfer mechanism are orthogonal to each other, and an angle between the both is adjusted if the both are not orthogonal to each other. Accordingly, errors in coordinates of a position of the reference point of the holding device caused by a state that the x-axis transfer mechanism and the y-axis transfer mechanism are not orthogonal to each other can be reduced.
In the method for adjusting the assembling apparatus according to a second embodiment of the second aspect of the present invention, the step of adjusting a position of the second camera and a positional relationship between the x-axis and the y-axis of the assembling apparatus includes the sub-steps of adjusting a position of the second camera using an image of the second camera such that one of the x-axis transfer mechanism and the y-axis transfer mechanism is made to transfer in the direction of the corresponding axis of the second camera; and adjusting a positional relationship between the x-axis and the y-axis of the assembling apparatus using the image of the second camera such that the other of the x-axis transfer mechanism and the y-axis transfer mechanism is made to transfer in the direction of the corresponding axis of the second camera.
In the method for adjusting the assembling apparatus according to a third embodiment of the second aspect of the present invention, in the step of placing the alignment mark, the alignment mark is placed such that the point of intersection of the first and second lines is made to agree with the point of intersection of the x-axis and y-axis of the image of the second camera.
According to the present embodiment, the image of the second camera can be more easily processed.
In the method for adjusting the assembling apparatus according to a fourth embodiment of the second aspect of the present invention, the x-axis and y-axis of the image of the first camera intersect with each other at the center of the image of the first camera, and the x-axis and y-axis of the image of the second camera intersect with each other at the center of the image of the second camera.
According to the present embodiment, coordinates in images of the cameras are made easier to grasp.
A method for adjusting an assembling apparatus according to a third aspect of the present invention is used for an assembling apparatus provided with an x-axis transfer mechanism; a y-axis transfer mechanism; a z-axis transfer mechanism; a holding device for holding a work piece, the holding device being attached to the z-axis transfer mechanism such that the holding device is movable in the z-axis direction; a base having a surface parallel to the x-axis and the y-axis; a first camera attached to the z-axis transfer mechanism such that the optical axis is in the z-axis direction; and a second camera attached to the base such that the optical axis is in the z-axis direction. The method includes the steps of, transferring the holding device by the x-axis transfer mechanism and the y-axis transfer mechanism such that in an image of the second camera, the point of intersection of the x-axis and the y-axis and a reference point of the holding device are made to agree with each other and storing coordinates of the position after the transfer as (Xc, Yc); transferring the holding device that holds a work piece by the x-axis transfer mechanism and the y-axis transfer mechanism to the coordinates of the position (Xc, Yc), and obtaining coordinates of a reference point of the work piece with respect to the point of intersection of the x-axis and the y-axis in the image of the second camera to obtain differences between the coordinates of the reference point of the holding device and coordinates of the reference point of the work piece.
By the method for adjusting the assembling apparatus according to the present aspect, differences between the coordinates of the reference point of the holding device and coordinates of the reference point of the work piece can be obtained while the holding device holds the work piece, and thus assembling of the work piece and another part can be carried out with a high degree of accuracy.
The assembling apparatus 100 is provided with an x-axis transfer mechanism 101 that is a mechanism for transfer in an x-axis direction, a y-axis transfer mechanism 103 that is a mechanism for transfer in a y-axis direction and a z-axis transfer mechanism 105 that is a mechanism for transfer in a z-axis direction. A holding device 107 for holding a work piece is attached to the z-axis transfer mechanism 105 such that the device is movable in the z-axis direction. The transfer in the z-axis direction can be carried out by a cylinder. The z-axis transfer mechanism 105 is attached to the y-axis transfer mechanism 103 such that the z-axis transfer mechanism can transfer in the y-axis direction. The y-axis transfer mechanism 103 is attached to the x-axis transfer mechanism 101 such that the y-axis transfer mechanism can transfer in the x-axis direction. The x-axis transfer mechanism 101 is attached to a base 1000 through spacers 109. On the base 1000, a table 300 on which an object to be transferred is placed. Thus, the holding device 107 can be transferred in the x-axis direction, in the y-axis direction and in the z-axis direction with respect to the base 1000 through the x-axis transfer mechanism 101, the y-axis transfer mechanism 103 and the z-axis transfer mechanism 105. In the description of the present embodiment, the holding device 107 is assumed to be a vacuum chuck.
A first camera 201 is attached to a body of the z-axis transfer mechanism 105 such that the optical axis of the first camera 201 is made to be in the z-axis direction. The body of the z-axis transfer mechanism 105 refer to a portion that supports a portion moving in the z-axis direction. A second camera 203 is attached to the base 1000 such that the optical axis of the second camera 203 is made to be in the z-axis direction, and the second camera 203 is substantially opposed to the first camera 201. It is preferable that the attachment of the first camera 201 and the second camera 203 are made such that each camera can be rotated around each optical axis. For example, each camera can be attached onto a rotating stage that is rotatable for adjustment. Further, a tilting stage with which inclination of a surface onto which each camera is attached can be adjusted can be used in a combination with the rotating stage.
By way of example, a process through which a lens 500 placed on the table 300 is attached to a lens-barrel 600 by the assembling apparatus 100 will be described below.
In step S1010 of
In step S1020 of
In step S1030 of
In step S1040 of
In step S1050 of
In step S1060 of
In
Db=Dl+2·T+2·Wmin
Accordingly, the value Db of the outer diameter in a cross section perpendicular to the central axis of the lens-barrel 600 increases with the maximum possible value T of the central axis error, thus disadvantageously leading to upsizing of the lens-barrel.
Causes of the central axis error will be discussed below. In step S1010 of
A method by which (x, y) coordinates of the center of the chuck 107 in an image of a first camera are determined in a conventional assembling apparatus will be described below. The conventional assembling apparatus is identical with the assembling apparatus described above except that the latter includes the second camera 203, and in the latter the attachment of the first camera 201 is made such that the camera can be rotated around the optical axis.
In step S5010 of
In step S5020 of
In step S5030 of
A method by which (x, y) coordinates of the center of the chuck 107 in an image of the first camera 201 are determined in the assembling apparatus according to the present invention will be described below. The center of the chuck 107 corresponds to the reference point of the holding device described in claims.
In step S2010 of
As described above, the first camera 201 is attached to the z-axis transfer mechanism 105 such that the direction of the optical axis is made to agree with the direction of the z-axis. The second camera 203 is attached to the base 1000 such that the direction of the optical axis is made to agree with the direction of the z-axis, and the second camera 203 is substantially opposed to the first camera 201 when the chuck 107 is kept at the reference position. The number of pixels of the first camera 201 and that of the second camera 203 are, by way of example, 4000 by 3000 (=12 M). Assuming that the pixel resolution is 5 micrometers, a field of view of each camera is 20.0 mm by 15.0.
In step S3010 of
The x-axis and the y-axis of an image of a camera are defined in two directions that are perpendicular to the optical axis of the camera and are orthogonal to each other. The x-axis and the y-axis are determined such that the axes intersect each other on the optical axis of the camera. Accordingly, the point of intersection of the x-axis and the y-axis is located at the center of the image. (x, y) coordinates of an image of the camera are determined according to the x-axis and the y-axis of the image of the camera.
In step S3020 of
In step S2020 of
The first camera 201 and the second camera 203 are made to focus on the position of the alignment mark 400.
In step S2030 of
In step S2040 of
In step S4010 of
In step S4020 of
In step S4030 of
When the lens 500 is attached to the lens-barrel 600 after coordinates of the center of the chuck 107 have been determined by the adjusting method shown in
In step S6010 of
In step S6020 of
In step S6030 of
In step S6040 of
In step S6050 of
In step S6060 of
In step S6070 of
In step S6080 of
In step S6090 of
Since differences between the coordinates of the center of the chuck and the coordinates of the center of the lens can be obtained by the adjusting method shown in
According to a method of the present invention, a maximum possible value T of the central axis error can be reduced by several tens micrometers compared with in a conventional method. When the diameter of the lens 500 is 1-2 millimeters, the diameter of the lens-barrel 600 can be reduced by several percent.
This is a Continuation of International Patent Application No. PCT/JP2019/035498 filed Sep. 10, 2019, which designates the U.S. The contents of this application is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2019/035498 | Sep 2019 | US |
Child | 17520992 | US |