The present invention pertains to an assembly for fixating or adjusting of an optical element with regard to an outer support wherein the optical element is alienable with regard to a structure of an optical assembly having an optical axis, particularly to a structure of an objective, or with regard to neighbouring supports by means of an adjusting arrangement.
Optical elements have to be defined in very stable positions in holders or supports and may not experience any change of position or deformation after these components have been combined with other structural elements. This is particularly required in high performance optics as used in micro lithography. Nethertheless mounting and process steps requiring a change of position cannot be avoided. Regularly, these changes are corrected by tunable intermediate steps; these steps, however, implicate an iterative sequence of mounting, demounting, correcting and renewed mounting steps and often permit only limited correction restricted by the degrees of freedom. A robust and simple adjusting mechanism comprising the barrel and the support of the element would be desirable. A last correcting step regarding all six degrees of freedom should be realized without a step of demounting; in the same time all requirements of an optical assembly comprising at least a single optical element should be met as are stiffness and decoupling of deformation.
From US 6 229 657 B1 an assembly of an optical element and a mount is known, in which the optical element is coupled by means of numerous lugs to a rigid intermediate ring, which itself is coupled by adjusting members or passive decouplers to the mount for connection to a housing and/or a further mount. Actuators are provided that
From US 2002/0163741 an optical element holding apparatus is known that comprises holders and actuators positioned tangentially with regard to a lens. An assembly for positioning an optical element in an optical assembly, particularly in a projection objective for semiconductor lithography, is described in EP 1 245 982 A2 which is connected to an outer support by three bearings positioned at the circumference of the optical element. Connecting members in form of leaf springs are provided that bring movements generated by manipulators positioned in the support to the optical element.
From US 2005/0002011 A1 a support mechanism and an exposure apparatus comprising the support mechanism are known. The support mechanism for supporting an optical element includes a first support member for supporting the optical element and a second supporting element coupled to the first support member via an elastic member, and a forcing member for applying a force to the elastic member. When the forcing member applies a force to the elastic member, a position and/or an orientation of the optical element are adjustable, or the relative positions between the first and the second support members are changed. The elastic member deforms in a radial direction of the optical element or about a rotational axis perpendicular to both a radial direction of the optical element and a direction into or parallel to the optical axis of the optical element.
The technology shown in
From US 2003/0234918 A1 adjustable soft mounts in a kinematic lens mounting system are known. A mounting system for mounting an optical element such as a deformable lens for use in a lithographic exposure apparatus employs a plurality of adjustable soft mounts to support it and apply vector and moment forces at its peripheral portions so as to correct its shape. These adjustable soft mounts each have an elastic member such as a coil spring, a cantilever plate spring or a torsion spring and a force-adjusting member such as an adjusting screw or bolt that varies the force applied by the elastic member to a peripheral portion of the optical element. The soft mounts are less rigid than position defining mounts that support the optical element at a desired portion.
From this document, it is principally known to provide tangentially rigid mounting structures having a constraint in one direction, i. e. the tangential direction, and allowing five degrees of freedom associated with two direction of forces (vector forces) and three direction of torques (momentum forces) (example shown in
According to
It is an object of the present invention to improve an optical assembly that positioning of the optical element is achieved in a simple manner.
According to the invention this object is attained by an assembly characterized in that the positioning arrangement comprises at least a single elastic or resilient means that shifts or moves the optical element in two degrees of freedom or two directions independently by exerting a force or a torque on a flange of the optical element or a holder or a support enclosing the optical element.
According to the present invention “positioning” comprises adjusting of an optical element in a controlled way like with an open or closed loop control and comprises also a single adjustment for the single calibration of the system.
According to the present invention the member exerting a force and/or a torque on the flange of the optical element or on a support holding the optical element may be entirely elastic or may be comprised of a resilient material that partially is elastic and partially is plastic. According to the invention the use of a resilient member may be appropriate when the optical element needs to be positioned in a unique positioning operation.
According to the invention the principle is used that the work generated by a force applied to a work arm of a lever formed by an elastic body, for instance a stick of leaf steel, is only partially transformed to a work exerted along the direction of the load arm, but is, for the other part, needed for distorting of the work arm, and, if the load arm likewise consists of an elastic material, is also needed to distort the load arm. Therefore a considerable share of the work exerted by the force has to be used for distortion if it is intended to reposition the load arm. Therefore, according to the invention at least one of the work arm or the load arm consists at least partially of an elastic material.
For adjusting or for a single positioning of an optical element, particularly a lens, a mirror, a reticle or an aperture, or the like, this effect is used to enlarge the reduction of an external influence to adjust or position an optical element. If, for instance, a rigid work arm of the state of the art having a lever distance of 5 mm leads to a movement of the load arm of 5 μm, this implies a reduction of 1:1000, and therefore a work arm having a length of thousand times the length of the load arm; such a reduction is realized by a work arm by far smaller according to the invention as a part of the work is always spent to distort the work arm and/or the load arm.
In reversed application of this principle, the same application of a force applied to a work arm produces, according to the elasticity of the work arm and/or the load arm a correspondingly weaker and therefore more precise movement of the load arm. For estimating precisely the movement of the load arm it is prerequisite to know exactly the elasticity value that—at least over a wide range—is many times a constant or has a known characteristic line as a function of the distance.
The teaching of the present invention explained above with respect to the use of a lever as an adjusting means is applicable to all means for transferring a force or a torque directly on a flange of an optical element or on an inner support or inner ring supporting the optical element. Thereby gear boxes with gear wheels equipped at least partially with an elastic material, rolls together with elastic tapes, springs in form of helical or spiral springs, or any other means appropriate to receive deformation energy.
According to the teaching of the present invention two forces or two torques or a combination of one force and one torque act on a single element or point of a hinge.
Advantageous embodiments of the invention are represented by the depending claims, the description and the drawings.
According to the present invention an assembly for positioning of an optical element with respect to a mount wherein the optical element is positionable by a positioning arrangement is provided. The assembly is characterized in that the positioning arrangement comprises at least a single elastic or resilient means that shifts or moves the optical element in two degrees of freedom or two directions independently by exerting a force or a torque on the optical element itself, on a flange of the optical element or a holder or a support enclosing the optical element.
According to this invention “to shift” means a linear motion whereas “to move” comprises a linear or a rotational motion.
Further, the assembly may be characterized in that the holder or the support comprises at least a single isostatic mount to which a force or a torque is applied by the elastic means wherein the isostatic mount is adjustable in at least two degrees of freedom.
Preferably, the at least one isostatic mount is a bipod or a bipod structure.
Preferably, the elastic or resilient means comprises reduction means, particularly a spring, an elastic lever or rod, an elastic tape or belt, an elastic gear-wheel or an elastic wheel.
In an advantageous embodiment the elastic means is moveable or shiftable in each of the two directions or degrees of freedom by two separate means, particularly by two piezoelectric or electostrictive actuators or by two motors or by two pneumatic or hydraulic means.
Further it is advantageous if three elastic means are provided that each are shiftable or moveable in two directions or two degrees of freedom.
Preferably the assembly is characterized in that the three elastic means are positioned at angles of substantially 120° apart from each other and wherein the acuators are positioned at angles of between 60° and 120° between them, preferably at 90° between them.
Further, the assembly may be characterized in that the elastic means or each of the elastic means is movable or adjustable by means of at least one screw, particularly by means of a micrometer screw.
In a further embodiment the at least one screw is borne in an outer ring or in an interstitial or intermediate ring.
In another embodiment the interstitial ring is coupled in that way to the outer ring that the interstitial ring is statically defined.
Preferably, the assembly is characterized in that the interstitial ring is coupled to the outer ring by means of spring elements.
In a further embodiment the spring elements are distributed over at least substantially equal distances from each other between the interstitial ring and the outer ring.
In another advantageous embodiment the spring elements are stiff.
It is advantageous if the optical element is supported by an inner holder and if the force or the torque to adjust the optical element is applied to the inner holder.
Preferably, the inner holder is connected to an outer mount by an intermediate part or ring wherein at least a single adjusting means is applied to the intermediate ring. As a rule, three adjusting assemblies positioned at a distance of 120° are applied to the inner ring to ensure a possibility of adjusting in all six degrees of freedom. If, however, an adjustment is needed in less than six degrees of freedom, less than three adjusting assemblies may be provided.
In an advantageous embodiment the at least one intermediate part is constructed in that way that it comprises a first bearing member connected to the inner support, an intermediate element and at least a positioning or adjusting means by which a force or a torque to adjust or readjust the optical element by an elastic means, applied to the intermediate element is applicable to the optical element from the intermediate element.
Hereby, advantageously, an elastic rod or stick serving as a work arm of a lever, an elastic tape or belt for transmitting a torque by means of at least one roll, an elastic gear wheel in a reduction gear box for transmitting of a torque or another elastic means, particularly a spring, preferably a spiral spring, or an elastic tape or belt for transmitting a force or a torque on an intermediate element is provided and therefore serves as an elastic means to which a force or a torque is applied.
Preferably, an intermediate element consists of a rigid or at least a less elastic material than that forming the means that applies the force or the torque.
Together with the adjusting means at least a second bearing member is used that is connected to the outer holder or support.
Advantageously, each adjusting means comprises at least an elastic lever fixed by one of its distal ends at the intermediate element to exert a force or a moment on the intermediate element or to rotate it.
For instance, a single lever is provided that, with regard to the optical element, is aligned in any direction. However, there may be several levers, that may be lifted and lowered in the direction of the optical axix of the optical element. Also a rotational movement of the levers is possible whereby the levers may undergo a torsion at the same time. The rotational movement of the levers may take place in the area of the optical element.
The lever may be adjusted in a preferable way, for instance, be rotated and/or be adjusted in axial and/or radial direction.
For a unique positioning and fixation of the assembly it is sufficient if the at least one lever is fixated with its second distal end at a fixation element, especially by means of a positioning element have a hole at a predetermined position (Lochmaske). It is to understood that by exchange of such elements having a hole or a plurality of holes that are, for instance, fixed at the outer support, other positions of the inner support and therefore of the optical element may be adjusted. In the alternative, an actuator may be provided to change the position of the embodiment.
Advantageously, the actuator comprises an electromagnetic, an electrostrictive, a pneumatic, a hydraulic or a mechanical means for actuating the actuator.
In an advantageous embodiment of the assembly the first bearing members are positioned at least partially in recesses or grooves of the inner support.
In a corresponding way the second bearing members may be positioned in recesses or grooves of the outer support.
Preferably, the second bearing members are each embodied as cardanic hinges to permit tilting of the intermediate member in all directions of space.
In an advantageous embodiment of a cardanic hinge, the second bearing members each comprise leaf spring hinges or a pair of metal plates
Advantageously, it may be provided that two of the thin metal plates extend in a tangential or axial direction under an acute or an obtuse angle with regard to the intermediate element in an
In the same way it is advantageous if the first and/or the second bearing elements are embodied as solid body hinges, preferably as leaf springs.
Additionally, it is provided advantageously, that bearing elements or hinge elements, preferably leaf springs, comprise an intermediate member in form of a cross to decouple radial torques or moments.
The intermediate parts may be produced in different ways, for instance, in that the intermediate parts are produced from at least one basic element by cutting out the hinges in the at least one basic element.
In the same way the intermediate parts may be generated by eroding of a original body.
In a special embodiment of the invention it is provided that intermediate parts are embodied as ring segments or as a closed ring. In the same way, it is imaginable that the intermediate parts or elements are embodied at least partially as rings or ring segments or that they are connected by such.
In an advantageous embodiment of the invention the intermediate ring or the ring segments are fixed by at least a first bearing element at the inner ring and at least by a second bearing member at the outer ring.
The invention also pertains to an embodiment for fixation and adjustment of an optical element with regard to an outer support, wherein the optical element is alignable with regard to a structure of an optical assembly, especially to an objective structure, having an optical axis or with regard to neighbouring mounts, adjustable by means of an adjusting means.
Such an embodiment is characterized in that the adjusting means is embodied by an intermediate ring positioned between the optical element and an outer support or holder.
Also in this embodiment of the invention it is advantageous if the optical element is borne by an inner mount and if the intermediate ring is borne between the inner mount and the outer mount.
Preferably, adjusting elements are positioned at the intermediate ring that may be generated by eroding the intermediate ring.
An embodiment of the invention proves as advantageous according to which the adjusting device comprises at least a single optical element that is installed tensed up in the intermediate ring or in the ring segment and that applies two forces and/or torques being in equilibrium with regard to each other.
Advantageously, the adjusting device comprises at least an elastic element to apply a tensing up force or a torque against the outer ring or the intermediate ring.
The torque or the force is exerted preferably by at least a single reduction means on the intermediate ring, preferably by a projection having the form of a block.
The invention is related also to an assembly for fixation or adjustment of an optical element with regard to an outer mount or support wherein the optical element is alignable with regard to a structure of an optical arrangement, especially an objective structure, having an optical axis or with regard to neighbouring mounts by means of at least an adjusting arrangement.
Hereby, the assembly is characterized in that the at least one adjusting arrangement comprises at least one elastic element to which a force or a torque is applied.
In an advantageous embodiment of the assembly the optical element is supported by an inner support.
Further, the invention is also related to a projection exposure apparatus for micro lithography. The projection exposure apparatus is characterized in that the projection objective is equipped with at least one assembly for adjusting or positioning of an optical element as described above.
The invention will hereinafter be explained in more detail through examples of embodiments with references to the drawings, wherein:
a is a perspectivic top view on an optical element supported by an inner support wherein the optical element is borne in an intermediate part having two adjusting means,
b shows a detail of
c is a schematic view on elements of
a-c are perspective views of a bearing element arranged between an outer support and the intermediate part, enlarged,
a is a view of an alternative of an elastic means for adjusting of an optical element positioned in an inner ring,
b, c are detail views of
a-c are further detail views of intermediate parts,
a, b shows the concept of the invention of a reduction controlled by rigidity compared with the lever principle according to the state of the art,
a, b a schematic sectional view on an adjusting mechanism comprising two micrometer screws or two levers for adjusting an optical element, and
An optical element 1 (
Each intermediate part 3 comprises a first bearing element 5 connected to the inner mount 2, a second bearing element 6 connected to the outer mount 4, and an intermediate part 7 positioned between the bearing elements 5, 6, for instance being embodied as a solid block. The bearing elements 5, 6 each consist of a thin elastic material and constitute, together with the intermediate part 7, a statically defined bearing of element 1. Bearing element 5 has lateral grooves that constitute a small bridging element or catwalk 8 connecting element 5 to the intermediate element 7 and ensure a sufficient flexibility or suppleness of bearing element 5 in the direction of its radial or tangential axis.
Bearing element 6 (
Therefore two rotational or two translational degrees of freedom or a combination of a rotational and a translational degree of freedom are realized independently by the present invention.
Bridging element 8 comprises a point of attack wherein two forces or two torques or a combination of a force and a torque act on the support 2 or directly on the optical element 1 if there is no support. According to
At intermediate element 7 an elastic stick 9 extending in radial direction with respect to the optical element 1 is fastened that serves as adjustor. When a torque applied to stick 9 is exerted on intermediate part 7 in direction of arrow B the intermediate part 7 is moved and causes a bending of bearing element 6.
The stick 9 has a length C that is a multiple of a length d between the point of attack of stick 9 within block 7, i. e. at its center, and the contact line of catwalk 8 at block 7. The relation C:d constitutes a regular reduction relation between the length of the work arm and the length of the load arm. As, however, stick 9 is made of a highly elastic material, for instance a spring steel, the relation of reduction is increased by far, for instance by a factor 100. By a fixed expense of force a much smaller and therefore much more sensible adjustment is in axial and tangential direction is realized than would be possible according to the state of art using a rigid or at least substantially rigid positioning means.
In a schematic view (
In another embodiment (
On its other side, block 11 is linked to another element 16, that has the form of a block, by means of two metal plates 14, 15 arranged under an obtuse angle with regard to each other. Element 16, for its part, is connected to an outer mount by means of two metal plates 17, 18 inclined with regard to each other. Metal plates 14, 15, together with element 16 and metal plates 17, 18, constitute the second bearing element that constitutes a cardanic hinge or joint and that permits tilting of the inner mount in all directions of space at three bearing positions. At block, 11 a torque may attack in the same way by an elastic stick as shown by
The intermediate part or adjusting means 10 shown in
Elastic element 6 of
Generally, an elastic element 6 rotatable in two degrees of freedom as shown in
Adjusting means 10 (
Further embodiments (
The last form is shown by
Appropriate adjusting arrangements are shown by
In the embodiment shown in
The bearing elements 30, 32 shown in
Instead of intermediate ring 31 as shown by
The optical element 28 may be tilted even in an easier way when bearing elements 40, 41 (
According to another embodiment (
In an alternative embodiment (
a shows the classic lever principle in the example of a two-arm-lever 48 that is borne at a rotation point 49. Thereby a purely geometric correlation is given. Thus the work arm V2 as a function of the lever arm of the force:
V2=d×V1.
When elastic materials are applied for such a lever having two arms or only a single arm wherein the spring rigidity of the lever arm of the force is c1 (
c2=100×c1.
This principle is known and is, for instance, realized by a Michelson spring. When considering the energy balance of the assembly shown in
A spring having a stiffness c1 may be a thin wire, a spiral spring or a torsion spring (bracket 47) (
By “optical element” mentioned heretofore, the optical element itself or its flange is meant. According to the invention and throughout herein, whenever a soft mount or its component is said to be of low stiffness or less rigid, it is to be understood that the stiffness or rigidity is being compared with that of the position defining mounts for the optical element.
In another embodiment of the invention (
Each of the elements 100 includes a first flat spring or leaf spring 101 and a second flat spring or leaf spring 102. The first flat spring 101 is bendable in the radial direction of the lens 23 and is connected to the support member 22 and the second elastic spring 102. The first spring 101 generates a first elastic force from a second elastic force applied by the second elastic spring 102 and applies the first elastic force to the support member 22.
The spring 102 bends in the radial direction when a force is applied on it by compression members 103 and 104 that are realized as micrometer screws and that are borne by the outer ring 19 (cf.
Then spring 102 applies a compression force to the other spring 101 by a small bridge 105 connecting the springs 101, 102. A compression force is applied by members 103 and 104 if they both are rotated in the same sense of rotation to move the optical element 23 in radial direction.
If, however, the members 103, 104 are rotated in an opposite sense with respect to each other, a moment force or torque is applied to the spring 101 and is transferred to the other spring 102. Thereby, the ring 22 bearing optical element 23 is moved in the direction tilted with respect to the optical axis (the z-axis). Instead of compression members 103, 104 tension members may be inserted at the same positions that exert a tension on the spring 102 to be transferred to the optical element 23 by means of the spring 101. The members 103, 104 are inserted in insertion holes in the ring 19 or in a lens barrel. They are disposed at equal distances from a middle fiber 106 of spring 102.
In an alternative embodiment (
In another embodiment of the invention (
However, according to the invention, the bearing member 202 permits an adjustment of the optical element 201 in at least two degrees of freedom. Therefore, at least a single lever arm 208 is provided that applies a moment in a direction C or in a direction D to a bearing member 202. This permits the bearing member 202 having solid body hinges or sufficient elasticity to be rotated about at least two non-parallel rotational axes, thus positioning the optical element 201 without exerting any actuating force or any actuating moment onto the optical element 201 by means of the mount 200.
According to another embodiment an optical element 300 (
The intermediate ring 303 is connected to an outer ring 305 by another bearing element 306. Bearings 304 and 306 may be cardanic elements and/or isostatic elements wherein the intermediate ring 303 is a connecting element between the inner ring 302 and the outer ring 305 that it permits positioning of the optical element in at least two degrees of freedom. A gear box 307 according to the invention is applied between the inner and the outer ring 302, 305. The gear box 307 exerts a deformation of the intermediate ring 303, whereby the inner ring 302 is adjusted in its position with regard to the outer ring 305.
An additional element 309 applied to the inner ring 302 is adjustable by an actuator 310, e. g. a voice coil actuator, by an electrostrictive element or other means that correct imaging errors, for instance a pneumatic or hydraulic means. Thereby the resilient mount 301 is adjusted. Hereby a deformation of the optical element 300 may be realized to corrected any imaging errors of element 300. This embodiment provides for arranging multiple waveforms of the light to be exposed by the exposure apparatus.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/004337 | 5/9/2006 | WO | 00 | 8/8/2008 |
Number | Date | Country | |
---|---|---|---|
60679687 | May 2005 | US |