ASYNCHRONOUS SET-RESET CIRCUIT DEVICE

Information

  • Patent Application
  • 20070300116
  • Publication Number
    20070300116
  • Date Filed
    June 07, 2007
    17 years ago
  • Date Published
    December 27, 2007
    17 years ago
Abstract
An asynchronous set-reset circuit device for testing activity performed by an Automatic Test Patterns Generation tool may include a pair of logic gates having at least two inputs each, and a logic gate structure coupled upstream from the pair of logic gates. The logic gate structure may be for driving one respective input of the pair of logic gates and may have inputs receiving a pair of test command signals. The asynchronous set-reset circuit device may also include a plurality of feedback connections between outputs of the pair of logic gates and respective inputs of the logic gate structure.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a simple SR latch cell according to the prior art;



FIG. 2 is a detailed schematic view of the internal structure of the latch cell of FIG. 1, according to the prior art;



FIG. 3 is a schematic view of a complex circuit device according to the prior art, which includes a flip-flop;



FIG. 4 is a schematic view of an asynchronous set-reset circuit device according to the present invention; and



FIG. 5 is a schematic view of a test block circuit producing test signals applied to the asynchronous set-reset circuit device of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIG. 4, an asynchronous set-reset circuit device 20 realized is disclosed. The circuit device 20 has been specifically provided for improving the quality requirement and reducing the patterns generation time in the design activity using Automatic Test Patterns Generation (ATPG) tool. The circuit device is used as a basic circuit structure in a library, for example, a library of a “Verilog” design tool.


The circuit device 20 is derived from the basic structure illustrated in FIG. 2, but includes structural and functional features that may allow for the improvement of the controllability and observability of the asynchronous set-reset component. The circuit device 20 comprises a NAND-NAND structure 17 including a double NAND gate with at least two inputs for each gate 22 and 23. Again, a possible alternative structure to the NAND-NAND structure would include a NOR-NOR structure.


Differently from the prior art, a logic gate structure 8 is upstream provided with respect to the NAND-NAND structure 17. More specifically, one input of the first NAND gate 22 is connected to the output of a logic gate 16, in particular, a NOR gate. This NOR gate 16 has a first input receiving a command signal TR (Test Reset) and a second input connected through a link 18 to the output of the second NAND gate 23.


Similarly, a second logic gate 15 is upstream provided with respect to the second NAND gate 23. In particular, this second logic gate 15 is a second NOR gate having a first input receiving a command signal TS (Test Set) and a second input connected through a link 19 to the output of the first NAND gate 22. The output of the NOR gate 15 is linked to one input of the second NAND gate 23.


The second input of the first NAND gate 22 receives a reset signal RN while the second input of the second NAND gate 23 receives a set signal SN. Both the outputs of the first and the second NAND gates 22, 23 are linked to a selective and inverting Multiplexer 21 providing a single output Q for the circuit device 20. A connection 11 is provided between the multiplexer 21 and the first input of the NOR gate 16 for providing the signal TR also to the multiplexer 21.


As may be appreciated by the person of ordinary skill in the art, the feedback loop between the NAND gates 2 and 3 (FIG. 2) of the prior art approach has been broken in the circuit device 20 of this embodiment. These modifications may provide a combinational cell instead than a sequential cell of the prior art approach when the test mode is enabled.


Two new command test signal have been added to the circuit device 20: they are the signal TR (Test Reset) and TS (Test Set). The final test coverage of this cell 20 is the following: test coverage=97.6% (42 faults, 28 MOS) where 28 MOS is just an indicative number of the transistors used. The two test signals TR, TS are forced to GND during the normal functioning of the circuit device 20.


It worth while to note that there could be a fault not covered by the ATPG tool and represented by a stuck-at 0 on input of the NOR gate 16 connected to TR pin (marked by a larger dot in FIG. 4). However this faults may not affect in any way the functional behavior of the circuit because in the functional condition it is already forced to GND, so at the same value of the untested stuck-at.


The intrinsic high value of the test coverage of the cell formed by the circuit device 20 may allow for improving the whole test coverage of the input/output logic core. If compared to the original code (including 12 MOS), it has been the logic portion of the gates 15 and 16 that allow conversion of the basic and not testable cell of FIG. 2 into testable device. The final number of MOS transistor is twenty-eight in the library used by the Applicant. This value may be less than the prior art approach illustrated in FIG. 3 and relating to 44 MOS transistor, that was the simplest one with testable facilities.


The control test signals TS and TR may have to be directly controlled by external PADs (this is the simplest controllability approach) or they can be managed by a dedicated Test Block circuit 25 like the one illustrated in FIG. 5 or they can be controlled from PAD replacing the Q1, Q2 signals. In this embodiment of the test block circuit 25, a couple of two inputs NAND gates 32, 33 may be provided for receiving respective driving signal from corresponding outputs of a logic network 24.


This logic network 24 includes a couple of NOR gates 26, 27 having both a couple of inputs, terminal one of which is linked to a corresponding output Q1, Q2 of a flip-flop cell 13, 14. Both the second inputs of the first and the second NAND gates 32, 33 are receiving a same command signal TM. An inverter may be provided between the first input of the first NOR gate 26, the one connected to the output Q1, and the other first input of the second NOR gate 27, the one connected to the output Q2.


The other second inputs of both the NOR gates 26, 27 are linked together. The first input of the NOR gate 26 is connected to the output Q1 of a flip-flop cell 13. This cell 13 has four inputs D, CP, TI, TE and receive a reset signal Reset. However, the number of inputs of this cell may not be mandatory and other possible alternative approach may be adopted for the flip-flip cell, for example, a cell having a set and an inverter on output could operate in the same manner.


The first input of the second NOR gate 27 is connected to the output Q2 of another flip-flop cell 14. This second cell 14 has four inputs D, CP, TI, TE and receive a reset signal Reset. The circuit behaves in the following way:


1) User Mode (TM=0)


In this operating mode, both the control signal TS and TR may be forced to GND to keep the original functionality of the Set-Reset asynchronous component 20 working as a latch.


2) Test Mode (TM=1)


In this operating mode, two scan flip-flops 13, 14 may be used to control the status of the TS, TR signals. If Ctl_1 has the value ‘1’ both the control signals TS, TR are forced to VDD while when Ctl_1 has the value ‘0’ the TS and TR values depend on the Ctl_0 status: TR is equivalent to Ctl_0 while TS has opposite value. In this way, the ATPG tool may be able to break in any possible conditions the internal feedback of the Set-Reset asynchronous latch.


Test Case Results


In order to check the quality of this approach, it has been applied on a real Test Case (the digital control block of an ADC) which was designed with the known basic LR1QLL cells of FIG. 2. The Test of the design has been based on the implementation of the DFT structured scan architecture and implements one scan chains including 346 Flip-Flops. The number of set-reset cells LR1QLL is 49, and the total number of faults is ˜21 k (of course it depends on the model used for LR1QLL cell).


The test coverage has been evaluated applying the three different models described:


First case) the LR1QLL library cell with high level Verilog description.


Second case) the LR1QLL cell at gate level with internal structure.


Third case) the LR1QLL cell has been modified applying by the circuit device of this embodiment.


An important improvement in the test coverage has been noted in the passage from the first to the second and the third case. So, according to this embodiment, and without performing any modification from the functional point of view, the test coverage may be improved in a great percentage, and moreover, it may reduce the global time of the design activity used in case redesign of the design to be fully scan ready.


The person of ordinary skill in the art may understand that this asynchronous set-reset device may be implemented even with minor modifications all falling within the scope of the appended claims. For example, the NAND-NAND structure may be formed by a couple of NOR gates, and the associated logic network could be modified accordingly without departing from the principle of the invention.

Claims
  • 1-12. (canceled)
  • 13. An asynchronous set-reset circuit device for testing activity performed by an Automatic Test Patterns Generation tool and comprising: a first pair of logic gates, each logic gate having a plurality of inputs;a logic gate structure coupled upstream from said first pair of logic gates, said logic gate structure for driving respective inputs of each logic gate of said first pair of logic gates and having inputs receiving a pair of test command signals; anda plurality of feedback connections coupled between outputs of said first pair of logic gates and respective inputs of said logic gate structure.
  • 14. The asynchronous set-reset circuit device according to claim 13 wherein said logic gate structure comprises a second pair of logic gates respectively coupled to said first pair of logic gates; and wherein each logic gate of said second pair of logic gates receives one of the pair of test command signals and has an output coupled to the respective input of each logic gate of said first pair of logic gates.
  • 15. The asynchronous set-reset circuit device according to claim 14 wherein said plurality of feedback connections are coupled between the outputs of said first pair of logic gates and respective inputs of said second pair of logic gates.
  • 16. The asynchronous set-reset circuit device according to claim 14 wherein said second pair of logic gates comprises NOR gates.
  • 17. The asynchronous set-reset circuit device according to claim 14 further comprising an inverting multiplexer being coupled to the outputs of said first pair of logic gates and also being coupled to an input of said second pair of logic gates.
  • 18. The asynchronous set-reset circuit device according to claim 17 wherein the input of said second pair of logic gates being coupled to said inverting multiplexer is also coupled to one of the pair of test command signals.
  • 19. The asynchronous set-reset circuit device according to claim 13 further comprising a test circuit block outputting the pair of test command signals.
  • 20. The asynchronous set-reset circuit device according to claim 19 wherein said test circuit block comprises a pair of two-input NAND gates and a logic network coupled thereto, each two-input NAND gate receiving respective driving signals from corresponding outputs of said logic network; and wherein the other inputs of said pair of two-input NAND gates receive a command signal.
  • 21. The asynchronous set-reset circuit device according to claim 20 wherein said test circuit block further comprises a pair of flip-flop cells; wherein said logic network comprises a pair of 2-input NOR gates, each 2-input NOR gate having an input coupled to a corresponding output of said pair of flip-flop cells; and wherein the other inputs of each NOR gate of said pair of 2-input NOR gates are coupled together.
  • 22. The asynchronous set-reset circuit device according to claim 21 wherein said logic network further comprises an inverter coupled between the inputs of said pair of 2-input NOR gates being coupled to the corresponding outputs of said pair of flip-flop cells.
  • 23. The asynchronous set-reset circuit device according to claim 21 further comprising an external pad; and wherein the outputs of said pair of flip-flop cells comprise connections to said external pad.
  • 24. The asynchronous set-reset circuit device according to claim 23 wherein the pair of test command signals are controlled by said corresponding external pads.
  • 25. An asynchronous set-reset circuit device for testing activity performed by an Automatic Test Patterns Generation tool and comprising: a pair of NAND gates, each NAND gate having a plurality of inputs;a logic gate structure coupled upstream from said pair of NAND gates, said logic gate structure for driving respective inputs of each NAND gate of said pair of NAND gates and having inputs receiving a pair of test command signals; anda plurality of feedback connections coupled between outputs of said pair of NAND gates and respective inputs of said logic gate structure.
  • 26. The asynchronous set-reset circuit device according to claim 25 wherein said logic gate structure comprises a pair of logic gates respectively coupled to said pair of NAND gates; and wherein each logic gate of said pair of logic gates receives one of the pair of test command signals and has an output coupled to the respective input of each NAND gate of said pair of NAND gates.
  • 27. The asynchronous set-reset circuit device according to claim 26 wherein said plurality of feedback connections are coupled between the outputs of said pair of NAND gates and respective inputs of said pair of logic gates.
  • 28. The asynchronous set-reset circuit device according to claim 26 wherein said pair of logic gates comprises NOR gates.
  • 29. The asynchronous set-reset circuit device according to claim 26 further comprising an inverting multiplexer being coupled to the outputs of said pair of NAND gates and also being coupled to an input of said pair of logic gates.
  • 30. The asynchronous set-reset circuit device according to claim 29 wherein the input of said pair of logic gates being coupled to said inverting multiplexer is also coupled to one of the pair of test command signals.
  • 31. A method of making an asynchronous set-reset circuit device for testing activity performed by an Automatic Test Patterns Generation tool, the method comprising: coupling a logic gate structure upstream from a first pair of logic gates, each logic gate having a plurality of inputs, the logic gate structure for driving respective inputs of the first pair of logic gates and having inputs receiving a pair of test command signals; andcoupling feedback connections between outputs of the first pair of logic gates and respective inputs of the logic gate structure.
  • 32. The method according to claim 31 wherein the logic gate structure comprises a second pair of logic gates respectively coupled to the first pair of logic gates; and wherein each logic gate of the second pair of logic gates receives one of the pair of test command signals and has an output coupled to the respective input of the first pair of logic gates.
  • 33. The method according to claim 32 wherein coupling feedback connections between outputs of the first pair of logic gates and respective inputs of the logic gate structure comprises coupling feedback connections between outputs of the first pair of logic gates and respective inputs of the second pair of logic gates.
  • 34. The method according to claim 32 wherein the second pair of logic gates comprises NOR gates.
  • 35. The method according to claim 32 further comprising coupling an inverting multiplexer to the outputs of the first pair of logic gates and to an input of the second pair of logic gates of the logic gate structure.
  • 36. The method according to claim 35 wherein the input of the second pair of logic gates coupled to the inverting multiplexer is also coupled to one of the pair of test command signals.
Priority Claims (1)
Number Date Country Kind
06011821.3 Jun 2006 EP regional