The invention relates to imaging devices. More particularly, the invention relates to an auto focus-zoom actuator or camera module contamination reduction feature with integrated protective membrane.
Recently, there have been numerous developments in digital camera technology. One such development is the further miniaturization of optical and mechanical parts to the millimeter and sub millimeter dimensions. The shrinkage in the moving parts of cameras has allowed the implementation of modern digital camera and optical technology into a broader range of devices. These devices are also constantly being designed and constructed into smaller and smaller form factor embodiments. For example, these days typical personal electronic devices such as cellular phones, personal digital assistants (PDAs), and wrist and/or pocket watches include a miniature digital camera. To protect against foreign material intrusion, a gasket is added during the phone level assembly. However, such gaskets are only effective for cameras utilizing fixed position lenses.
Auto-focusing and zoom camera features function in part by adjusting a relative distance between one or more lenses and an image sensor. In either case, actuators are used to move the lenses. Enabling moving components within the camera introduces undesirable pathways through which foreign particles can enter the camera and possible reach sensitive internal optical components, such as the image sensor of filters, within the camera. Particles on the optical components negatively impacts the effectiveness of the image capturing functionality. Gaskets used in cameras with fixed position lenses are ineffective when moving lenses and actuators are used. Further, any introduction of a gasket-like feature may increase the size of the camera module, which counters the goal of miniaturization, and also runs the risk of impacting actuator characteristics and performance.
A camera module includes a lens system, an image sensor, and an actuator. The actuator is fixed relative to the image sensor, and the actuator moves the lens system relative to the image sensor to achieve focus. Components that move relative to each other result in gaps or spaces between the components, an in particular there is a gap between the lens system and the actuator. Such a gap provides a traveling path for foreign material, or particulates, to enter the camera module and reach the image sensor, or other intermediate optical components between the lens system and the image sensor. A camera contamination reduction apparatus is implemented as a protective membrane that prevents foreign material from reaching the internal optical components through the traveling path.
In an aspect, an imaging device is disclosed. The imaging device includes a lens system; an image sensor aligned to receive light from the lens system; an actuator system coupled to the lens system and to the image sensor, wherein the actuator system is configured to move the lens system relative to the image sensor; and a protective membrane coupled to the lens system and to the actuator system, wherein the protective membrane is configured to filter particulates, further wherein the protective membrane is configured to be expandable and contractible to accommodate movement of the lens system relative to the actuator system. The actuator system is configured to move the lens system relative to the image sensor and to the actuator system, and the protective membrane is configured to accommodate movement of the lens system relative to the image sensor and the actuator system. The lens system has a first surface and the actuator system includes an opening aligned with the first surface such that the first surface is exposed to an external environment. In some embodiments, the protective membrane is positioned to filter particulates entering through the opening of the actuator system. In this embodiment, the protective membrane is coupled to the actuator system around the opening of the actuator system and the protective membrane is coupled to the first surface of the lens system. The actuator system includes actuating components that form a traveling path for particulates through the actuator system, and the protective membrane is positioned to intersect and filter the traveling path. In some embodiments, the actuator system further comprises an actuator support structure onto which the actuating components are mounted and the lens system further comprises a second surface opposite the first surface, the actuator support structure includes an opening aligned with the second surface of the lens system such that the second surface is exposed to the image sensor. In some embodiments, the protective membrane is coupled to the actuator system around the opening of the actuator support structure, and the protective membrane is coupled to the second surface of the lens system. In some embodiments, the imaging device includes two or more protective membranes, a first protective membrane coupled to the actuator system around the opening of the actuator system and to the first surface of the lens system, a second membrane coupled around the opening of the actuator support structure and to the second surface of the lens system.
In some embodiments, the imaging device also includes a substrate coupled between the actuator system and the image sensor, wherein the substrate includes a recessed portion within which the image sensor is positioned. In some embodiments, the imaging device also includes a light filter coupled to the substrate and positioned between the lens system and the image sensor, wherein the protective membrane is positioned to filter particulates before the particulates reach the light filter. In some embodiments, the protective membrane is a porous material. In some embodiments, the protective membrane is an elastic material. In some embodiments, the protective membrane is configured according to a zig-zag profile. In some embodiments, the imaging device is an auto-focusing camera, a zoom-enabled camera, or an auto-focusing and zoom-enabled camera.
In another aspect, an auto-focusing camera module is disclosed. The auto-focusing camera module includes a lens system including a first end and a second end; an image sensor aligned to receive light from the second end of the lens system; a substrate comprising a recessed portion which the image sensor is positioned; an actuator system coupled to the lens system and to the substrate, wherein the actuator system includes an external opening aligned with the first end of the lens system such that the first end is exposed to an external environment to receive input light, further wherein the actuator system comprises one or more actuating components configured to move the lens system relative to the image sensor and to the actuator system, further wherein particulate traveling paths are formed between the one or more actuating components and between the lens system and the one or more actuating components, the particulate traveling paths extend from the external opening of the actuator system to the image sensor; and a protective membrane coupled around a perimeter of the first end of the lens system and coupled around the external opening of the actuator system, wherein the protective membrane is configured to filter particulates entering through the external opening, further wherein the protective membrane is configured to be expandable and contractible to accommodate movement of the lens system relative to the actuator system.
In yet another aspect, another auto-focusing camera module is disclosed. The auto-focusing camera module includes a lens system including a first end and a second end; an image sensor aligned to receive light from the second end of the lens system; a substrate comprising a recessed portion which the image sensor is positioned; an actuator system coupled to the lens system and to the substrate, wherein the actuator system includes an external opening aligned with the first end of the lens system such that the first end is exposed to an external environment to receive input light, further wherein the actuator system comprises one or more actuating components configured to move the lens system relative to the image sensor and to the actuator system, further wherein particulate traveling paths are formed between the one or more actuating components and between the lens system and the one or more actuating components, the particulate traveling paths extend from the external opening of the actuator system to the image sensor, wherein the actuator system further comprises an actuator support structure onto which the one or more actuating components are mounted, the actuator support structure includes an opening aligned with the second end of the lens system such that the second end is exposed to the image sensor; and a protective membrane coupled around a perimeter of the second end of the lens system and coupled around the opening of the actuator support structure, wherein the protective membrane is configured to filter particulates passing through the one or more traveling paths, further wherein the protective membrane is configured to be expandable and contractible to accommodate movement of the lens system relative to the actuator system.
These and other advantages will become apparent to those of ordinary skill in the art after having read the following detailed description of the embodiments which are illustrated in the various drawings and figures.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the camera contamination reduction apparatus and, together with the description, serve to explain the principles of the camera contamination reduction apparatus, but not limit the invention to the disclosed examples.
Embodiments of the present application are directed to a camera contamination reduction apparatus. Those of ordinary skill in the art will realize that the following detailed description of the camera contamination reduction apparatus is illustrative only and is not intended to be in any way limiting. Other embodiments of the camera contamination reduction apparatus will readily suggest themselves to such skilled persons having the benefit of this disclosure.
Reference will now be made in detail to implementations of the camera contamination reduction apparatus as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts. In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application and business related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.
The camera contamination reduction apparatus provides a packaging solution with a dust-reducing, if not dust-proof, actuator component. A protective membrane is attached to or integrated with the actuator, which is part of a complete camera module. The camera contamination reduction apparatus reduces, if not eliminates, foreign material from reaching internal image sensing or other optically sensitive components. Reducing contaminants results in improved optical/image capturing performance. The camera contamination reduction apparatus provides improved foreign material control during assembly processes and transportation. In some applications where the camera module is included within another device, such as a camera phone, the camera contamination reduction apparatus provides improved foreign material control during device level assembly. In general, reducing contaminants improves manufacturing yield since there are less rejections caused by foreign material contamination near to or on the image sensor.
A camera module includes a lens system, an image sensor, and an actuator. The actuator is fixed relative to the image sensor, and the actuator moves the lens system relative to the image sensor to achieve focus. Components that move relative to each other result in gaps or spaces between the components, an in particular there is a gap between the lens system and the actuator. Such a gap provides a traveling path for foreign material, or particulates, to enter the camera module and reach the image sensor, or other intermediate optical components between the lens system and the image sensor. A camera contamination reduction apparatus is implemented as a protective membrane that prevents foreign material from reaching the internal optical components through the traveling path. In some embodiments, the protective membrane is added at the entrance of the traveling path to reduce/prevent foreign material from entering the camera module. In other embodiments, the protective membrane is added at some internal portion of the traveling path sufficient for reducing/preventing foreign material from reaching the image sensor and/or intermediate optical components. In still other embodiments, multiple protective membranes are added. For example, one protective membrane is positioned at the entrance of the traveling path and at least one protective membrane is positioned at some internal portion of the traveling path.
Integrating the protective membrane with the actuator avoids an increase in the camera module size, in terms of Z-height, without sacrificing the form-fit factor. The use of the integrated protective membrane also eliminates the need for additional gaskets when the camera module is included within a larger device, such as a camera phone.
In some embodiments, the camera module 10 also includes one or more filters positioned between the lens system 4 and the image sensor 14. In the exemplary configuration shown in
The actuator system 6 is configured to move the lens system 4 relative to both the actuator system 6 and the image sensor 14. The actuator system 6 includes actuating components 18, which are coupled to the lens system 4 to move the lens system 4 up and down, referred to as the z-direction, within the through-hole of the actuator system 6. For example, the actuator system 6 can move the lens system 4 in a first direction such that the first end 24 of the lens system 4 moves toward the opening 22 in the actuator system 6 and the second end 28 moves away from the image sensor 14, and the actuator system 6 can move the lens system 4 in a second direction such that the first end 24 of the lens system 4 moves away from the opening 22 and the second end 28 moves toward the image sensor 14. In some embodiments, the actuator system 6 includes one or more supports 30. The supports 30 providing a structure onto which one or more of the actuating components are mounted. The supports 30 also provide a structure for the actuator system 6 to be coupled to the substrate 12.
Enabling movement of the lens system 4 within the through-hole of the actuator system 6 results in gaps between the lens system 4 and the various actuating components 18, as well as gaps between the individual actuating components 18. The gaps form pathways for foreign material to enter the camera module and/or to reach the sensitive optical components within the camera module, such as the image sensor 14 and the filter 8.
The protective membrane 2 shown in
The protective membrane 2 can be removably or permanently coupled to the surface 26 and to the first end 24. As shown in
The protective membrane 2 is configured to enable movement of the lens system 4 relative to the actuator system 6, and in particular, relative to the surface 26 of the actuator system 6. To enable movement, in some embodiments, the protective membrane 2 is made of a elastic material that expands and contracts relative to the movement of the lens system 4 relative to the surface 26. In other embodiments, the protective membrane 2 is designed with extra width used as slack.
As shown in
The protective membrane 16 can also be similarly configured as the protective membrane 2, except that the protective membrane 16 is shaped and positioned according to the configuration of the second end 28 of the lens system 4, the support 30, and any gaps therebetween. In particular, the protective membrane 16 can be removably or permanently coupled to the surface 42 and to the second end 28. As shown in
In the camera module 20 of
The camera modules 10 and 20 shown in
The camera contamination reduction apparatus has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the camera contamination reduction apparatus. The specific configurations shown and the methodologies described in relation to the various modules and the interconnections therebetween are for exemplary purposes only. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the camera contamination reduction apparatus.
Number | Name | Date | Kind |
---|---|---|---|
2279372 | Herzberger | Apr 1942 | A |
3087384 | Baur et al. | Apr 1963 | A |
3393622 | Schöttle et al. | Jul 1968 | A |
3599377 | Dartnell | Aug 1971 | A |
3609270 | Jorgensen et al. | Sep 1971 | A |
3696725 | Lange | Oct 1972 | A |
4229092 | Iwata | Oct 1980 | A |
4257086 | Gulliksen | Mar 1981 | A |
4290168 | Binge | Sep 1981 | A |
4457619 | Takahashi et al. | Jul 1984 | A |
4690512 | Forsyth | Sep 1987 | A |
4879592 | Ernest | Nov 1989 | A |
4987435 | Touma et al. | Jan 1991 | A |
5016993 | Akitake | May 1991 | A |
5034824 | Morisawa et al. | Jul 1991 | A |
5054886 | Ozaki et al. | Oct 1991 | A |
5095204 | Novini | Mar 1992 | A |
5119121 | Kobayashi et al. | Jun 1992 | A |
5149181 | Bedford | Sep 1992 | A |
5177638 | Emura et al. | Jan 1993 | A |
5196963 | Sato et al. | Mar 1993 | A |
5218484 | Terai | Jun 1993 | A |
5272567 | Inoue | Dec 1993 | A |
5510937 | Mogamiya | Apr 1996 | A |
5529936 | Rostoker | Jun 1996 | A |
5546147 | Baxter et al. | Aug 1996 | A |
5689746 | Akada et al. | Nov 1997 | A |
5754210 | Haneda et al. | May 1998 | A |
5805362 | Hayes | Sep 1998 | A |
5825559 | Johnson et al. | Oct 1998 | A |
5831777 | Iwasa | Nov 1998 | A |
5835208 | Hollmann et al. | Nov 1998 | A |
5908586 | Hobbs et al. | Jun 1999 | A |
5926965 | Shijo et al. | Jul 1999 | A |
5954192 | Iitsuka | Sep 1999 | A |
5966248 | Kurokawa et al. | Oct 1999 | A |
6011661 | Weng | Jan 2000 | A |
6091902 | Komatsuzaki et al. | Jul 2000 | A |
6096155 | Harden et al. | Aug 2000 | A |
6249311 | Rouse et al. | Jun 2001 | B1 |
6282380 | Yamamoto | Aug 2001 | B1 |
6292306 | Betensky | Sep 2001 | B1 |
6330400 | Bittner et al. | Dec 2001 | B1 |
6351288 | Johnson et al. | Feb 2002 | B1 |
6359740 | Tsuchiya | Mar 2002 | B1 |
6381072 | Burger | Apr 2002 | B1 |
6417601 | Kim | Jul 2002 | B1 |
6426839 | Dou et al. | Jul 2002 | B2 |
6476985 | Dou et al. | Nov 2002 | B2 |
6530703 | Nakano et al. | Mar 2003 | B2 |
6555812 | Bohn | Apr 2003 | B1 |
6582079 | Levine | Jun 2003 | B2 |
6590720 | Oba | Jul 2003 | B2 |
6597516 | Saitoh et al. | Jul 2003 | B2 |
6654187 | Ning | Nov 2003 | B2 |
6670205 | Byun | Dec 2003 | B1 |
6682161 | Yun | Jan 2004 | B2 |
6683298 | Hunter et al. | Jan 2004 | B1 |
6760167 | Meehan et al. | Jul 2004 | B2 |
6762888 | Oshima | Jul 2004 | B1 |
6771439 | Ting | Aug 2004 | B2 |
6792246 | Takeda et al. | Sep 2004 | B2 |
6805499 | Westerweck et al. | Oct 2004 | B2 |
6841883 | Farnworth et al. | Jan 2005 | B1 |
6853005 | Ikeda | Feb 2005 | B2 |
6869233 | Westerweck et al. | Mar 2005 | B2 |
6940209 | Henderson | Sep 2005 | B2 |
7010224 | Nomura | Mar 2006 | B2 |
7019374 | Kayanuma et al. | Mar 2006 | B2 |
7046296 | Shinomiya | May 2006 | B2 |
7078799 | Vittu | Jul 2006 | B2 |
7088525 | Finizion et al. | Aug 2006 | B2 |
7127162 | Mano | Oct 2006 | B2 |
7142368 | Kim et al. | Nov 2006 | B2 |
7156564 | Watanabe et al. | Jan 2007 | B2 |
7167376 | Miyashita et al. | Jan 2007 | B2 |
7190404 | Shinomiya | Mar 2007 | B2 |
7193793 | Murakami et al. | Mar 2007 | B2 |
7245319 | Enomoto | Jul 2007 | B1 |
7259497 | Sakano et al. | Aug 2007 | B2 |
7301577 | Sakamoto | Nov 2007 | B2 |
7301712 | Kamo | Nov 2007 | B2 |
7330648 | Morinaga et al. | Feb 2008 | B2 |
7379112 | Raad | May 2008 | B1 |
7394602 | Chen et al. | Jul 2008 | B2 |
7400454 | Kubota et al. | Jul 2008 | B2 |
7414661 | Hartlove et al. | Aug 2008 | B2 |
7420609 | Yamaguchi et al. | Sep 2008 | B2 |
7422382 | Seo | Sep 2008 | B2 |
7442382 | Henson et al. | Oct 2008 | B2 |
7444073 | Lee | Oct 2008 | B2 |
7469100 | Toor et al. | Dec 2008 | B2 |
7477461 | Bareau et al. | Jan 2009 | B2 |
7605991 | Chiang | Oct 2009 | B2 |
7638813 | Kinsman | Dec 2009 | B2 |
7670067 | Utz | Mar 2010 | B2 |
7675565 | Cheng | Mar 2010 | B2 |
7679669 | Kwak | Mar 2010 | B2 |
7684689 | Shangguan et al. | Mar 2010 | B2 |
7773876 | Westerweck et al. | Aug 2010 | B2 |
7796187 | Shangguan et al. | Sep 2010 | B2 |
7806606 | Westerweck | Oct 2010 | B2 |
7825985 | Westerweck et al. | Nov 2010 | B2 |
7864245 | Yoon et al. | Jan 2011 | B2 |
7873269 | Toor et al. | Jan 2011 | B2 |
7983556 | Westerweck et al. | Jul 2011 | B2 |
8112128 | Lee | Feb 2012 | B2 |
8149321 | Ryu et al. | Apr 2012 | B2 |
8204372 | Toor et al. | Jun 2012 | B2 |
8248523 | Chua et al. | Aug 2012 | B2 |
20010028513 | Takanashi et al. | Oct 2001 | A1 |
20020012066 | Nagai | Jan 2002 | A1 |
20020018140 | Suemoto et al. | Feb 2002 | A1 |
20020102946 | SanGiovanni | Aug 2002 | A1 |
20020136556 | Nomura et al. | Sep 2002 | A1 |
20020142798 | Miyake | Oct 2002 | A1 |
20020144369 | Biggs et al. | Oct 2002 | A1 |
20030012573 | Sekizawa et al. | Jan 2003 | A1 |
20030016452 | Sayag | Jan 2003 | A1 |
20030043477 | Saitoh | Mar 2003 | A1 |
20030137595 | Takachi | Jul 2003 | A1 |
20030137747 | Ting | Jul 2003 | A1 |
20030174419 | Kindler et al. | Sep 2003 | A1 |
20040017501 | Asaga et al. | Jan 2004 | A1 |
20040042780 | Kindaichi et al. | Mar 2004 | A1 |
20040042785 | Watanabe et al. | Mar 2004 | A1 |
20040042786 | Watanabe et al. | Mar 2004 | A1 |
20040056970 | Westerweck et al. | Mar 2004 | A1 |
20040056974 | Kitajima et al. | Mar 2004 | A1 |
20040057720 | Westerweck et al. | Mar 2004 | A1 |
20040095657 | Takanashi et al. | May 2004 | A1 |
20040125225 | Noguchi | Jul 2004 | A1 |
20040165877 | Hsiao | Aug 2004 | A1 |
20040189862 | Gustavsson et al. | Sep 2004 | A1 |
20040201773 | Ostergard | Oct 2004 | A1 |
20040203532 | Mizuta | Oct 2004 | A1 |
20040212719 | Ikeda | Oct 2004 | A1 |
20040223068 | Kamo | Nov 2004 | A1 |
20040223072 | Maeda et al. | Nov 2004 | A1 |
20040258405 | Shiratori et al. | Dec 2004 | A1 |
20040263999 | Chan et al. | Dec 2004 | A1 |
20050014538 | Hyun et al. | Jan 2005 | A1 |
20050040510 | Hashimoto | Feb 2005 | A1 |
20050063695 | Kameyama | Mar 2005 | A1 |
20050063698 | Usuda et al. | Mar 2005 | A1 |
20050129384 | Nishida et al. | Jun 2005 | A1 |
20050157195 | Ohashi et al. | Jul 2005 | A1 |
20050162534 | Higashiyama et al. | Jul 2005 | A1 |
20050185088 | Kale et al. | Aug 2005 | A1 |
20050190283 | Ish-Shalom et al. | Sep 2005 | A1 |
20050219398 | Sato et al. | Oct 2005 | A1 |
20050219399 | Sato et al. | Oct 2005 | A1 |
20050248684 | Machida | Nov 2005 | A1 |
20050264670 | Yamaguchi et al. | Dec 2005 | A1 |
20050285973 | Singh et al. | Dec 2005 | A1 |
20050286352 | Inui | Dec 2005 | A1 |
20060043513 | Kim | Mar 2006 | A1 |
20060049720 | Henderson et al. | Mar 2006 | A1 |
20060056389 | Monk et al. | Mar 2006 | A1 |
20060066959 | Koga et al. | Mar 2006 | A1 |
20060083503 | Fukai | Apr 2006 | A1 |
20060087017 | Chao et al. | Apr 2006 | A1 |
20060087018 | Chao et al. | Apr 2006 | A1 |
20060098969 | Asai et al. | May 2006 | A1 |
20060103754 | Wenstrand et al. | May 2006 | A1 |
20060103953 | Lee et al. | May 2006 | A1 |
20060109367 | Hirooka | May 2006 | A1 |
20060113867 | Sakatani et al. | Jun 2006 | A1 |
20060124746 | Kim et al. | Jun 2006 | A1 |
20060127085 | Matsuki et al. | Jun 2006 | A1 |
20060132644 | Shangguan et al. | Jun 2006 | A1 |
20060170811 | Joung | Aug 2006 | A1 |
20060181748 | Makii et al. | Aug 2006 | A1 |
20060192885 | Calvet et al. | Aug 2006 | A1 |
20060193064 | Kim | Aug 2006 | A1 |
20060209205 | Tsai | Sep 2006 | A1 |
20060215053 | Kinoshita | Sep 2006 | A1 |
20060216014 | Morinaga et al. | Sep 2006 | A1 |
20060223216 | Chang et al. | Oct 2006 | A1 |
20060243884 | Onodera et al. | Nov 2006 | A1 |
20060251414 | Nishizawa | Nov 2006 | A1 |
20060257131 | Yoon et al. | Nov 2006 | A1 |
20060261257 | Hwang | Nov 2006 | A1 |
20060291061 | Iyama et al. | Dec 2006 | A1 |
20070008631 | Webster et al. | Jan 2007 | A1 |
20070009246 | Lee | Jan 2007 | A1 |
20070018043 | Lamoree et al. | Jan 2007 | A1 |
20070025715 | Lin | Feb 2007 | A1 |
20070052050 | Dierickx | Mar 2007 | A1 |
20070053672 | Westerweck et al. | Mar 2007 | A1 |
20070074966 | Yamamoto et al. | Apr 2007 | A1 |
20070077051 | Toor et al. | Apr 2007 | A1 |
20070077052 | Chang | Apr 2007 | A1 |
20070086777 | Fujita | Apr 2007 | A1 |
20070091198 | Watanabe et al. | Apr 2007 | A1 |
20070108847 | Chang | May 2007 | A1 |
20070122146 | Ryu | May 2007 | A1 |
20070146489 | Kosako et al. | Jun 2007 | A1 |
20070147195 | Moringa | Jun 2007 | A1 |
20070154198 | Oh et al. | Jul 2007 | A1 |
20070201866 | Kihara | Aug 2007 | A1 |
20070217786 | Cho et al. | Sep 2007 | A1 |
20070258006 | Olsen et al. | Nov 2007 | A1 |
20070275505 | Wolterink et al. | Nov 2007 | A1 |
20070280667 | Shin | Dec 2007 | A1 |
20080143864 | Yamaguchi et al. | Jun 2008 | A1 |
20080170141 | Tam et al. | Jul 2008 | A1 |
20090015706 | Singh | Jan 2009 | A1 |
20100053423 | Singh | Mar 2010 | A1 |
20100325883 | Westerweck et al. | Dec 2010 | A1 |
20110052183 | Westerweck | Mar 2011 | A1 |
20110228154 | Westerweck et al. | Sep 2011 | A1 |
20110292526 | Westerweck et al. | Dec 2011 | A1 |
20120106939 | Toor et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1324012 | Nov 2001 | CN |
1517735 | Aug 2004 | CN |
1846166 | Oct 2006 | CN |
200 17 490 | Dec 2000 | DE |
10346374 | Apr 2005 | DE |
59176710 | Jun 1984 | EP |
11052210 | Feb 1999 | EP |
1 148 406 | Oct 2001 | EP |
1 148 406 | Oct 2001 | EP |
1288694 | Mar 2003 | EP |
1 357 726 | Oct 2003 | EP |
1357726 | Oct 2003 | EP |
1 441 509 | Jul 2004 | EP |
1378515 | Dec 1974 | GB |
2 315 186 | Jan 1998 | GB |
2 387 063 | Jan 2003 | GB |
59-176710 | Jun 1984 | JP |
02-019106 | Feb 1990 | JP |
2-123335 | May 1990 | JP |
06-160699 | Jun 1994 | JP |
H07 (1995)-181389 | Jul 1995 | JP |
09-113787 | May 1997 | JP |
11-052210 | Feb 1999 | JP |
11-72678 | Mar 1999 | JP |
2001-292365 | Oct 2001 | JP |
2001-333332 | Nov 2001 | JP |
2002-098878 | Apr 2002 | JP |
2002-169076 | Jun 2002 | JP |
2002-286987 | Oct 2002 | JP |
2003-337279 | Nov 2003 | JP |
2004-282778 | Jul 2004 | JP |
2004-325764 | Nov 2004 | JP |
2005-107084 | Apr 2005 | JP |
2005-148109 | Jun 2005 | JP |
2005-157290 | Jun 2005 | JP |
2005-189414 | Jul 2005 | JP |
2005-266129 | Sep 2005 | JP |
2005-340539 | Dec 2005 | JP |
2005-539276 | Dec 2005 | JP |
2006-53232 | Feb 2006 | JP |
2006-154319 | Jun 2006 | JP |
2006-039480 | Sep 2006 | JP |
2006-276897 | Oct 2006 | JP |
2007-108534 | Apr 2007 | JP |
10 2007 0073017 | Jul 2007 | KR |
I 221 207 | Sep 2004 | TW |
236573 | Jul 2005 | TW |
0006973 | Feb 2000 | WO |
WO 2004027880 | Apr 2004 | WO |
WO 2006025698 | Mar 2006 | WO |
WO 2006093377 | Sep 2006 | WO |
WO 2012161802 | Nov 2012 | WO |
Entry |
---|
3rd foreign office action, date of notification: Dec. 7, 2011, Application No. 200880023704.3, 6 pages. |
Office action dated Apr. 23, 2012, U.S. Appl. No. 13/214,696, filed Aug. 22, 2011, 28 pages. |
“High Precision Optical Assembly Starts Here”, 4 pages, Jan. 1996, Opto-Alignment Technology, Inc. |
Shin et al.; Fabrication of Phone-Camera Module Using Wafer-Scale UV Embossing Process; Sensors, Cameras, and Systems for Scientific/Industrial Applications VII, edited by Morley M. Burke; Proc. Of SPIE-IS&T Electronic Imaging; SPIE vol. 6068, 60680Q, © 2006 SPIE-IS&T. |
U.S. Appl. No. 11/242,646, Office Action dated Jan. 30, 2008. |
U.S. Appl. No. 11/242,646, Notice of Allowance dated Aug. 21, 2008. |
U.S. Appl. No. 11/242,646, Supplemental Notice of Allowance dated Sep. 24, 2008. |
PCT Application No. PCT/US2006/035660, International Search Report and Written Opinion dated May 22, 2007. |
PCT Application No. PCT/US2006/035660, International Preliminary Report on Patentability dated Apr. 17, 2008. |
EP Application No. 06803508.8, Extended European Search Report dated Jun. 25, 2010. |
EP Application No. 06803508.8, Office Action dated Jul. 13, 2010. |
EP Application No. 06 803 508.8 Notice of Allowance dated Nov. 16, 2012. |
JP Application No. 2008-533403, Office Action dated Jul. 25, 2011 (English translation). |
JP Application No. 2008-533403, Office Action dated Apr. 2, 2012 (English translation). |
JP Application No. 2008-533403, Office Action dated Jan. 7, 2013 (English translation). |
TW Application No. 095134310, Office Action dated Nov. 4, 2008 (English translation). |
TW Application No. 095134310, Office Action dated Jun. 23, 2009 (English translation). |
TW Application No. 095134310, Notice of Allowance dated Dec. 16, 2009 (English translation). |
U.S. Appl. No. 12/317,295, Office Action dated Jul. 17, 2009. |
U.S. Appl. No. 12/317,295, Office Action dated Feb. 22, 2010. |
U.S. Appl. No. 12/317,295, Notice of Allowance dated Sep. 9, 2010. |
U.S. Appl. No. 12/317,295, Petition Granted Notice dated Oct. 25, 2010. |
U.S. Appl. No. 12/930,799, Office Action dated Sep. 7, 2011. |
U.S. Appl. No. 12/930,799, Office Action dated Nov. 28, 2011. |
U.S. Appl. No. 12/930,799, Notice of Allowance dated Jan. 20, 2012. |
U.S. Appl. No. 13/232,722, Office Action dated Feb. 17, 2012. |
U.S. Appl. No. 13/232,722, Office Action dated May 29, 2012. |
U.S. Appl. No. 13/232,722, Office Action dated Sep. 7, 2012. |
U.S. Appl. No. 11/228,010, Office Action dated Aug. 2, 2007. |
U.S. Appl. No. 11/228,010, Office Action dated Apr. 23, 2008. |
U.S. Appl. No. 11/228,010, Interview Summary dated Oct. 14, 2008. |
U.S. Appl. No. 11/228,010, Office Action dated Jan. 7, 2009. |
U.S. Appl. No. 11/228,010, Notice of Allowance dated Nov. 3, 2009. |
U.S. Appl. No. 11/228,010, Supplemental Notice of Allowance dated Feb. 5, 2010. |
PCT Application No. PCT/US2006/035852, International Search Report and Written Opinion dated Sep. 13, 2007. |
PCT Application No. PCT/US2006/035852, International Preliminary Report on Patentability dated Mar. 27, 2008. |
CN Application No. 200680040738.4, Office Action dated Oct. 30, 2009 (English translation). |
CN Application No. 200680040738.4, Office Action dated Aug. 4, 2010 (English translation). |
CN Application No. 200680040738.4, Office Action dated Dec. 16, 2011 (English translation). |
CN Application No. 200680040738.4, Office Action dated Apr. 24, 2012 (English translation). |
EP Application No. 06 803 604.5, Restriction Requirement dated May 26, 2010. |
EP Application No. 06 803 604.5, European Search Report dated Sep. 6, 2010. |
EP Application No. 06 803 604.5, Office Action dated Sep. 23, 2010. |
EP Application No. 06 803 604.5, Notice of Allowance dated Feb. 6, 2013. |
TW Application No. 095130828, Office Action dated Nov. 26, 2009 (English translation). |
TW Application No. 095130828, Office Action dated Oct. 28, 2010 (English translation). |
TW Application No. 095130828, Notice of Allowance dated Feb. 16, 2012 (English translation). |
U.S. Appl. No. 11/982,726, Restriction Requirement dated Jan. 11, 2010. |
U.S. Appl. No. 11/982,726, Office Action dated Apr. 20, 2010. |
U.S. Appl. No. 11/982,726, Notice of Allowance dated Nov. 15, 2010. |
U.S. Appl. No. 11/982,726, Notice of Allowance dated Mar. 8, 2011. |
PCT Application No. PCT/US2007/023335, ISR and WO dated Mar. 12, 2008. |
PCT Application No. PCT/US2007/023335, IPRP dated May 14, 2009. |
CN Application No. 200780040705.4, Office Action dated Jun. 11, 2010 (English translation). |
CN Application No. 200780040705.4, Notice of Allowance dated Jan. 7, 2011 (English translation). |
CN Application No. 201110063877.1, Office Action dated Mar. 28, 2012 (English translation). |
CN Application No. 201110063877.1, Office Action dated Dec. 5, 2012 (English translation). |
JP Application No. 2009-535535, Office Action dated Nov. 7, 2011 (English translation). |
JP Application No. 2009-535535, Office Action dated May 21, 2012 (English translation). |
U.S. Appl. No. 11/982,846, Office Action dated Dec. 15, 2009. |
U.S. Appl. No. 11/982,846, Notice of Allowance dated Apr. 7, 2010. |
PCT/US2007/023388, International Search Report and Written Opinion dated Mar. 12, 2008. |
PCT Application No. PCT/US2007/023388, International Preliminary Report on Patentability dated May 14, 2009. |
CN Application No. 200780041066.3, Office Action dated Jan. 26, 2011 (English translation). |
JP Application No. 2009-535360, Office Action dated Jun. 13, 2012 (English translation). |
JP Application No. 2009-535360, Notice of Allowance dated Oct. 3, 2012 (English translation). |
U.S. Appl. No. 12/150,119, Office Action dated Dec. 16, 2010. |
U.S. Appl. No. 12/150,119, Office Action dated Sep. 28, 2011. |
U.S. Appl. No. 12/150,119, Office Action dated Apr. 30, 2012. |
PCT Application No. PCT/US2008/005298, International Search Report and Written Opinion dated Sep. 2, 2008. |
PCT Application No. PCT/US2008/005298, International Preliminary Report on Patentability dated Nov. 5, 2009. |
CN Application No. 2008-80021357.0, Office Action dated Mar. 9, 2011 (English translation). |
CN Application Serial No. 200880021357.0, Office Action dated Mar. 30, 2012 (English translation). |
CN Application Serial No. 200880021357.0, Office Action dated Dec. 21, 2012 (English translation). |
JP Application Serial No. 2010-506259, Office Action dated Oct. 17, 2011 (English translation). |
JP Application Serial No. 2010-506259, Office Action dated Jun. 11, 2012 (English translation). |
U.S. Appl. No. 12/150,118, Office Action dated Dec. 20, 2010. |
U.S. Appl. No. 12/150,118, Office Action dated Oct. 11, 2011. |
U.S. Appl. No. 12/150,118, Office Action dated May 24, 2012. |
U.S. Appl. No. 12/150,118, Notice of Allowance dated Dec. 14, 2012. |
PCT Application No. PCT/US2008/005289, ISR and WO dated Sep. 2, 2008. |
PCT Application No. PCT/US2008/005289, IPRP dated Nov. 5, 2009. |
CN Application No. 2008-80021337.3, OA dated Feb. 28, 2011 (English translation). |
JP Application Serial No. 2010-506257, OA dated Oct. 17, 2011 (English translation). |
JP Application Serial No. 2010-506257, Office Action dated Sep. 6, 2012 (English translation). |
U.S. Appl. No. 12/590,325, Office Action dated Dec. 7, 2011. |
U.S. Appl. No. 12/590,325, Notice of Allowance dated May 23, 2012. |
PCT App. No. PCT/US2010/002913, International Search Report and Written Opinion dated Jan. 5, 2011. |
PCT App. No. PCT/US2010/002913, International Preliminary Report on Patentability dated Jan. 13, 2012. |
PCT Application No. PCT/US2012/026585, International Search Report dated Dec. 26, 2012. |
U.S. Appl. No. 11/980,021, Notice of Allowance, dated Sep. 2, 2010. |
PCT App. No. PCT/US08/008708, International Search Report & Written Opinion dated Dec. 10, 2008. |
PCT App. No. PCT/US08/008708, International Preliminary Report on Patentability dated Jan. 19, 2010. |
CN Application No. 2008/0023704.3, Office Action dated Jan. 26, 2011 (English translation). |
CN Application No. 2008/0023704.3, Office Action dated Jun. 30, 2011 (English translation). |
CN Application No. 2008/0023704.3, Office Action dated Jul. 24, 2012 (English translation). |
JP Application No. 2010-517011, Office Action dated Dec. 6, 2011 (English translation). |
JP Application No. 2010-517011, Office Action dated Oct. 30, 2012 (English translation). |
U.S. Appl. No. 12/873,995, Office Action dated Mar. 27, 2012. |
U.S. Appl. No. 12/873,995, Office Action dated Jul. 18, 2012. |
U.S. Appl. No. 12/873,995, Advisory Action dated Sep. 7, 2012. |
EP Application No. 06803508.8, Supplemental Intention to Grant Patent dated May 21, 2013. |
EP Application No. 13 163 397.6, European Search Report dated Jun. 3, 2013. |
CN Application No. 201110063877.1, Notice of Allowance dated Jun. 6, 2013 (English translation). |
JP Application No. 2012-039255, Office Action dated Jun. 5, 2013 (English translation). |
U.S. Appl. No. 13/232,722, Notice of Allowance dated Jun. 28, 2013. |
U.S. Appl. No. 12/150,118, Supplemental Notice of Allowance dated Jun. 13, 2013. |
U.S. Appl. No. 12/873,995, Office Action dated May 31, 2013. |
U.S. Appl. No. 13/149,638, Restriction Requirement dated Jun. 19, 2013. |
Number | Date | Country | |
---|---|---|---|
20120230664 A1 | Sep 2012 | US |