Autoinjector apparatus

Information

  • Patent Grant
  • 11419990
  • Patent Number
    11,419,990
  • Date Filed
    Thursday, March 5, 2020
    4 years ago
  • Date Issued
    Tuesday, August 23, 2022
    a year ago
Abstract
An autoinjector apparatus is disclosed which comprises a single-use cassette and an autoinjector. The cassette comprises a housing and a sleeve movably disposed in the housing. A syringe may be disposed in the sleeve and secured therein with a lock cap. The lock cap is affixed to a distal end of the sleeve and contacts the distal end of the syringe. A shield remover extends through an opening in a proximal end of the housing for removing a needle shield which covers a needle of the syringe. A cassette identification arrangement is provided on a surface of the housing to enable the autoinjector to identify the cassette. The autoinjector is provided with a detector for reading the cassette identification arrangement.
Description
FIELD

The present disclosure relates to an autoinjector apparatus. More particularly, the present disclosure relates to an autoinjector apparatus having a reusable autoinjector and a single-use cassette useable with the autoinjector, which conceals the injection needle of a hypodermic syringe before and after an injection.


BACKGROUND

Pre-filled hypodermic syringes provide several advantages for the home-use market. These advantages include that pre-filled syringes may be prepared for each medicament with exactly the required dosage. Further, they are easily operated, by merely advancing the stopper of the syringe. Aside from the costs of the particular medication used, pre-filled syringes are also economically manufactured. Consequently, all these advantages make pre-filled syringes commercially appealing.


Nevertheless, pre-filled syringes also have a significant drawback in the marketplace. Specifically, many users are either frightened by an exposed needle or feel they are inherently incapable of performing an injection. Because of aversions to exposed needles, as well as health and safety issues that may be involved, various types of injectors and other devices have been developed for the specific purpose of concealing needles from the user and automating the injection task to assist the user in performing the injection.


In order to inject a fluid medicament into a patient when using a hypodermic syringe, generally three separate and distinct tasks must be performed. These are: 1) insertion of the needle into the patient; 2) injection of the fluid medicament from the syringe into the patient; and 3) withdrawal of the needle after the injection has been completed. For each task, the magnitude and direction of forces on the syringe, as well as the location of their application, are different from the other tasks. For instance, compare the task of inserting the needle, with the task of injecting the fluid medicament. Insertion of the needle requires that only minimal forces be applied on the syringe, and that they be applied for only a very short period of time. On the other hand, injection of the medicament requires a much greater force be applied. Further, this force must be applied on the plunger of the syringe for what will typically be a relatively longer period of time. In comparison with both of these tasks, needle withdrawal requires the application of a force in the opposite direction. These, and other similar considerations, become important when the injection process is to be automated.


Springs for generating forces on a syringe in an automated process have been used heretofore for various purposes. A characteristic of springs, however, is that the magnitude and direction of a spring force are not variable. Consequently, springs do not lend themselves to multi-tasking operations. This limitation is particularly notable in a syringe injection, which requires precise control of sequential forces of different magnitude (needle insertion and medicament injection). This limitation can be particularly problematic where it may be desirable to use the same device, at different times, to inject different medications with different fluid viscosities.


In addition to these mechanical considerations, the design of an autoinjector requires user-friendly considerations. In particular, it is desirable that the injection needle of a syringe be operationally concealed from the view of a user. Preferably, this concealment is maintained before, during and after an injection procedure. Further, it is desirable that operation of the syringe be limited to only those times when the syringe is properly positioned for an injection.


Accordingly, an improved autoinjector apparatus is needed.


SUMMARY

The present disclosure relates to a single-use cassette for use with an autoinjector. The cassette comprises: a housing; an inner sleeve disposed in the housing and movable between first and second positions, wherein the inner sleeve is capable of having a syringe disposed therein; and a lock cap for securing the syringe in the inner sleeve, the lock cap affixed to a distal end of the inner sleeve and capable of contact with the distal end of the syringe.


In one embodiment of the cassette, the lock cap comprises an elastomeric bumper that is capable of contact with the distal end of the syringe.


In one embodiment of the cassette, the inner sleeve comprises at least one receptacle at the distal end thereof and the lock cap comprises at least one arm member inserted into the receptacle.


In one embodiment of the cassette, the at least one arm member of the lock cap comprises a barb arrangement for gripping an inner surface of the receptacle of the inner sleeve.


In one embodiment of the cassette, the cassette further comprises a syringe having a barrel and an injection needle disposed in the inner sleeve.


In one embodiment of the cassette, the cassette further comprises a shield remover extending through an opening in a proximal end of the housing for removing a needle shield from the syringe.


In one embodiment of the cassette, the shield remover comprises a spring-biased tab, the tab disposed within an aperture defined in a wall of the housing.


In one embodiment of the cassette, the shield remover comprises an elongated body having a proximal end and a distal end, the distal end comprising at least one flexible tongue that expands outwardly when the shield remover is removed from the cassette to prevent the shield remover from being reinserted into the cassette.


In one embodiment of the cassette, the cassette further comprises a syringe having a barrel and an injection needle.


In one embodiment of the cassette, the cassette further comprises a therapeutic product in the syringe.


In one embodiment of the cassette, the therapeutic product is selected from the group consisting of Epogen®, Aranesp®, Enbrel® Neulasta®, Neupogen®, Nplate®, Vectibix®, Sensipar®, Xgeva® and Prolia®.


In one embodiment of the cassette, the therapeutic product is an antibody to IL-17 Receptor A.


In one embodiment of the cassette, the therapeutic product is an antagonist of angiopoietin-2 (e.g., AMG 36).


In one embodiment of the cassette, the therapeutic product is a TNF blocker or inhibitor.


In one embodiment of the cassette, the TNF blocker or inhibitor is etanercept.


In one embodiment of the cassette, the TNF blocker or inhibitor is adalimumab, certolizumab, golimumab or infliximab.


In one embodiment of the cassette, the cassette further comprises a cassette identification arrangement on a surface of the housing to enable the autoinjector to identify the cassette.


In one embodiment of the cassette, the cassette identification arrangement comprises at least one projection.


The present disclosure further relates to an apparatus for injection of a therapeutic product. The apparatus comprises: an autoinjector; and a single-use cassette for use with the injector, the cassette comprising: a housing; an inner sleeve disposed in the housing and movable between first and second positions; a syringe disposed in the inner sleeve; and a lock cap for securing the syringe in the inner sleeve, the lock cap affixed to a distal end of the inner sleeve and in contact with the distal end of the syringe.


In one embodiment of the apparatus, the lock cap comprises an elastomeric bumper that contacts the distal end of the syringe.


In one embodiment of the apparatus, the inner sleeve comprises at least one receptacle at the distal end thereof and the lock cap comprises at least one arm member inserted into the receptacle.


In one embodiment of the apparatus, the at least one arm member of the lock cap comprises a barb arrangement for gripping an inner surface of the receptacle of the inner sleeve.


In one embodiment of the apparatus, the cassette further comprises a shield remover extending through an opening in a proximal end of the housing for removing a needle shield from the syringe.


In one embodiment of the apparatus, the shield remover comprises a spring-biased tab, the tab disposed within an aperture defined in a wall of the housing to prevent removal of the shield remover from the cassette.


In one embodiment of the apparatus, the autoinjector comprises a pin for pushing the tab out of the aperture defined in the wall of the housing when the cassette is placed in the injector to thereby allow the shield remover to be removed from the cassette.


In one embodiment of the apparatus, the shield remover comprises an elongated body having a proximal end and a distal end, the distal end comprising at least one flexible tongue that expands outwardly when the shield remover is removed from the cassette to prevent the shield remover from being reinserted into the cassette.


In one embodiment of the apparatus, the apparatus further comprises a therapeutic product in the syringe.


In one embodiment of the apparatus, the therapeutic product is selected from the group consisting of Epogen®, Aranesp®, Enbrel® Neulasta®, Neupogen®, Nplate®, Vectibix®, Sensipar®, Xgeva®, and Prolia®.


In one embodiment of the apparatus, the therapeutic product is an antibody to IL-17 Receptor A.


In one embodiment of the apparatus, the therapeutic product is an antagonist to angiopoietin-2 (e.g., AMG 386).


In one embodiment of the apparatus, the therapeutic product is a TNF blocker or inhibitor.


In one embodiment of the apparatus, the TNF blocker or inhibitor is etanercept.


In one embodiment of the apparatus, the TNF blocker or inhibitor is adalimumab, certolizumab, golimumab or infliximab.


In one embodiment of the apparatus, the cassette further comprising a cassette identification arrangement on a surface of the housing to enable the autoinjector to identify the cassette.


In one embodiment of the apparatus, the cassette identification arrangement comprises at least one projection.


In one embodiment of the apparatus, the autoinjector comprises a detector for reading the cassette identification arrangement to identify the cassette.


The present disclosure further relates to an apparatus for injection of a therapeutic product. The apparatus comprises: an autoinjector; and a single-use cassette for use with the injector, the cassette comprising: a housing; a sleeve disposed in the housing and movable between first and second positions; a syringe disposed in the sleeve; and a shield remover extending through an opening in a proximal end of the housing for removing a needle shield from the syringe.


The present disclosure further relates to a single-use cassette for use with an autoinjector. The cassette comprises: a housing; a sleeve disposed in the housing and movable between first and second positions, wherein the sleeve is capable of having a syringe disposed therein; and a shield remover extending through an opening in a proximal end of the housing for removing a needle shield from the syringe.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures show a preferred embodiment according to the present disclosure and are exemplary rather than limiting.



FIG. 1 is an elevational side view of an exemplary embodiment of an autoinjector apparatus 100 comprising an autoinjector 300 and a cassette 200.



FIG. 2A is an exploded perspective view of an exemplary embodiment of the cassette 200 comprising an outer housing 210; an inner sleeve 220; a syringe 260; a lock cap 230; a cover 250 and a shield remover 240.



FIG. 2B is a top down front perspective view of the cassette 200 illustrating a side wall 211 of the outer housing 210; a window 212 of the outer housing 210; a pin 215 of the outer housing 210; and the shield remover 240.



FIG. 2C is a sectional side view of the cassette 200 illustrating the syringe 260 which may comprise a barrel 261, a fluid chamber 262, a predetermined dose of a pharmaceutical product 267, an injection needle 265, an outwardly extending flange 263, a non-rigid protective needle shield 266, and a moveable plunger-stopper 264; and illustrating the shield remover 240 which may comprise a cantilever spring member 247 and a projection or tab 248.



FIG. 3A is a bottom up, front perspective view of the cassette 200 illustrating the cassette outer housing 210 which may comprise a bottom surface 210B with projections 210P.



FIG. 3B is a bottom view of the cassette of FIG. 3A illustrating the cassette outer housing 210; the projections 210P; the bottom surface 210B; a latch mechanism 218 which may comprise a pair of parallel extending, resilient locking arms 218a, 218b, and locking detent slots 219a and 219b; and an inner sleeve pin 268.



FIG. 4A is a rear perspective view of an exemplary embodiment of the shield remover 240 illustrating the cantilever spring member 247 and the projection or tab 248, wherein the shield remover 240 may comprise a hollow body 241; a closed end 242; an open end 243; a generally cylindrical portion 241T of the body 241; a generally rectangular key portion 241K of the body 241; an expandable partial collar structure 245 having a plurality of flexible, outwardly flared tongues 245T; an outwardly extending flange or gripping member 244 having parallel sides 244S and opposing ends 244E; a bottom wall 241W of the key portion 241K; and an inclined locking surface 248S of the projection or tab 248.



FIG. 4B is a sectional front perspective view of another exemplary embodiment of the shield remover 240 illustrating the gripping member 244; the closed end 242 of the body 241; the cantilever spring member 247; the projection or tab 248; the inclined locking surface 248S of the projection or tab 248; and the key portion 241K of the body 241, wherein the shield remover 240 may comprise a metal tubular insert 246 having needle shield gripping teeth 246T; and an interior surface 2411 of the cylindrical body portion 241T.



FIG. 4C is a sectional side view of another exemplary embodiment of the shield remover 240 illustrating the gripping member 244; the closed end 242 of the body 241; the cantilever spring member 247; the projection or tab 248; the inclined locking surface 248S of the projection or tab 248; the key portion 241K of the body 241; and the interior surface 2411 of the cylindrical body portion 241T, wherein the shield remover 240 alternatively comprises needle shield gripping teeth 246T′.



FIG. 4D is a bottom up rear perspective view of a portion of the cassette 200 of FIG. 2B illustrating the shield remover 240; the cassette outer housing 210; the projections 210P; the outer housing bottom surface 210B; the outer housing aperture 210A; and the shield remover projection or tab 248.



FIG. 4E is a bottom up front perspective view of a portion of the cassette 200 with the shield remover 240 removed from the cassette 200, illustrating the expandable partial collar structure 245 of the shield remover 240; aperture 214A of the cassette outer housing 210, the outer housing bottom wall 210B; and aperture 210A of the outer housing 210.



FIG. 4F is a sectional side view of a portion of the cassette 200 illustrating the inner sleeve 220; the outer housing 210; the outer housing end wall 214; the outer housing aperture 214A; the shield remover 240; the injection needle 265; the needle shield 266; the cantilever spring member 247; the projection or tab 248; the outer housing aperture 210A.



FIG. 4G is a sectional side view of the cassette 200 installed in the autoinjector 300 illustrating the shield remover 240; the tab 248 of the shield remover 240; the needle shield 265; the outer cassette housing 210; the outer housing bottom wall 210B; the aperture 210A of the outer cassette housing 210; a chassis 301 of the autoinjector 300 and a pin P provided by the chassis 301.



FIG. 4H is a sectional side view of the cassette 200 installed in the autoinjector 300 illustrating the shield remover 240; the needle shield 265; the outer cassette housing 210; the outer housing bottom wall 210B; and the aperture 210A of the outer cassette housing 210; the projections 210P; the detector 370; the chassis 301 of the autoinjector; and the pin P.



FIG. 5A is a front perspective view of an exemplary embodiment of the lock cap 230 which may comprise an annular body 231; an outer surface 2310; an inner surface 2311, opposing arms 232; cut-out members 233; a barbed ends 234; a soft elastomeric ring-shape bumper 235; and an opening 236.



FIG. 5B is a rear perspective view of a portion of an inner sleeve 220 of the cassette 200 illustrating the syringe 260; the inner sleeve 220; the lock cap 230; the lock cap annular body 231; the lock cap outer surface 2310; the lock cap opposing arms 232; the lock cap cut-out members 233; the lock cap soft elastomeric ring-shape bumper 235; the lock cap opening 236; the flange 263 of the prefilled syringe 260 and opposing receiving receptacles 220R of the inner sleeve 220.



FIG. 5C is a side view of a portion of the inner sleeve with 220 the syringe 260 inserted therein and locked in place with the lock cap 230, and illustrating the lock cap annular body 231; the lock cap outer surface 2310; the lock cap opposing arms 232; the lock cap cut-out members 233; the lock cap soft elastomeric ring-shape bumper 235; the flange 263 of the prefilled syringe 260 and opposing receiving receptacles 220R of the inner sleeve 220.



FIG. 5D is a front perspective view of a portion of the inner sleeve 220 and another embodiment of the lock cap numbered 230′ comprising an annular body 231; opposing arms 232; and a barb arrangement 234′.



FIG. 6A is a front elevational view of an exemplary embodiment of the autoinjector 300 which may comprise a casing 302, a handle section 304, a handle 305, a cassette receiving section 306, a cassette door 308, a user interface 312, a speaker aperture 314, a speed selector switch 316, and an end wall 318.



FIG. 6B is an elevational view of a first side of the autoinjector 300 of FIG. 6A illustrating the casing 302, the handle section 304, the handle 305, a soft grip area 305S, the cassette receiving section 306, the cassette door 308, a window 310A, the user interface 312, a settings/mute switch 315, the speed selector switch 316, and the end wall 318.



FIG. 6C is a rear elevational view of the autoinjector 300 of FIG. 6A illustrating the casing 302, the handle section 304, the handle 305, the soft grip area 305S, the cassette receiving section 306, windows 310A and 310B, and the end wall 318.



FIG. 6D is an elevational view of a second side of the autoinjector 300 of FIG. 6A illustrating the casing 302, the handle section 304, the handle 305, the soft grip area 305S, the cassette receiving section 306, the cassette door 308, a window 310B, the user interface 312, an eject button 317, the speed selector switch 316, and the end wall 318.



FIG. 6E is an elevational view of a first end of the autoinjector 300 of FIG. 6A illustrating the end wall 318, a target light 320, a cassette door aperture 308A, a skin sensor 380.



FIG. 6F is an elevational view of a second end of the autoinjector 300 of FIG. 6A illustrating a start button 307.



FIG. 7 is a state diagram illustrating the decision logic for controlling skin sensor 380 with the microprocessor 350 of the autoinjector 300, according to an embodiment of the present disclosure.



FIG. 8 is a sectional side view of the autoinjector apparatus 100 illustrating the autoinjector 300 and the cassette 200, wherein the autoinjector 300 may comprise the chassis 301, a casing 302, a motorized insertion drive 330, a motorized extrusion drive 340, a microprocessor 350, a battery 360; and wherein the cassette comprises the syringe 260.



FIG. 9A is a flow chart illustrating the decision logic for controlling the various functions of the autoinjector with the microprocessor, according to an exemplary embodiment of the present disclosure.



FIG. 9B is a flow chart illustrating the decision logic for controlling the various functions of the autoinjector with the microprocessor, according to an exemplary embodiment of the present disclosure.



FIG. 10A is a top down perspective side view of an exemplary embodiment of the motorized insertion drive 330 which may comprise an insertion drive motor 331, a drive link or rack 332, an insertion drive gear train 333 including a plurality of gears 3331, 3332, 3333, 3334, a top rack surface 332T, a bottom rack surface 332B, spaced-apart first and second protrusions, 3321 and 3322, and rack teeth 334.



FIG. 10B is a bottom up perspective view, of an exemplary embodiment of the motorized insertion drive 330 which may comprise an insertion drive motor 331, a drive link or rack 332, an insertion drive gear train 333 including a plurality of gears 3331, 3332, 3333, 3334, a top rack surface 332T, a bottom rack surface 332B, spaced-apart first and second protrusions, 3321 and 3322, and rack teeth 334.



FIG. 11A is an exploded perspective side view of a plunger rod 342, a lead screw 343, and a nut 345 of an exemplary embodiment of the motorized extrusion drive illustrating a pusher 342P of the plunger rod 342, an end face 342EF of the plunger rod 342, an internal screw thread 345T of the nut 345, an external screw thread 343T of the lead screw 343, and a holder 345H of the nut 345.



FIG. 11B is an assembled perspective side view of the plunger rod 342, the lead screw 343, and the nut 345 of FIG. 11B, illustrating the pusher 342P of the plunger rod 342, the end face 342EF of the plunger rod 342, the internal screw thread 345T of the nut 345, the external screw thread 343T of the lead screw 343, and the holder 345H of the nut 345.



FIG. 11C is a perspective view of a portion of the motorized extrusion drive 340, illustrating an extrusion drive motor 341, the plunger rod 342, the lead screw 343, an extrusion drive gear train 344, the pusher 342P, the nut 345, the external screw thread 343T of the lead screw 343, the holder 345H of the nut 345, and a plurality of gears 3441, 3442, 3443, 3444, 3445, 3446 of the extrusion drive gear train.



FIG. 12 is a front elevational view of an exemplary embodiment of the autoinjector 300 which illustrates progress LEDs 550 of the user interface 312.



FIG. 13 is a front elevational view of an exemplary embodiment of the autoinjector 300 which illustrates various exemplary icons displayed by the user interface 312.





DETAILED DESCRIPTION


FIG. 1 illustrates an elevational view of an exemplary embodiment of an autoinjector apparatus 100 according to the present disclosure. The autoinjector apparatus 100 comprises an autoinjector 300 and a cassette 200. The autoinjector 300 may comprise a cassette door 308, which in an open position, (as shown) allows insertion therein of the cassette 200, and which in a closed position (e.g., FIG. 6B), aligns the cassette 200 with insertion and extrusion drives 330 and 340, respectively (FIG. 8) of the autoinjector 300. The autoinjector 300 may be constructed and adapted for hand-held operation and be reusable. The cassette 200 may be constructed and adapted to house and protect a syringe 260 (e.g., FIG. 2A), which may be prefilled with a predetermined dose of a pharmaceutical product. The cassette 200 facilitates and enables easy use of the syringe with the autoinjector 300 and helps prevent needle sticks before and after use. Moreover, the cassette 200 may be constructed and adapted for single, disposable use.



FIG. 2A illustrates an exploded perspective view of an exemplary embodiment of the cassette 200, according to the present disclosure. The cassette 200 may comprise an outer housing 210, an inner sleeve 220 slidably moveable within the outer housing 210, a syringe 260 disposed within or held by the inner sleeve 220, and a shield remover 240 for removing a protective needle shield 266 of the syringe 260. The outer housing 210 may comprise a proximal end wall 214 and an open distal end 216. The proximal end wall 214 of the outer housing 210 may include an aperture 214A having a size and shape for receiving therethrough the shield remover 240. The inner sleeve 220 may comprise a proximal end wall 222 and an open distal end 224. The proximal end wall 222 of the inner sleeve 220 may include an aperture 222A having a size and shape for receiving therethrough the protective needle shield 266 of the syringe 260. The cassette 200 may further comprise a lock cap 230 for closing the open distal end 224 of the inner sleeve 220 and locking the syringe 260 within the inner sleeve 220. The cassette 200 may further comprise a cover 250 for closing the open distal end 216 of the outer housing 210. The cover 250 provides for tamper resistance by encasing the inner sleeve 220 and the syringe 260 containing a pharmaceutical product 267, within the outer housing 210 of the cassette 200, and also completes the cosmetic appearance of the cassette 200.



FIG. 2B illustrates a top down front perspective view of the cassette 200. The outer housing 210 of the cassette 200 may comprise an elongated opening or window 212 in each side wall 211 thereof. The windows 212 may be disposed opposite to and aligned with one another. Further, the inner sleeve 220 of the cassette 200 may be made from a transparent, rigid material, such as a clear polycarbonate. The windows 212 in the side walls 211 of the outer housing 210 in combination with the transparent inner sleeve 220, allow viewing of the syringe 260 housed within the inner sleeve 220 (FIG. 2C). The wall portions of the inner sleeve 220 viewable through the windows 212 of the outer housing 210 may comprise fill volume indicia (not shown). The outer housing 210 of the cassette 200 may also include a pin 215 or any other suitable mechanical structure that prevents the cassette 200 from being inserted into the cassette door 308 in the wrong direction and/or orientation. An “arrow” icon may be provided on the shield remover 240 or the outer housing 210 (not shown) to indicate the proper direction and orientation of cassette insertion into the cassette door 308.



FIG. 2C illustrates a sectional side view of the cassette 200. As can be seen, the inner sleeve 220 may comprise an inner sleeve pin 268, which may be engaged by an insertion drive 330 of the autoinjector 300 (FIG. 8) during the operation thereof. When driven by the insertion drive 330, the pin 268 moves the inner sleeve 220 within the outer housing 210 of the cassette 200. The inner sleeve 220 may be sized and shaped to receive the syringe 260 therein.


Referring still to FIG. 2C, the syringe 260 may comprise a barrel 261 that defines a fluid chamber 262. The fluid chamber 262 may be prefilled with a predetermined dose of a pharmaceutical product 267. The pharmaceutical product 267 may have a viscosity that depends on the temperature of the product 267. The syringe 260 may further comprise an injection needle 265 removably or fixedly disposed at a proximal end of the barrel 261, and an outwardly extending flange 263 disposed at a distal end of the barrel 261. The injection needle 265 may communicate with the fluid chamber 262 to allow dispensing of the predetermined dose of a pharmaceutical product 267 expelled from the fluid chamber 262 of the syringe barrel 261. The syringe 260 may further comprise a moveable plunger-stopper 264, disposed within the fluid chamber 262 of the barrel 260, for expelling the predetermined dose of the pharmaceutical product 267 from the chamber 261 so that it may be dispensed through the injection needle 265. The protective needle shield 266 mentioned earlier, covers the injection needle 265 and may be made of a non-rigid material. In one exemplary embodiment, the syringe 260 may comprise a standard 1-mL long glass syringe. The lock cap 230 closes the distal end 224 of the inner sleeve 220 and fixedly secures a proximal end 261P of the syringe barrel 261 against an inner edge surface formed at the junction of the interior surface of the proximal end wall 222 and the aperture 222A of the inner sleeve 220, so that the syringe 260 moves with the inner sleeve 220 as it travels within the outer housing 210, during the operation of the autoinjector 300.


Referring to FIGS. 3A and 3B, the outer housing 210 of the cassette 200 may comprise a cassette identification arrangement which provides information that identifies the cassette 200, e.g., information about the contents of the syringe 260 contained within the cassette 200 and/or other cassette/syringe characteristics. In one exemplary embodiment, the cassette identification arrangement may comprise one or more bumps or projections 210P provided on a bottom surface 210B of the outer housing 210 of the cassette 200. As illustrated in FIGS. 4G and 4H, the projection(s) 210P may be sensed by or engage a detector 370 in the autoinjector 300 when the cassette 200 is inserted into the door 308 of the autoinjector 300 and the door 308 is closed. The detector 370 may be electrically coupled to a microprocessor (e.g. microprocessor 350 illustrated in FIG. 8) contained within the autoinjector 300, which enables the autoinjector 300 to read the cassette identification arrangement to thereby identify the cassette 200. In one exemplary embodiment, a predetermined number of projections 210P may be located on the bottom surface 210B of the outer housing 210 in predetermined locations, and the detector 370 may comprise a key pad of plural keys (not shown). Certain ones of the plural keys may be actuated by the cassette projections 210P when the cassette 200 is installed in the autoinjector 300, depending upon the location and number of the projections 210P. Each key actuated by one of the projections 210P may provide information that allows the autoinjector 300 to identify the cassette 200. In some embodiments, the cassette identification arrangement identifies the drug delivery profile of the pharmaceutical product provided in the cassette 200. Therefore, upon insertion and recognition of a valid cassette and the information provided by cassette identification arrangement, available preset drug extrusion speed ranges commensurate with the drug delivery profile of the pharmaceutical product provided in the cassette 200 may be automatically registered by the autoinjector 300. Available speed ranges are dependent upon the syringe fill volume and pharmaceutical product characteristics, such as viscosity. For example, but not limitation, if the cassette identification arrangement comprises plural projections 210P, one projection may indicate a 1 mL fill and two projections may indicate a 0.5 mL fill and additional projections may be provided to identify the pharmaceutical product and/or characteristics.



FIG. 3B also illustrates a latch mechanism 218 that may be provided on the bottom wall 210B of the outer housing 210 of the cassette 200. The latch mechanism 218 may include a pair of parallel extending, resilient locking arms 218a, 218b. The locking arms 218a and 218b may each define a locking detent slot 219a and 219b, respectively. The pin 268 of the inner sleeve 220 may engage the detent slots 219a, 219b of the latch mechanism 218 when the syringe 260 is in a home position with the injection needle 265 of the syringe 260 concealed in the cassette 260 in a needle concealed position, thereby locking of latching the inner sleeve 220 into place within the outer housing 210 of the cassette 200. During an injection cycle, the insertion drive 330 of the autoinjector 300 (FIG. 8) may spread the resilient locking arms 218a, 218b apart to unlatch or release the inner sleeve pin 268 from the detent slots 219a, 219b of the latch mechanism 218, thereby allowing the unlatched inner sleeve 220 containing the syringe 260 to be freely moved by the insertion drive 330, which pushes on the inner sleeve pin 268 to move the inner sleeve 220 relative to the outer housing 210 from the home position, where the injection needle 265 is in the needle concealed position, to an injection position, where the injection needle 265 is in a needle extended position that allows it to penetrate the skin at the injection site. At the end of the injection, cycle, the insertion drive 330 pulls the inner sleeve pin 268 back into the detent slots 219a, 219b, thereby returning the inner sleeve 220 (which contains the syringe 260) to the home position, where the injection needle 265 is in the needle concealed position.


Cassettes of similar structure and operation are described in greater detail in the following patent applications, each of which is incorporated herein by reference in its entirety: US Publ. Nos. 2009/0292246 and 20100022955; and PCT Publ. No. WO 2009/143255.


The shield remover 240, illustrated in detail in FIGS. 4A-4F, grips the protective needle shield 266 covering the injection needle 265 of the syringe 260 (FIG. 2C) thereby allowing the shield remover 240 to be used for removing the needle shield 266. Further, the shield remover 240 engages the cassette 200 in a locking manner so that it can not be easily withdrawn from the cassette 200 unless the cassette 200 is properly installed in the autoinjector 300. This feature prevents the needle shield 266 from being inadvertently removed from the syringe 260 when, for example, the cassette is handled by the user. In addition, the presence of the shield remover 240 provides an indication that the cassette 200 has not been previously used or tampered with.


As illustrated in FIG. 4A, the shield remover 240 in one exemplary embodiment may comprise a hollow body 241 having a closed end 242 and an open end 243. The hollow body 241 may comprise a generally cylindrical portion 241T and a generally rectangular, key-like portion 241K extending outwardly from one side of the cylindrical portion 241T. The open end 243 of the cylindrical body portion 241T may define an expandable partial collar structure 245 formed, for example, by a plurality of flexible, outwardly flared tongues 245T. The cylindrical portion 241T of the body 241 may taper down toward the closed end 242 thereof. An outwardly extending flange that functions as a gripping member 244 may be defined at the closed end 242 of the cylindrical body portion 241T. The gripping member 244 may comprise flat, parallel sides 244S connecting rounded opposing ends 244E. The gripping member 244 allows users with manual dexterity issues to easily remove the needle shield 266 from the syringe 260, after the cassette 200 is properly installed in the autoinjector 300.


As illustrated in FIG. 4B, the shield remover 240 in some embodiments may comprise a metal tubular insert 246 frictionally engaged with an interior surface 2411 of the cylindrical body portion 241T of the body 241. The metal insert 246 may have a slit along its length (not visible) and may comprise two or more spaced-apart needle shield gripping teeth 246T projecting inwardly into the interior of the cylindrical body portion 241T and generally toward the closed end 242 thereof. In another exemplary embodiment, as shown in FIG. 4C, needle shield gripping teeth 246T′ may be formed on the interior surface 2411 of the cylindrical body portion 241T.


As illustrated in FIGS. 4A-4C, the key-like body portion 241K of the shield remover 240 prevents rotation of the shield remover 240 within the proximal end wall 214 of the outer housing 210 of the cassette 200. The key-like body portion 241K may comprise a bottom wall 241W that includes a locking structure formed by a cantilever spring member 247 and a downwardly extending projection or lock tab 248 provided at the free end of the spring member 247. The lock tab 248 may comprise an undercut formed by an inclined surface 248S that faces the closed end 242 of the cylindrical body portion 241T and defines an acute angle θ with the outer surface 2470 of the cantilever member 247.



FIG. 4F illustrates a sectional side view of a proximal portion of the cassette 200. As illustrated, the needle cover 266 of the syringe 260 may be disposed within the cylindrical body portion 241T (FIG. 4A) of the shield remover 240 such that the needle gripping teeth 246T (or teeth 246T′ illustrate in FIG. 4C) of the shield remover 240 grip the outer surface of the needle cover 266. The body 241 of the shield remover 240 may extend through the aperture 214A formed in the proximal end wall 214 of the outer housing 210 of the cassette 200, which locates the gripping member 244 of the shield remover 240 outside of the cassette 200. The locking structure of the shield remover 240, formed by the cantilever spring member 247 and lock tab, may be disposed within the marginal proximal portion of the outer cassette housing 210, such that it locks the shield remover 240 in place in the cassette 200, in a tamper-resistant manner. Locking may be facilitated by the cantilever spring member 247, which forces or biases the tab 248 into a lock aperture 210A (best illustrated in FIGS. 4D and 4E) that may be defined in the bottom surface 210B of the outer housing 210 of the cassette 200. The lock tab 248 engaged with the lock aperture 210A of the cassette outer housing 210, substantially prevents withdrawal of the shield remover 240 from the cassette 200, unless the cassette 200 is properly installed within the autoinjector 300. Because the shield remover 240 is attached to the needle shield 266 and locked within the cassette 200, the needle shield 266 may not be inadvertently removed from the syringe 260, prior to proper installation in the autoinjector 300. The presence of the shield remover 240 also provides an indication that the cassette 200 has not been previously used or tampered with.



FIG. 4G is a sectional side view illustrating the cassette 200 installed in the access door of the autoinjector (both not visible) prior to closing of the door, and FIG. 4H illustrates a sectional side view of the cassette 200 after the access door of the autoinjector (both not visible) has been closed. As illustrated in FIGS. 4G and 4H, the autoinjector 300 may include a chassis 301 (also see FIG. 8) for holding the cassette 200 within the autoinjector 300. The chassis 301 may include a pin P, and the cassette identification detector 370 described earlier. As illustrated in FIG. H, closure of the access door positions the cassette 200 in or on the chassis 301 of the autoinjector 300 so that the cassette identification projections 210P can be read by the detector 370, thereby allowing automatic identification of the cassette 200. In addition, the pin P presses the locking structure tab 248 of the shield remover 240 up, thereby overcoming the biasing force provided by the cantilever spring member 247. As the lock tab 248 moves up, it releases from the tab receiving aperture 210A in the bottom wall 210B of the outer cassette housing 210 (FIG. 4F), thereby unlocking the shield remover 240 from the outer housing 210 of the cassette 200. With the locking structure of the shield remover 240 unlocked, a user can now grasp the gripping member 244 of the shield remover 240 and withdraw it from the cassette 200 and the autoinjector 300, thereby removing the needle shield 266 and uncovering the injection needle 265.



FIG. 4E illustrates a bottom up, front perspective view of the proximal portion of the cassette 200 with the shield remover 240 removed from the cassette 200. As can be seen, once the shield remover 240 is removed, the tongues 245T of the expandable partial collar structure 245 expand or spread outwardly to prevent the shield remover 240 and the needle shield 266 attached thereto (not visible) from being re-inserted into the aperture 214A formed in the proximal end wall 214 of the cassette outer housing 210. The absence of the shield remover 240, therefore, provides an indication to the user that the cassette 200 has already been used or has been tampered with.


The lock cap 230, illustrated in FIGS. 5A-5C, locks the syringe 260 in the inner sleeve 220 with a predetermined force which may be set during assembly of the cassette 200. The lock cap 230 may comprise a generally flat, annular body 231 having outer and inner surfaces 2310 and 2311, and opposing arms 232 depending from the body 231, away from the inner surface 2311 thereof. Each of the arms 232 may comprise a cut-out member 233 with a barbed end 234. In some embodiments, the cut-out members 233 may be spring-like. The members 233 may extend outwardly from the arms 232 and toward the body 231. The body 231 can be made from a metal or rigid plastic material. A soft elastomeric ring-shape bumper 235 may be affixed to the inner surface 2311 of the body 231. The body 231 and bumper 235 may define an opening 236 which can be dimensioned to allow a plunger rod 343 actuated by a motorized extrusion drive 340 of the autoinjector 300 (FIG. 11C), to pass through the lock cap 230 and engage and move the plunger-stopper 264 through the fluid chamber 262 of the syringe barrel 261 during the operation of the autoinjector 300. The lock cap 230 may be dimensioned to receive the flange 263 of the syringe 260 between the opposing arms 232 thereof, in a slip-fit manner with the bumper 235 engaging a top surface 263T of the flange 263 as illustrated in FIGS. 5B and 5C. The arms 232 of the lock cap 230 may be inserted into opposing receiving receptacles 220R formed at a distal end of the inner sleeve 220 when the syringe 260 is assembled into the inner sleeve 220. The barbs 234 of the arms 232 grip the inner surfaces of the receiving receptacles 220R to lock the lock cap 230 into position, thereby lockingly holding the syringe 260 in the inner sleeve 220. The arms 232 of the lock cap 230 may be inserted into the receptacles 220R of the inner sleeve 220 a selected distance to limit the amount of force (to a predetermined value) applied to the syringe 260 during assembly into the cassette 200 and during usage.



FIG. 5D illustrates an alternate embodiment of the lock cap numbered 230′. The lock cap 230′ is similar to the lock cap 230 of FIGS. 5A-5C, but omits the cut-out members 233 and instead, provides a barb arrangement 234′ at the end of each arm 262.


Referring again to FIGS. 2A-2C, the cover 250 attaches to a distal end of the outer housing 210 of the cassette 200 to close a distal end of the cassette 200. The cover 250 may be a generally planar member having a shape which matches that of the distal end 216 of the outer housing 210. The cover 250 may comprise two or more locking arms 253 that extend from an inner surface 251 of the cover 250 and lockingly engage corresponding receptacles 255 extending through the side walls 211 of the outer housing 210. In addition, any detent structure or other suitable locking arrangement (not shown) formed in, on, or through the outer housing 210, adjacent to the distal end 216 thereof may be used for attaching the cover 250. The cover 250 may further comprise an opening 254 which axially aligns with the opening 236 defined by the lock cap 230. The opening 254 in the cover 250, like the opening 236 of the lock cap 230, may be dimensioned to allow the plunger rod 342 actuated by the motorized extrusion drive 340 of the autoinjector 300 (FIG. 8), to pass through the cover 250 and engage and move the plunger-stopper 264 through the fluid chamber 262 of the syringe barrel 261 during the operation of the autoinjector 300.


Referring now to FIGS. 6A-6F, the autoinjector 300 may comprise a casing 302 having a handle section 304 and a cassette receiving section 306 inline with the handle section 304. To aid patients with manual dexterity issues, the handle section 304 of the autoinjector casing 302 may define an ergonomically shaped handle 305 with a soft grip area 305S. The cassette receiving section 306 comprises the cassette door 308 (FIGS. 6B and 6D) described earlier. The cassette door receives the cassette 200 in an open position (FIG. 1) and aligns the cassette 200 with insertion and extrusion drives, and other structures and components of the autoinjector 300 in a closed position. The cassette door 308 may include a “cassette” icon that indicates the insertion entry point for the cassette 200. The cassette receiving section 306 of the casing 302 may comprise windows 310A, 310B on opposing sides thereof that align with the windows 212 (FIG. 2B) of the cassette 200 when the cassette door 308 is closed with the cassette 200 correctly installed therein. In one or more embodiments, the windows 310A, 310B may be double-layered. One or more lights (not shown) may be provided inside the casing 302 to evenly backlight illuminate the cassette windows 212 and the syringe 260 disposed within the inner sleeve 220 of the cassette 200, so that the user can observe the injection cycle through the windows 310A, 31 OB of the autoinjector 300, i.e., observe the initial and end positions of the plunger-stopper 264 of the syringe 260 during the syringe content (hereinafter “drug”) extrusion process, as well as syringe movements within the cassette 200.


Referring still to FIGS. 6A, 6B, 6D, and 6F, the autoinjector 300 may further comprise a user interface 312 and an audio speaker (not shown). The user interface 312 (best illustrated in FIG. 6A) may be located in the cassette receiving section 306 of the casing 302, and provides various visual indicators. The audio speaker may be disposed inside the casing 302 and provides various audible indicators. The audio speaker may audibly communicate with the external environment via a speaker aperture 314 formed in the casing 302 in the cassette receiving section 306. The visual and audible indicators generated by the user interface 312 and the audio speaker can tell the user when the autoinjector 300 is ready for use, the progress of the injection process, injection completion, the occurrence of any errors, and other information. The autoinjector 300 may further comprise one or more of a settings/mute switch 315, a speed selector switch 316, a start button 307, and an eject button 317. The settings/mute switch 315 (FIG. 6B) may be located in the cassette receiving section 306 of the casing 302. The mute switch 315 may be constructed and adapted allow the user to turn on and off all synthesized sounds, except error sounds, and to respond in real-time so that if the user begins the injection process and changes the mute switch to off, the sounds are immediately muted. The mute switch 315 may also be constructed and adapted to slide toward a “mute” icon to mute the audio speaker. A light indicator may be provided to confirm the “mute” state. The speed selector switch 316 (FIGS. 6A and 6B) may be located in the cassette receiving section 306 of the casing 302. The speed selector switch 316 may be constructed and adapted to allow the user to select among a plurality of preset drug delivery (extrusion) speeds to accommodate personal patient preference. The speed selector switch 316 may comprise a three switch positions. Other embodiments of the speed selector switch may comprise two switch positions, or 4 or more switch positions. In still other embodiments, the speed selector switch may be of the infinitely variable type. In some embodiments, changing the position of the switch 316 prior to injection changes the speed of drug extrusion during injection while changing the position of the speed selector switch 316 during injection, does not change the speed of the injection in real time. The autoinjector 300 may also be provided with one or more demo cassettes to allow the user to experiment with different speeds of drug delivery. The start button 307 at a free end of the handle 305. The button 307 may include an indentation 307T for optimizing thumb placement on the button 307. The button 307 may be made of a translucent material that allows a lighting effect to illuminate the button as signals. The eject button 317 (FIG. 6D) may be located in the cassette receiving section 306 of the casing 302. The eject button 317 may include an indentation 3171 for optimizing finger placement on the button 317. In some embodiments, the eject button 317 may be controlled by the microprocessor (e.g. microprocessor 350 illustrated in FIG. 8) of the autoinjector 300, which may be programmed to eliminate accidental inputs during the injection process.


Referring again to FIG. 6E, the cassette receiving section 306 of the casing 302 and the cassette door 308 may form a proximal end wall 318 of the autoinjector 300. The proximal end wall 318 may be configured as a broad, flat and stable base for easily positioning the autoinjector 300 on a support surface, after removal of the shield remover 240 or when the autoinjector 300 does not contain the cassette 240. The portion of the proximal end wall 318 formed by the cassette door 308 may include an aperture 308A that is sized and shaped to allow the shield remover 240 to be removed from the cassette 200 and withdrawn through the aperture 308A, when the cassette 200 is installed in the autoinjector 300. As soon as the shield remover 240 passes out through the aperture 308A, the tongues 245T of the expandable partial collar structure 245 expand or spread outwardly, thereby preventing the shield remover 240 and the needle shield 266 attached thereto from being re-inserted into the aperture 308A of the cassette door 308. The proximal end wall of the autoinjector 300 may further comprise a target light 320. The target light 320 may be constructed and adapted to turn on when the shield remover 240 is removed from the cassette 200 and withdrawn through the aperture 308A, thereby visually indicating that the shield remover 240 has been removed. Once turned on, the target light aids the user in visualizing and selecting an injection site.


Referring still to FIG. 6E, the autoinjector 300 may further comprise a capacitance-based skin sensor 380 (shown with broken lines). The skin sensor 380 determines when the proximal end wall 318 of the autoinjector 300 touches or contacts skin without the need to provide downward pressure on the injection-site area. The skin sensor 380 may also be constructed and adapted to inform the user through audible and visual indicators generated by the speaker and user interface, when skin contact is detected. In some embodiments, the skin sensor 380 may comprise two pads or electrodes (not shown) imbedded in the proximal end wall 318 of the autoinjector 300. When an electrode is touched, its capacitance signal increases. If the increase is sufficient as determined by the microprocessor (e.g. microprocessor 350 illustrated in FIG. 8), which is programmed with sensor decision logic, that electrode will become activated. To determine whether skin contact has been made, the microprocessor reads the capacitance of the electrodes. The microprocessor then processes the capacitance information to determine when the electrodes are both making proper contact with the skin.



FIG. 7 is a state diagram illustrating the decision logic for controlling skin sensor 380 with the microprocessor 350 of the autoinjector 300, according to an embodiment of the present disclosure. The process starts at 400 which represents a reset of the autoinjector. The logic then flows to state 402 which represents the initialization of the skin sensor after the reset of the autoinjector. Once initialized, the logic flows to state 404 which represents a “no-touch” state where none or only one of electrodes of the sensor touch skin. If both electrodes touch skin for less than a certain threshold time period (e.g., one second), the logic flows to state 406 which represents a “touching” state. If one or neither one of the electrodes touches skin, the logic flows back to state 404. If, however, both electrodes touch skin for a period of time equal to the threshold time period, the logic flows to state 408 which represents a “touch OK” state. If one electrode or no electrodes contact skin, the logic flows to a “releasing” state 410. If both electrodes touch skin, the logic flows back to “touch OK” state 408. If one or no electrodes contact skin for more than the threshold time period (e.g., more than one second), the logic flows back to “no touch” state 404.



FIG. 8 illustrates a sectional side view of the autoinjector apparatus 100. comprising the autoinjector 300 and the cassette 200 installed therein. The casing 302 of the autoinjector 300 may house a chassis 301 for receiving the cassette 200 that contains the syringe 260, a motorized insertion drive 330, a motorized extrusion drive 340, a microprocessor 350 (described earlier), a battery 360 for powering the drives 330, 340 and the microprocessor 350, and the skin sensor 380 (described earlier).


The microprocessor 350 may be programmed with certain instructions that executed by the microprocessor 350 enable it to control and monitor the various operations and functions of the autoinjector 300. For example, but not limitation, the microprocessor may be programmed with instructions for controlling the motorized insertion and extrusion drives 330, 340 such that it controls and monitors each step of the injection cycle and process flow, thereby automating needle insertion, drug extrusion, and needle retraction and ensuring accurate, consistent, and reliable operation of the autoinjector 300 and pharmaceutical product administration. The microprocessor may also be programmed with instructions for controlling the audible and visual feedbacks to the user. An automated power-on self-test checks the operation of the autoinjector 300 and remaining battery charge.



FIG. 9 is a flow chart illustrating the decision logic for controlling the various functions of the autoinjector 300 with the microprocessor 350, according to an exemplary embodiment of the present disclosure. The microprocessor logic of the autoinjector commences in block 500 with the autoinjector is in an “off, (cassette) door closed” state. If the user presses the eject button, the microprocessor may place the autoinjector in a “device startup” state in block 502 unless the microprocessor determines the following error conditions have occurred: 1) that the autoinjector is “out of life,” i.e., autoinjector usage has exceeded a predetermined time period (e.g., two (2) years), or has exceeded a predetermined number of injections (e.g., 130 injections); 2) an unrecoverable device error has occurred; 3) the autoinjector's battery is dead; 4) a defective cassette has been inserted into the autoinjector; or 5) the autoinjector is below a predetermined temperature. If any of the error conditions 1-3 have occurred, visual and audio error messages or alerts corresponding to blocks 504, 506, and 508 may be implemented by the microprocessor, e.g., the user interface may fast blink a “device failure” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds), and the audio speaker may generate a certain sound that indicates a device error. If the error condition 4 has occurred, visual and audio error messages or alerts corresponding to block 510 may be implemented by the microprocessor, e.g., the user interface may blink a “cassette failure” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds) and the audio speaker may generate the device error sound. The microprocessor may then open the cassette door after a predetermined time period (e.g., two (2) seconds) and place the autoinjector into a “door open, sleep B” state in block 546. If the cassette is removed and the cassette door is closed, the microprocessor may place the autoinjector in the “off, door closed” state of block 500. If the error condition 5 has occurred, visual and audio error messages or alerts corresponding to block 512 may be implemented by the microprocessor, e.g., the user interface may blink a “low temp” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds) and the speaker may generate the device error sound. The microprocessor may then place the autoinjector back in the “off, door closed” state of block 500.


Referring still to FIG. 9, if no errors conditions are detected, the microprocessor may place the autoinjector in the “device startup” state in block 502, where it may cause the LEDs of the user interface to remain off and no sound to be generated by the audio speaker. The microprocessor may then open the cassette door, which places the autoinjector into a “door open, sleep state A” in block 514. If a cassette is inserted and the cassette door closed, the microprocessor may cause the autoinjector to enter a “device visibly wakes up” state in block 516, where it turns on the backlight and generates sound with the audio speaker that indicates that the autoinjector is awake. If a bad cassette is detected by the microprocessor, it may generate visual and audible error alerts in block 518, e.g., the user interface may blink a “cassette failure” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds) and the audio speaker may generate the device error sound. The microprocessor may then open the cassette door after a predetermined time period (e.g., two (2) seconds) and place the autoinjector into the “door open, sleep B” state of block 546 so that the cassette can be removed. If the cassette door is subsequently closed, the microprocessor may place the autoinjector into the “off, door close” state of block 500. If the eject button is pressed, the microprocessor may place the autoinjector into the “door open, sleep A” state of block 514. Once the autoinjector is in the “device visibly wakes up” state of block 516, removal of the shield remover of the cassette may cause the microprocessor to place the autoinjector in a “cap off” state of block 522, wherein it turns on the target light and continues to keep the backlight on. If, however, the shield remover is not removed after the autoinjector has entered the “device visibly wakes up” state of block 516 within a predetermined time period (e.g., 60 seconds), the microprocessor may place the autoinjector in a “cassette in, sleep” state in block 520, where it turns off the LEDs and turns off the speaker (no sound). If the start or eject button is then pressed, the microprocessor may place the autoinjector back into the “device visibly wakes up” state of block 516. If, however, the shield remover is removed (after entering the “cassette in, sleep” state of block 520), the microprocessor may place the autoinjector in the “cap off” state of block 522, as previously described.


Referring still to FIG. 9, once the target light is turned on in the “cap off” state of block 522, touching the proximal end wall of the autoinjector to skin at the injection site so that the skin sensor senses contact with skin, may cause the microprocessor to may place the autoinjector into a “ready to inject” state in block 526, where it continuously illuminates the start button in a first predetermined color (e.g., green), turns on all progress LEDs 550 of the user interface (FIG. 12), generates a sound with the speaker that indicates that the injector is ready to start and injection cycle, turns off the target light, keeps on the backlight so that the user can view the progress of the injection in the syringe. If the skin sensor does not sense contact with skin within a predetermined time period (e.g., 60 seconds) after entering the “read to inject” state of block 526, the microprocessor may place the autoinjector in a “cap off sleep” state in block 524, where it turns off the progress LEDs 550 (FIG. 12) and the audio speaker. If the start or eject button is subsequently pressed, the microprocessor may place the autoinjector into the “cap off” state in block 522, as previously described. If, however, the start or eject button is subsequently pressed and the skin sensor senses contact with skin, the microprocessor may place the autoinjector in to the “ready to inject” state of block 526, as previously described. If the autoinjector is then lifted off the skin, the microprocessor may place the autoinjector back in the “cap on” state of block 522.


Referring again to FIG. 9, with the autoinjector in the “ready to inject” state of block 526, pressing the start button causes the microprocessor to place the autoinjector into an “injection start” state in block 528, where it changes the continuous illumination of start button to a second predetermined color (e.g., blue) and keeps the backlight and the progress LED on. If the microprocessor detects that the injection needle is not pushed into the skin, it may retract the needle and visually and audibly alert a needle jam in block 530, e.g., the user interface may blink “cassette fail” icon (FTG. 13) for a predetermined time period (e.g., 60 seconds) and the speaker may generate the error sound. The microprocessor may then open the cassette door after a predetermined time period and place the autoinjector in the “door open, sleep B” state of block 546. If, however, the injection needle pushes into the skin, and after a predetermine time period has elapsed (e.g., 0.5 seconds), the microprocessor may place the autoinjector in an “injection progress” state in block 532, where the start button may remain continuously illuminated in the second predetermined color and the backlight and the progress LED may remain on. If the plunger subsequently pushes a clogged cassette, the microprocessor may retract the injection needle and visibly and audibly signal in block 534 a plunger jam, i.e., the user interface may blink a “cassette fail” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds) and the speaker may generate the error sound. The microprocessor may then open the cassette door after a predetermined time period and place the autoinjector into the “door open, sleep B” state of block 546. If, instead, the autoinjector is lifted off the skin beyond an acceptable limit for a predetermined time period (e.g., 1 second), the microprocessor may retract the injection needle and visibly and audibly signal in block 536 an “off skin too long” alert, e.g., the user interface may blink a “cassette fail” icon (FIG. 13) for a predetermined time period (e.g., 60 seconds) and the speaker may generate the error sound.


Returning to block 532 of FIG. 9, as selected drug injection time period elapses the progress LEDs 550 (FIG. 12) may be sequentially turned off by the microprocessor to indicate the progression of the injection cycle. Once the injection cycle has completed, the microprocessor may retract the injection needle thereby placing the autoinjector into a “needle retraction” state in block 538, where it continuously illuminates the start button in the second predetermined color, maintains the backlight in the on state and maintains only one of the progress LEDs 550 (FIG. 12) in the on state. The microprocessor may then partially retract the plunger rod and fully retract the injection needle thereby placing the autoinjector in an “injection complete” state and indicate in block 540, where it may change the illumination color of the start button back to the first predetermined color, turn off the backlight and last progress LED 550 (FIG. 12), and generate a sound with the audio speaker that indicates that the injection is complete. If the autoinjector is removed from the skin for a predetermine time period (e.g., 5 second) elapses, the microprocessor may place the autoinjector in a “plunger retraction” state in block 542, and may terminate the illumination of the start button. The microprocessor may then retract the plunger rod and automatically open the cassette door in block 544 which places the autoinjector in the “door open, sleep B” state of block 546. Removal of the spent cassette can now be made and the cassette door closed, which places the autoinjector in the “off, door closed” state of block 500. If the microprocessor detects a low battery in the “automatic door open” state of block 544, (which may indicate that a certain number of injections remain, that a certain number of injections have been made, or that a certain number of days of usage has passed) the microprocessor may cause the autoinjector to visibly and audibly signal a “battery low” error alert by blinking the “low battery” icon (FIG. 13) with the user interface and generating the error sound with the audio speaker.


Referring again to FIG. 8, the motorized insertion drive 330 performs a needle insertion cycle and a needle retraction cycle. FIGS. 10A and 10B respectively illustrate a top down perspective side view and a bottom up perspective side view of an embodiment of the motorized insertion drive 330. The insertion drive 300 may comprise an insertion drive motor 331, a drive link or rack 332, and an insertion drive gear train 333 including a plurality of gears 3331, 3332, 3333, 3334, for transmitting the rotary motion of the insertion drive motor 331 to drive the rack 332. The rack 332 may include a top surface 332T and a bottom surface 332B. The top surface 332T of the rack 332 may include spaced-apart first and second protrusions, 3321 and 3322, respectively. The bottom surface 332B of the rack 332 may include rack teeth 334. The rack teeth 334 of the rack engage gear 3334 of the gear train 333. During a needle insertion cycle, the first protrusion 3321 of the rack 332 unlatches the inner sleeve pin 268 of the inner sleeve 220 of the cassette 200 from the latch 218 of the outer cassette housing 210 (FIG. 3B) and then engages and then pushes the inner sleeve pin 268 to drive the inner sleeve 220 containing the syringe 260 forward within the outer housing of the cassette 200 from the home position to the needle extended position where the injection needle 265 of the syringe 260 extends out from the cassette 200 and is inserted into the skin at the injection site. During a needle retraction cycle, the second protrusion 3322 of the rack 332 engages and then pulls the inner sleeve pin 268 to drive the inner sleeve 220 containing the syringe 260 backward within the outer housing of the cassette 200 into the home position again, thereby withdrawing the injection needle 265 of the syringe 260 from the skin at the injection site and retracting it back into the cassette 200 (after drug extrusion) where the needle is shielded and locked within the cassette 200 for safe handling and disposal. The needle insertion positioning and timing are monitored and controlled by the microprocessor 350 of the autoinjector. If an error occurs, the error will be indicated on the user interface 312 (FIG. 6A) along with audible alert from the speaker. The insertion drive 330 enables the autoinjector apparatus 100 to deliver the pharmaceutical product subcutaneously (SC) with a predetermined needle injection depth. This needle-depth parameter is accomplished when the insertion drive 330 moves the inner sleeve 220/syringe 260 forward to a mechanical hard stop within the outer housing 210 of the cassette 200. The mechanical hard stop limits the travel of the syringe 260 in the direction of the patient's skin, ensuring needle depth to the desired predetermined specification. Monitoring the movement of the motor 331 enables detection of incomplete needle insertion, which will trigger needle retraction and termination of the injection cycle, accompanied by audible and visual alerts.


The motorized extrusion drive 340 illustrated in FIG. 8, performs the drug extrusion cycle where the pharmaceutical product is emptied from the syringe 260. FIGS. 11A-11B are perspective side views illustrating an embodiment of the motorized extrusion drive 340. FIG. 11A illustrates an exploded perspective side view of an embodiment of a plunger rod/drive screw arrangement of the motorized extrusion drive 340. FTGS. 11B illustrates an assembled perspective side view of the plunger rod/drive screw arrangement illustrated in FIG. 11A. FIG. 11C illustrates a perspective view of an embodiment of a gear train of the motorized insertion drive 330. The extrusion drive 340 may comprise an extrusion drive motor 341, a plunger rod 342, a lead screw 343, and an extrusion drive gear train 344. The plunger rod 342 is driven by the extrusion drive motor 341 through the lead screw 343 and the extrusion drive gear train 344. As illustrated in FIGS. 11A and B, the plunger rod 342 may include a pusher 342P and the lead screw 343 may include a nut 345. The nut 345 mechanically couples the plunger rod 342 to the lead screw 343. The nut 345 may include an internal screw thread 345T that threadedly engages an external screw thread 343T of the lead screw 343. The nut 35 may also include a holder 345H that fixedly holds the pusher 342P of the plunger rod 342. As illustrated in FIG. 11C, the extrusion drive gear train 344 may include a plurality of gears 3441, 3442, 3443, 3444, 3445, 3446. The gears 3441 and 3446 of the extrusion drive gear train 344 are coupled to the extrusion drive motor 341 and the lead screw 343, respectively, thereby allowing the extrusion drive gear train 344 to transmit the rotary motion of the insertion drive motor 331 to drive the lead screw 343. As the lead screw 343 rotates, the nut 345 (which is threadedly engaged with the lead screw 343) moves forward or backward (depending upon the lead screw's direction of rotation) along the lead screw 343, which in turn, drives the plunger rod 342 forward and backward in the autoinjector 300. Forward movement of the plunger rod 342 causes an end face 342EF of the plunger rod 342 to enter the cassette 200 and subsequently the syringe barrel 261 of the syringe 260. The plunger rod 343 then engages the plunger-stopper 264 of the syringe 260 and pushes it to the end of the syringe barrel 261 in order to expel the predetermined dose of the pharmaceutical product from the syringe 260 during a drug extrusion cycle. The position of the components of extrusion drive 340, as well as time related to drug extrusion, may be monitored by the microprocessor 350. If an error occurs, the error can be indicated on the user interface 312 along with an audible alert. The microprocessor 350 may be capable of storing different factory-set drug delivery profiles (stroke, speed, acceleration). A plurality of unique drug delivery profiles may be associated with specific cassette configurations. The cassette identification arrangement on the outer housing 210 of the cassette 200 enable the autoinjector 300 to identify the proper drug delivery profile specific for the loaded pharmaceutical product. Upon insertion and recognition of a valid cassette 200, available preset drug extrusion speed ranges may be automatically registered by the autoinjector 300. Available speed ranges are dependent upon the syringe fill volume and pharmaceutical product characteristics, such as viscosity.


The user may select the desired drug extrusion speed (defined as the time to empty the pharmaceutical product of the syringe 260) from a plurality of different options for a particular pharmaceutical product using the speed selector switch 316. Upon initiation of the drug extrusion cycle, the stroke of the plunger rod 342 may be controlled and monitored to ensure the plunger-stopper 264 reaches the end of the syringe barrel 261, which ensures complete dose administration. If an error occurs during the extrusion process (e.g., failure of the plunger rod to achieve a complete stroke), the autoinjector 300 may immediately terminate drug extrusion, retract the needle back into the cassette 200, and provide audible and visual alerts.


The injection cycles may be indicated by both audible and visual signals. Lights on the autoinjector 300 may turn off in sequence from top to bottom during the injection cycle to indicate to the user the progress of the injection. Upon completion of the injection cycle, the autoinjector 300 retracts the syringe needle back into the disposable cassette 200, and then opens the cassette door 308 automatically, allowing removal of the cassette 200 by the user. The opening of the cassette door 308 may also be an indicator to the user that the injection cycle is complete.


In the event that an error occurs during the injection cycle, the autoinjector 300 may be equipped with various audible and visual signals to alert the user (operator or patient) to the error and to prompt appropriate actions.


The battery 360 illustrated in FIG. 8, may be a non-replaceable, non-rechargeable battery. The battery 360 should be capable of providing sufficient power for adequate shelf-life and service life to meet the drug delivery requirements. A power-on self test is automatically performed upon waking the autoinjector 300 to ensure sufficient battery power is available for a successful injection cycle. The user interface 312 of the autoinjector 300 may provide visual and audible alerts if a problem occurs with the battery 360 before injection. The microprocessor 350 may be programmed to disable the autoinjector 300 at the end of the defined service life.


The syringe 260 of the cassette 200 may be prefilled with a pharmaceutical product, such as an erythropoiesis stimulating agent (ESA), which may be in a liquid or a lyophilized form. An ESA can be an erythropoiesis stimulating protein. As used herein, “erythropoiesis stimulating protein” means any protein that directly or indirectly causes activation of the erythropoietin receptor, for example, by binding to and causing dimerization of the receptor. Erythropoiesis stimulating proteins comprise erythropoietin and variants, analogs, or derivatives thereof that bind to and activate erythropoietin receptor; antibodies that bind to erythropoietin receptor and activate the receptor; or peptides that bind to and activate erythropoietin receptor. Erythropoiesis stimulating proteins comprise, but are not limited to, epoetin alfa, epoetin beta, epoetin delta, epoetin omega, epoetin iota, epoetin zeta, and analogs thereof, pegylated erythropoietin, carbamylated erythropoietin, mimetic peptides (comprising EMP1/Hematide), and mimetic antibodies. Exemplary erythropoiesis stimulating proteins comprise erythropoietin, darbepoetin, erythropoietin agonist variants, and peptides or antibodies that bind and activate erythropoietin receptor.


The term erythropoiesis stimulating protein comprises without limitation Epogen® (epoetin alfa), Aranesp® (darbepoetin alfa), Dynepo® (epoetin delta), Mircera® (methyoxy polyethylene glycol-epoetin beta), Hematide™ (peginesatide), MRK-2578, INS-22, Retacrit® (epoetin zeta), Neorecormon® (epoetin beta), Silapo™ (epoetin zeta), Binocrit® (epoetin alfa), epoetin alfa Hexal, Abseamed™ (epoetin alfa), Ratioepo™ (epoetin theta), Eporatio™ (epoetin theta), Biopoin™ (epoetin theta), epoetin alfa, epoetin beta, epoetin zeta, epoetin theta, and epoetin delta.


The term erythropoiesis stimulating protein further comprises the molecules or variants or analogs as disclosed in the following patents or patent applications: U.S. Pat. Nos. 4,703,008; 5,441,868; 5,547,933; 5,618,698; 5,621,080; 5,756,349; 5,767,078; 5,773,569; 5,830,851; 5,856,298; 5,955,422; 5,986,047; 6,030,086; 6,310,078; 6,391,633; 6,583,272; 6,586,398; 6,900,292; 6,750,369; 7,030,226; 7,084,245; and 7,271,689; U.S. Publ. Nos. 2002/0155998; 2003/0077753; 2003/0082749; 2003/0143202; 2003/0215444; 2004/0009902; 2004/0071694; 2004/0091961; 2004/0143857; 2004/0157293; 2004/0175379; 2004/0175824; 2004/0229318; 2004/0248815; 2004/0266690; 2005/0019914; 2005/0026834; 2005/0096461; 2005/0107297; 2005/0107591; 2005/0124045; 2005/0124564; 2005/0137329; 2005/0142642; 2005/0143292; 2005/0153879; 2005/0158822; 2005/0158832; 2005/0170457; 2005/0181359; 2005/0181482; 2005/0192211; 2005/0202538; 2005/0227289; 2005/0244409; 2006/0040858; 2006/0088906; and 2006/0111279; and PCT Publ. Nos. WO 91/05867; WO 95/05465; WO 96/40772; WO 99/66054; WO 00/24893; WO 01/81405; WO 00/61637; WO 01/36489; WO 02/014356; WO 02/19963; WO 02/20034; WO 02/49673; WO 02/085940; WO 03/029291; WO 2003/055526; WO 2003/084477; WO 2003/094858; WO 2004/002417; WO 2004/002424; WO 2004/009627; WO 2004/024761; WO 2004/033651; WO 2004/035603; WO 2004/043382; WO 2004/101600; WO 2004/101606; WO 2004/101611; WO 2004/106373; WO 2004/018667; WO 2005/001025; WO 2005/001136; WO 2005/021579; WO 2005/025606; WO 2005/032460; WO 2005/051327; WO 2005/063808; WO 2005/063809; WO 2005/070451; WO 2005/081687; WO 2005/084711; WO 2005/103076; WO 2005/100403; WO 2005/092369; WO 2006/50959; WO 2006/02646; WO 2006/29094; and WO 2007/136752.


Alternatively, the syringe 260 of the cassette 200 may also be prefilled with other products. Examples of other pharmaceutical products that may be used may comprise, but are not limited to, therapeutics such as a biological (e.g., Enbrel® (etanercept, TNF-receptor/Fc fusion protein, TNF blocker), anti-TNF antibodies such as adalimumab, infliximab, certolizumab pegol, and golimumab; anti-IL-12 antibodies such as ustekinumab, other Fc fusions such as CTL4A:Fc also known as abacept; Neulasta0 (pegylated filgastrim, pegylated G-CSF, pegylated hu-met-G-CSF), Neupogen® (filgrastim, G-CSF, hu-met-G-CSF), Nplate® (romiplostim), Vectibix® (panitumumab), Sensipar® (cinacalcet), and Xgeva® and Prolia® (each denosamab, AMG 162); as well as other small molecule drugs, a therapeutic antibodies, a polypeptides, proteins or other chemicals, such as an iron (e.g., ferumoxytol, iron dextrans, ferric glyconate, and iron sucrose). The therapeutic may be in liquid form, or reconstituted from lyophilized form.


Among particular illustrative proteins that can be used in the syringe 260 of the cassette 200 are antibodies, peptibodies, pegylated proteins, polypeptides, and related proteins (comprising fusions, fragments, analogs, variants or derivatives thereof) for example, proteins that specifically bind to: OPGL; TL-4 receptor; interleukin 1-receptor 1 (“ID-R1”); angiopoietin-2 (Ang2); NGF; CD22; IGF-1; B-7 related protein 1 (B7RP1); IL-15; IL-17 Receptor A: IFN gamma; TALL-1; parathyroid hormone (“PTH”); thrombopoietin receptor (“TPO-R”); hepatocyte growth factor (“HGF”); TRAIL-R2; Activin A; TGF-beta; amyloid-beta; c-Kit; a4137: and IL-23 or one of its subunits; and other therapeutic proteins.


The syringe 260 of the cassette 200 may also be prefilled with OPGL specific antibodies, peptibodies, and related proteins, and the like (also referred to as RANKL specific antibodies, peptibodies and the like), comprising fully humanized and human OPGL specific antibodies, particularly fully humanized monoclonal antibodies, comprising but not limited to the antibodies described in PCT Publ. No. WO 03/002713, including OPGL specific antibodies and antibody related proteins, particularly those having the sequences set forth therein, particularly, but not limited to, those denoted therein: 9H7; 18B2; 2D8; 2E11; 16E1; and 22B3, comprising the OPGL specific antibodies having either the light chain of SEQ ID NO: 2 therein as set forth in FIG. 2 therein and/or the heavy chain of SEQ ID NO:4 therein, as set forth in FIG. 4 therein.


The syringe 260 of the cassette 200 may also be prefilled with myostatin binding proteins, peptibodies, and related proteins, and the like, comprising myostatin specific peptibodies, particularly those described in US Publ. No. 2004/0181033 and PCT Publ. No. WO 2004/058988, particularly in parts pertinent to myostatin specific peptibodies, comprising but not limited to peptibodies of the mTN8-19 family, comprising those of SEQ ID NOS: 305-351, comprising TN8-19-1 through TN8-19-40, TN8-19 con1 and TN8-19 con2; peptibodies of the mL2 family of SEQ ID NOS: 357-383 therein; the mL15 family of SEQ ID NOS: 384-409; the mL17 family of SEQ ID NOS: 410-438 therein; the mL20 family of SEQ ID NOS: 439-446 therein; the mL21 family of SEQ ID NOS: 447-452 therein; the mL24 family of SEQ ID NOS: 453-454 therein; and those of SEQ ID NOS: 615-631 therein.


The syringe 260 of the cassette 200 may also be prefilled with IL-4 receptor specific antibodies, peptibodies, and related proteins, and the like, particularly those that inhibit activities mediated by binding of TL-4 and/or TL-1 3 to the receptor, comprising those described in PCT Publ. No. WO 2005/047331 or PCT Appl. No. PCT/US2004/03742 and in US Publ. No. 2005/112694, particularly in parts pertinent to IL-4 receptor specific antibodies, particularly such antibodies as are described therein, particularly, and without limitation, those designated therein: L1H1; L1H2; L1 H3; L1H4; L1H5; L1H6; L1H7; L1H8; L1H9; L1H10; L1H11; L2H1; L2H2; L2H3; L2H4; L2H5; L2H6; L2H7; L2H8; L2H9; L2H10; L2H11; L2H12; L2H13; L2H14; L3H1; L4H1; L5H1; L6H1.


The syringe 260 of the cassette 200 may also be prefilled with ILI-R1 specific antibodies, peptibodies, and related proteins, and the like, comprising but not limited to those described in U.S. Publ. No. 2004/097712A1, including in parts pertinent to IL1-R1 specific binding proteins, monoclonal antibodies in particular, especially, without limitation, those designated therein: 15CA, 26F5, 27F2, 24E12, and 10H7.


The syringe 260 of the cassette 200 also be prefilled with Ang2 specific antibodies, peptibodies, and related proteins, and the like, comprising but not limited to those described in PCT Publ. No. WO 03/057134 and U.S. Publ No. 2003/0229023, particularly in parts pertinent to Ang2 specific antibodies and peptibodies and the like, especially those of sequences described therein and comprising but not limited to: L1(N); L1(N) WT; L1(N) 1K WT; 2×L1(N); 2×L1(N) WT; Con4 (N), Con4 (N) 1K WT, 2×Con4 (N) 1K; L1C; L1C 1K; 2×L1C; Con4C; Con4C 1K; 2×Con4C 1K; Con4-L1 (N); Con4-L1C; TN-12-9 (N); C17 (N); TN8-8(N); TN8-14 (N); Con 1 (N), also comprising anti-Ang 2 antibodies and formulations such as those described in PCT Publ. No. WO 2003/030833 particularly Ab526; Ab528; Ab531; Ab533; Ab535; Ab536; Ab537; Ab540; Ab543; Ab544; Ab545; Ab546; A551; Ab553; Ab555; Ab558; Ab559; Ab565; AbF1AbFD; AbFE; AbFJ; AbFK; AbG1D4; AbGC1E8; AbH1C12; AblAl; AbIF; AbIK, AbIP; and AbIP, in their various permutations as described therein.


The syringe 260 of the cassette 200 may also be prefilled with NGF specific antibodies, peptibodies, and related proteins, and the like comprising, in particular, but not limited to those described in US Publ. No. 2005/0074821 and U.S. Pat. No. 6,919,426, particularly as to NGF-specific antibodies and related proteins in this regard, comprising in particular, but not limited to, the NGF-specific antibodies therein designated 4D4, 4G6, 6H9, 7H2, 14D10 and 14D11.


The syringe 260 of the cassette 200 may also be prefilled with CD22 specific antibodies, peptibodies, and related proteins, and the like, such as those described in U.S. Pat. No. 5,789,554, particularly as to CD22 specific antibodies and related proteins, particularly human CD22 specific antibodies, such as but not limited to humanized and fully human antibodies, comprising but not limited to humanized and fully human monoclonal antibodies, particularly comprising but not limited to human CD22 specific IgG antibodies, such as, for instance, a dimer of a human-mouse monoclonal hLL2 gamma-chain disulfide linked to a human-mouse monoclonal hLL2 kappa-chain, comprising, but limited to, for example, the human CD22 specific fully humanized antibody in Epratuzumab, CAS registry number 501423-23-0.


The syringe 260 of the cassette 200 may also be prefilled with IGF-1 receptor specific antibodies, peptibodies, and related proteins, and the like, such as those described in PCT Publ. No. WO 06/069202, particularly as to TGF-1 receptor specific antibodies and related proteins, comprising but not limited to the IGF-1 specific antibodies therein designated L1H1, L2H2, L3H3, L4H4, L5H5, L6H6, L7H7, L8H8, L9H9, L10H10, L11H11, L12H12, L13H13, L14H14, L15H15, L16H16, L17H17, L18H18, L19H19, L20H20, L21H21, L22H22, L23H23, L24H24, L25H25, L26H26, L27H27, L28H28, L29H29, L30H30, L31H31, L32H32, L33H33, L34H34, L35H35, L36H36, L37H37, L38H38, L39H39, L40H40, L41H41, L42H42, L43H43, L44H44, L45H45, L46H46, L47H47, L48H48, L49H49, L50H50, L51H51, L52H52, and IGF-1R-binding fragments and derivatives thereof.


Also among non-limiting examples of anti-IGF-1R antibodies for use in the methods and compositions of the present invention are each and all of those described in: (i) US Publ. No. 2006/0040358 (published Feb. 23, 2006), 2005/0008642 (published Jan. 13, 2005), 2004/0228859 (published Nov. 18, 2004), comprising but not limited to, for instance, antibody IA (DSMZ Deposit No. DSM ACC 2586), antibody 8 (DSMZ Deposit No. DSM ACC 2589), antibody 23 (DSMZ Deposit No. DSM ACC 2588) and antibody 18 as described therein; (ii) PCT Publ. No. WO 06/138729 (published Dec. 28, 2006) and WO 05/016970 (published Feb. 24, 2005), and Lu et al., 2004, J Biol. Chem. 279:2856-65, comprising but not limited to antibodies 2F8, AI2, and IMC-AI2 as described therein; (iii) PCT Publ. No. WO 07/012614 (published Feb. 1, 2007), WO 07/000328 (published Jan. 4, 2007), WO 06/013472 (published Feb. 9, 2006), WO 05/058967 (published Jun. 30, 2005), and WO 03/059951 (published Jul. 24, 2003); (iv) US Publ. No. 2005/0084906 (published Apr. 21, 2005), comprising but not limited to antibody 7C10, chimaeric antibody C7C10, antibody h7C10, antibody 7H2M, chimaeric antibody *7C10, antibody GM 607, humanized antibody 7C10 version 1, humanized antibody 7C10 version 2, humanized antibody 7C10 version 3, and antibody 7H2HM, as described therein; (v) US Publ. Nos. 2005/0249728 (published Nov. 10, 2005), 2005/0186203 (published Aug. 25, 2005), 2004/0265307 (published Dec. 30, 2004), and 2003/0235582 (published Dec. 25, 2003) and Maloney et al., 2003, Cancer Res. 63:5073-83, comprising but not limited to antibody EM164, resurfaced EM164, humanized EM164, huEM164 v1.0, huEM164 v1.1, huEM164 v1.2, and huEM164 v1.3 as described therein; (vi) U.S. Pat. No. 7,037,498 (issued May 2, 2006), US Publ. Nos. 2005/0244408 (published Nov. 30, 2005) and 2004/0086503 (published May 6, 2004), and Cohen, et al., 2005, Clinical Cancer Res. 11:2063-73, e.g., antibody CP-751,871, comprising but not limited to each of the antibodies produced by the hybridomas having the ATCC accession numbers PTA-2792, PTA-2788, PTA-2790, PTA-2791, PTA-2789, PTA-2793, and antibodies 2.12.1, 2.13.2, 2.14.3, 3.1.1, 4.9.2, and 4.17.3, as described therein; (vii) US Publ. Nos. 2005/0136063 (published Jun. 23, 2005) and 2004/0018191 (published Jan. 29, 2004), comprising but not limited to antibody 19D12 and an antibody comprising a heavy chain encoded by a polynucleotide in plasmid 15H12/19D12 HCA (y4), deposited at the ATCC under number PTA-5214, and a light chain encoded by a polynucleotide in plasmid 15H12/19D12 LCF (c), deposited at the ATCC under number PTA-5220, as described therein; and (viii) US Publ. No. 2004/0202655 (published Oct. 14, 2004), comprising but not limited to antibodies PINT-6A1, PINT-7A2, PINT-7A4, PINT-7A5, PINT-7A6, PINT-8A1, PINT-9A2, PINT-11A1, PINT-11A2, PINT-11A3, PINT-11A4, PINT-11A5, PINT-11A7, PINT-11A12, PINT-12A1, PINT-12A2, PINT-12A3, PINT-12A4, and PINT-12A5, as described therein; particularly as to the aforementioned antibodies, peptibodies, and related proteins and the like that target IGF-1 receptors.


The syringe 260 of the cassette 200 may also be prefilled with B-7 related protein 1 specific antibodies, peptibodies, related proteins and the like (“B7RP-1,” also is referred to in the literature as B7H2, ICOSL, B7h, and CD275), particularly B7RP-specific fully human monoclonal IgG2 antibodies, particularly fully human IgG2 monoclonal antibody that binds an epitope in the first immunoglobulin-like domain of B7RP-1, especially those that inhibit the interaction of B7RP-1 with its natural receptor, TCOS, on activated T cells in particular, especially, in all of the foregoing regards, those disclosed in U.S. Publ. No. 2008/0166352 and PCT Publ. No. WO 07/011941, particularly as to such antibodies and related proteins, comprising but not limited to antibodies designated therein as follow: 16H (having light chain variable and heavy chain variable sequences SEQ ID NO:1 and SEQ ID NO:7 respectively therein); 5D (having light chain variable and heavy chain variable sequences SEQ ID NO:2 and SEQ ID NO:9 respectively therein); 2H (having light chain variable and heavy chain variable sequences SEQ ID NO:3 and SEQ ID NO:10 respectively therein); 43H (having light chain variable and heavy chain variable sequences SEQ TD NO:6 and SEQ TD NO:14 respectively therein); 41H (having light chain variable and heavy chain variable sequences SEQ ID NO:5 and SEQ ID NO:13 respectively therein); and 15H (having light chain variable and heavy chain variable sequences SEQ ID NO:4 and SEQ ID NO:12 respectively therein).


The syringe 260 of the cassette 200 may also be prefilled with IL-15 specific antibodies, peptibodies, and related proteins, and the like, such as, in particular, humanized monoclonal antibodies, particularly antibodies such as those disclosed in U.S. Publ. Nos. 2003/0138421; 2003/023586; and 2004/0071702; and U.S. Pat. No. 7,153,507, particularly as to IL-15 specific antibodies and related proteins, comprising peptibodies, comprising particularly, for instance, but not limited to, HuMax IL-15 antibodies and related proteins, such as, for instance, 146B7.


The syringe 260 of the cassette 200 may also be prefilled with pharmaceutical compositions comprising antagonistic human monoclonal antibodies against human IL-17 Receptor A. The characterization, cloning, and preparation of IL-17 Receptor A are described in U.S. Pat. No. 6,072,033, issued Jun. 6, 2000. The amino acid sequence of the human IL-17RA is shown in SEQ ID NO:10 of U.S. Pat. No. 6,072,033 (GenBank accession number NM 014339). Such antibodies may comprise those disclosed in WO 2008/054603, or the antibodies claimed in U.S. Pat. No. 7,767,206, issued Aug. 3, 2010, and in U.S. Ser. No. 11/906,094.


The syringe 260 of the cassette 200 may also be prefilled with IFN gamma specific antibodies, peptibodies, and related proteins and the like, especially human IFN gamma specific antibodies, particularly fully human anti-IFN gamma antibodies, such as, for instance, those described in US Publ. No. 2005/0004353, particularly as to IFN gamma specific antibodies, particularly, for example, the antibodies therein designated 1118; 1118*; 1119; 1121; and 1121*. The entire sequences of the heavy and light chains of each of these antibodies, as well as the sequences of their heavy and light chain variable regions and complementarity determining regions, as disclosed in the foregoing US Publication and in Thakur et al., Mol. Immunol. 36:1107-1115 (1999). Specific antibodies comprise those having the heavy chain of SEQ ID NO: 17 and the light chain of SEQ ID NO:18; those having the heavy chain variable region of SEQ ID NO:6 and the light chain variable region of SEQ ID NO:8; those having the heavy chain of SEQ ID NO:19 and the light chain of SEQ ID NO:20; those having the heavy chain variable region of SEQ ID NO:10 and the light chain variable region of SEQ ID NO:12; those having the heavy chain of SEQ ID NO:32 and the light chain of SEQ ID NO:20; those having the heavy chain variable region of SEQ ID NO:30 and the light chain variable region of SEQ ID NO:12; those having the heavy chain sequence of SEQ ID NO:21 and the light chain sequence of SEQ ID NO:22; those having the heavy chain variable region of SEQ ID NO:14 and the light chain variable region of SEQ ID NO:16; those having the heavy chain of SEQ ID NO:21 and the light chain of SEQ ID NO:33; and those having the heavy chain variable region of SEQ ID NO:14 and the light chain variable region of SEQ ID NO:31, as disclosed in the foregoing US Publication. A specific antibody contemplated is antibody 1119 as disclosed in foregoing US Publication and having a complete heavy chain of SEQ ID NO:17 as disclosed therein and having a complete light chain of SEQ ID NO:18 as disclosed therein.


The syringe 260 of the cassette 200 may also be prefilled with TALL-1 specific antibodies, peptibodies, and related proteins, and the like, and other TALL specific binding proteins, such as those described in U.S. Publ. Nos. 2003/0195156 and 2006/0135431, particularly as to TALL-1 binding proteins, particularly the molecules of Tables 4 and 5B therein.


The syringe 260 of the cassette 200 may also be prefilled with PTH specific antibodies, peptibodies, and related proteins, and the like, such as those described in U.S. Pat. No. 6,756,480, particularly in parts pertinent to proteins that bind PTH.


The syringe 260 of the cassette 200 may also be prefilled with TPO-R specific antibodies, peptibodies, and related proteins, and the like, such as those described in U.S. Pat. No. 6,835,809, particularly in parts pertinent to proteins that bind TPO-R.


The syringe 260 of the cassette 200 may also be prefilled with HGF specific antibodies, peptibodies, and related proteins, and the like, comprising those that target the HGF/SF:cMet axis (HGF/SF:c-Met), such as the fully human monoclonal antibodies that neutralize hepatocyte growth factor/scatter (HGF/SF) described in US Publ. No. 2005/0118643 and PCT Publ. No. WO 2005/017107, huL2G7 described in U.S. Pat. No. 7,220,410 and OA-5d5 described in U.S. Pat. Nos. 5,686,292 and 6,468,529 and in PCT Publ. No. WO 96/38557, particularly in parts pertinent to proteins that bind HGF.


The syringe 260 of the cassette 200 may also be prefilled with TRAIL-R2 specific antibodies, peptibodies, related proteins and the like, such as those described in U.S. Pat. No. 7,521,048, particularly in parts pertinent to proteins that bind TRAIL-R2.


The syringe 260 of the cassette 200 may also be prefilled with Activin A specific antibodies, peptibodies, related proteins, and the like, comprising but not limited to those described in US Publ. No. 2009/0234106, particularly in parts pertinent to proteins that bind Activin A.


The syringe 260 of the cassette 200 may also be prefilled with TGF-beta specific antibodies, peptibodies, related proteins, and the like, comprising but not limited to those described in U.S. Pat. No. 6,803,453 and US Publ. No. 2007/0110747, particularly in parts pertinent to proteins that bind TGF-beta.


The syringe 260 of the cassette 200 may also be prefilled with amyloid-beta protein specific antibodies, peptibodies, related proteins, and the like, comprising but not limited to those described in PCT Publ. No. WO 2006/081171, particularly in parts pertinent to proteins that bind amyloid-beta proteins. One antibody contemplated is an antibody having a heavy chain variable region comprising SEQ ID NO: 8 and a light chain variable region having SEQ ID NO: 6 as disclosed in the International Publication.


The syringe 260 of the cassette 200 may also be prefilled with c-Kit specific antibodies, peptibodies, related proteins, and the like, comprising but not limited to those described in Publ. No. 2007/0253951, particularly in parts pertinent to proteins that bind c-Kit and/or other stem cell factor receptors.


The syringe 260 of the cassette 200 may also be prefilled with OX40L specific antibodies, peptibodies, related proteins, and the like, comprising but not limited to those described in U.S. application Ser. No. 11/068,289, particularly in parts pertinent to proteins that bind OX40L and/or other ligands of the OX040 receptor.


The syringe 260 of the cassette 200 may also be prefilled with other exemplary proteins comprising but are not limited to Activase® (Alteplase, tPA); Aranesp® (Darbepoetin alfa), Epogen® (Epoetin alfa, or erythropoietin); Avonex® (Interferon beta-1a); Bexxar® (Tositumomab, anti-CD22 monoclonal antibody); Betaseron® (Interferon-beta); Campath® (Alemtuzumab, anti-CD52 monoclonal antibody); Dynepo® (Epoetin delta); Velcade® (bortezomib); MLN0002 (anti-α4β7 mAb); MLN1202 (anti-CCR2 chemokine receptor mAb); Enbrel® (etanercept, TNF-receptor/Fc fusion protein, TNF blocker); Eprex® (Epoetin alfa); Erbitux® (Cetuximab, anti-EGFR/HER1/c-ErbB-1); Genotropin® (Somatropin, Human Growth Hormone); Herceptin® (Trastuzumab, anti-HER2/neu (erbB2) receptor mAb); Humatrope® (Somatropin, Human Growth Hormone); Humira® (Adalimumab); Insulin in Solution; Infergen® (Interferon Alfacon-1); Natrecor® (nesiritide; recombinant human B-type natriuretic peptide (hBNP); Kineret® (Anakinra), Leukinc® (Sargamostim, rhuGM-CSF); LymphoCide® (Epratuzumab, anti-CD22 mAb); Lymphostat B® (Belimumab, anti-BlyS mAb); Metalyse® (Tenecteplase, t-PA analog); Mircera® (methoxy polyethylene glycol-epoetin beta); Mylotarg® (Gemtuzumab ozogamicin); Raptiva® (efalizumab); Cimzia® (certolizumab pegol, CDP 870); Soliris™ (Eculizumab); Pexelizumab (Anti-05 Complement); MEDI-524 (Numax®); Lucentis® (Ranibizumab); 17-1A (Edrecolomab, Panorex®); Trabio® (lerdelimumab); TheraCim hR3 (Nimotuzumab); Omnitarg (Pertuzumab, 2C4); Osidem® (IDM-1); OvaRex® (B43.13); Nuvion® (visilizumab); Cantuzumab mertansine (huC242-DM1); NeoRecormon® (Epoetin beta); Neumega® (Oprelvekin, Human Interleukin-11); Neulasta® (Pegylated filgastrim, pegylated G-CSF, pegylated hu-Met-G-CSF); Neupogen® (Filgrastim, G-CSF, hu-MetG-CSF); Orthoclone OKT3® (Muromonab-CD3, anti-CD3 monoclonal antibody), Procrit® (Epoetin alfa); Remicade® (Infliximab, anti-TNFa monoclonal antibody), Reopro® (Abciximab, anti-GP 11b/Ilia receptor monoclonal antibody), Actemra® (anti-IL6 Receptor mAb), Avastin® (Bevacizumab), HuMax-CD4 (zanolimumab), Rituxan® (Rituximab, anti-CD20 mAb); Tarceva® (Erlotinib); Roferon-A0-(Interferon alfa-2a); Simulect® (Basiliximab); Prexige® (lumiracoxib); Synagis® (Palivizumab); 146B7-CHO (anti-IL15 antibody, see U.S. Pat. No. 7,153,507), Tysabri® (Natalizumab, anti-a4integrin mAb); Valortim® (MDX-1303, anti-B. anthracis Protective Antigen mAb); ABthrax™; Vectibix® (Panitumumab); Xolair® (Omalizumab), ETI211 (anti-MRSA mAb), IL-1 Trap (the Fc portion of human IgG1 and the extracellular domains of both IL-1 receptor components (the Type 1 receptor and receptor accessory protein)), VEGF Trap (Ig domains of VEGFR1 fused to IgG1 Fc), Zenapax® (Daclizumab); Zenapax® (Daclizumab, anti-IL-2Ra mAb), Zevalin® (Ibritumomab tiuxetan), Zetia (ezetimibe), Atacicept (TACT-Ig), anti-CD80 monoclonal antibody (mAb) (galiximab), anti-CD23 mAb (lumiliximab), BR2-Fc (huBR3/huFc fusion protein, soluble BAFF antagonist); CNTO 148 (Golimumab, anti-TNFα mAb); HGS-ETR1 (Mapatumumab; human anti-TRATL Receptor-1 mAb); HuMax-CD20 (Ocrelizumab, anti-CD20 human mAb); HuMax-EGFR (zalutumumab); M200 (Volociximab, anti-α5β1 integrin mAb); MDX-010 (ipilimumab, anti-CTLA-4 mAb and VEGFR-1 (IMC-18F1); anti-BR3 mAb; anti-C. difficile Toxin A and Toxin B C mAbs MDX-066 (CDA-1) and MDX-1388); anti-CD22 dsFv-PE38 conjugates (CAT-3888 and CAT-8015); anti-CD25 mAb (HuMax-TAC); anti-CD3 mAb (N1-0401); adecatumumab; anti-CD30 mAb (MDX-060); MDX-1333 (anti-IFNAR); anti-CD38 mAb (HuMax CD38); anti-CD40L mAb; anti-Cripto mAb; anti-CTGF Idiopathic Pulmonary Fibrosis Phase 1 Fibrogen (FG-3019); anti-CTLA4 mAb; anti-eotaxinl mAb (CAT-213); anti-FGF8 mAb; anti-ganglioside GD2 mAb; anti-ganglioside GM2 mAb; anti-GDF-8 human mAb (MY0-029); anti-GM-CSF Receptor mAb (CAM-3001); anti-HepC mAb (HuMax HepC); anti-IFNα mAb (MEDI-545, MDX-1103); anti-IGF1R mAb; anti-IGF-1R mAb (HuMax-Inflam); anti-IL12 mAb (ABT-874); anti-IL12/IL23 mAb (CNTO 1275); anti-IL13 mAb (CAT-354); anti-IL2Ra mAb (HuMax-TAC); anti-IL5 Receptor mAb; anti-integrin receptors mAb (MDX-018, CNTO 95); anti-IP10 Ulcerative Colitis mAb (MDX-1100); anti-LLY antibody; BMS-66513; anti-Mannose Receptor/hCG8 mAb (MDX-1307); anti-mesothelin dsFv-PE38 conjugate (CAT-5001); anti-PD1mAb (MDX-1106 (ONO-4538)); anti-PDGFRa antibody (IMC-3G3); anti-TGFα mAb (GC-1008); anti-TRAIL Receptor-2 human mAb (HGS-ETR2); anti-TWEAK mAb; anti-VEGFR/Flt-1 mAb; anti-ZP3 mAb (HuMax-ZP3); NVS Antibody #1; and NVS Antibody #2.


The syringe 260 of the cassette 200 may also be prefilled with antibodies comprising, but not limited to, those that recognize any one or a combination of proteins comprising, but not limited to, the above-mentioned proteins and/or the following antigens: CD2, CD3, CD4, CD8, CD11a, CD14, CD18, CD20, CD22, CD23, CD25, CD33, CD40, CD44, CD52, CD80 (B7.1), CD86 (B7.2), CD147, TL-1a, IL-1p, TL-2, IL-3, TL-7, TL-4, TL-5, TL-8, TL-10, TL-2 receptor, TL-4 receptor, IL-6 receptor, IL-13 receptor, IL-18 receptor subunits, FGL2, PDGF-β and analogs thereof (see U.S. Pat. Nos. 5,272,064 and 5,149,792), VEGF, TGF, TGF-β2, TGF-β1, EGF receptor (see U.S. Pat. No. 6,235,883) VEGF receptor, hepatocyte growth factor, osteoprotegerin ligand, interferon gamma, B lymphocyte stimulator (BlyS, also known as BAFF, THANK, TALL-1, and zTNF4; see Do and Chen-Kiang (2002), Cytokine Growth Factor Rev. 13(1): 19-25), C5 complement, TgE, tumor antigen CA125, tumor antigen MUC1, PEM antigen, LCG (which is a gene product that is expressed in association with lung cancer), HER-2, a tumor-associated glycoprotein TAG-72, the SK-1 antigen, tumor-associated epitopes that are present in elevated levels in the sera of patients with colon and/or pancreatic cancer, cancer-associated epitopes or proteins expressed on breast, colon, squamous cell, prostate, pancreatic, lung, and/or kidney cancer cells and/or on melanoma, glioma, or neuroblastoma cells, the necrotic core of a tumor, integrin alpha 4 beta 7, the integrin VLA-4, B2 integrins, TRAIL receptors 1, 2, 3, and 4, RANK, RANK ligand, TNF-α, the adhesion molecule VAP-1, epithelial cell adhesion molecule (EpCAM), intercellular adhesion molecule-3 (ICAM-3), leukointegrin adhesin, the platelet glycoprotein gp TIb/TITa, cardiac myosin heavy chain, parathyroid hormone, rNAPc2 (which is an inhibitor of factor Vila-tissue factor), MHC 1, carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), tumor necrosis factor (TNF), CTLA-4 (which is a cytotoxic T lymphocyte-associated antigen), Fc-γ-1 receptor, HLA-DR 10 beta, HLA-DR antigen, L-selectin, Respiratory Syncitial Virus, human immunodeficiency virus (HIV), hepatitis B virus (HBV), Streptococcus mutans, and Staphlycoccus aureus.


Additional examples of known antibodies that may be contained in the syringe 260 of the cassette 200 can comprise but are not limited to adalimumab, bevacizumab, infliximab, abciximab, alemtuzumab, bapineuzumab, basiliximab, belimumab, briakinumab, canakinumab, certolizumab pegol, cetuximab, conatumumab, denosumab, eculizumab, gemtuzumab ozogamicin, golimumab, ibritumomab tiuxetan, labetuzumab, mapatumumab, matuzumab, mepolizumab, motavizumab, muromonab-CD3, natalizumab, nimotuzumab, ofatumumab, omalizumab, oregovomab, palivizumab, panitumumab, pemtumomab, pertuzumab, ranibizumab, rituximab, rovelizumab, tocilizumab, tositumomab, trastuzumab, ustekinumab, zalutumumab, and zanolimumab.


Although the autoinjector apparatus has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to comprise other variants and embodiments of the autoinjector apparatus, which may be made by those skilled in the art without departing from the scope and range of equivalents of the apparatus and its elements.

Claims
  • 1. An apparatus for injection of a therapeutic product, the apparatus comprising: a cassette which conceals a syringe containing the therapeutic product; andan autoinjector comprising: a needle insertion and product extrusion drive arrangement; anda door, movable between an open position, which allows insertion therein of the cassette, and a closed position, which allows alignment between the cassette and the needle insertion and product extrusion drive arrangement.
  • 2. The apparatus of claim 1, wherein the cassette includes a mechanical structure that facilitates insertion of the cassette into the door in a correct orientation.
  • 3. The apparatus of claim 1, wherein the cassette includes indicia for facilitating insertion of the cassette into the door in a correct orientation.
  • 4. The apparatus of claim 1, wherein the cassette door includes indicia for indicating an insertion entry point for the cassette.
  • 5. The apparatus of claim 1, wherein the door includes indicia for indicating an insertion entry point for the cassette.
  • 6. An autoinjector for injecting a therapeutic product contained within a syringe, the syringe concealed within a cassette, the autoinjector comprising: a motorized needle insertion and therapeutic product extrusion drive arrangement; anda door, movable between an open position, which allows insertion therein of the cassette, and a closed position, which moves the cassette into alignment with the motorized needle insertion and therapeutic product extrusion drive arrangement.
  • 7. The autoinjector of claim 6, wherein the door includes indicia for indicating an insertion entry point for the cassette.
  • 8. The autoinjector of claim 7, wherein the motorized needle insertion and therapeutic product extrusion drive arrangement includes a needle insertion drive comprising an insertion drive motor, a rack, and an insertion drive gear train for transmitting rotary motion of the insertion drive motor to drive the rack.
  • 9. The autoinjector of claim 8, wherein the insertion drive gear train includes a plurality of gears.
  • 10. The autoinjector of claim 8, wherein the rack includes spaced-apart first and second protrusions and rack teeth, the rack teeth engaging the insertion drive gear train.
  • 11. The autoinjector of claim 10, wherein during a needle insertion cycle, the first protrusion of the rack unlatches an inner sleeve carrying the syringe in the cassette and drives the inner sleeve forward within the cassette and wherein during a needle retraction cycle, the second protrusion of the rack engages and pulls the inner sleeve backward within the cassette.
  • 12. The autoinjector of claim 6, wherein the motorized needle insertion and therapeutic product extrusion drive arrangement includes a therapeutic product drive extrusion drive comprising an extrusion drive motor, a plunger rod, a lead screw, and an extrusion drive gear train, the plunger rod driven by the extrusion drive motor through the lead screw and the extrusion drive gear train.
  • 13. The autoinjector of claim 12, wherein the plunger rod includes a pusher and the lead screw includes a threadedly engaged nut, the threadedly engaged nut coupling the plunger rod to the lead screw, the threadedly engaged nut including a holder that fixedly holds the pusher of the plunger rod.
  • 14. The autoinjector of claim 13, wherein during a drug extrusion cycle, the extrusion drive motor rotates the lead screw in a first direction, which moves the threadedly engaged nut forward along the lead screw and drives the plunger rod forward into the cassette and the syringe to expel the pharmaceutical product from the syringe and then the drug extrusion drive motor rotates the lead screw in a second direction, which moves the threadedly engaged nut backward along the lead screw and withdraws the plunger rod from the syringe and the cassette.
  • 15. The autoinjector of claim 12, wherein the extrusion drive gear train includes a plurality of gears coupled to the extrusion drive motor and the lead screw, respectively, thereby allowing the extrusion drive gear train to transmit the rotary motion of the extrusion drive motor to drive the lead screw.
  • 16. The autoinjector of claim 6, further comprising a microprocessor for controlling and monitoring the motorized needle insertion and therapeutic product extrusion drive arrangement, thereby automating needle insertion, drug extrusion, and needle retraction.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/026,294, filed Jul. 3, 2018, which is a continuation of U.S. patent application Ser. No. 14/112,479, filed Sep. 17, 2014, which is the U.S. national phase of International Patent Application No. PCT/US2012/034535, filed Apr. 20, 2012, which claims the priority benefit of U.S. Provisional Application No. 61/477,553, filed Apr. 20, 2011, the entire contents of each of which are incorporated herein by reference.

US Referenced Citations (469)
Number Name Date Kind
2525398 Collins Oct 1950 A
2565081 Maynes Aug 1951 A
2701566 Krug Feb 1955 A
2702547 Glass Feb 1955 A
3051173 Johnson et al. Aug 1962 A
3064650 Lewis Nov 1962 A
3203269 Perrine Aug 1965 A
3212685 Swan et al. Oct 1965 A
3623474 Heilman et al. Nov 1971 A
3720211 Kyrias Mar 1973 A
3859996 Mizzy et al. Jan 1975 A
3964481 Gourlandt et al. Jun 1976 A
4108177 Pistor Aug 1978 A
4231368 Becker Nov 1980 A
4273122 Whitney et al. Jun 1981 A
4276879 Yiournas Jul 1981 A
4373526 Kling Feb 1983 A
4421107 Estes et al. Dec 1983 A
4465478 Sabelman et al. Aug 1984 A
4493704 Beard et al. Jan 1985 A
4502488 Degironimo et al. Mar 1985 A
4504263 Steuer et al. Mar 1985 A
4515590 Daniel May 1985 A
4573975 Frist et al. Mar 1986 A
4585439 Michel Apr 1986 A
4613328 Boyd Sep 1986 A
4617016 Blomberg Oct 1986 A
4636201 Ambrose et al. Jan 1987 A
4685903 Cable et al. Aug 1987 A
4758227 Lancaster, Jr. et al. Jul 1988 A
4787893 Villette Nov 1988 A
4790823 Charton et al. Dec 1988 A
4838857 Strowe et al. Jun 1989 A
4877034 Atkins et al. Oct 1989 A
4902279 Schmidtz et al. Feb 1990 A
4919596 Slate et al. Apr 1990 A
4986818 Imbert et al. Jan 1991 A
5013299 Clark May 1991 A
5024616 Ogle, II Jun 1991 A
5034003 Denance Jul 1991 A
5080104 Marks et al. Jan 1992 A
5085641 Sarnoff et al. Feb 1992 A
5092843 Monroe et al. Mar 1992 A
5098400 Crouse et al. Mar 1992 A
5112317 Michel May 1992 A
5114404 Paxton et al. May 1992 A
5114406 Gabriel et al. May 1992 A
5176643 Kramer et al. Jan 1993 A
5180371 Spinello Jan 1993 A
5200604 Rudko et al. Apr 1993 A
5221268 Barton et al. Jun 1993 A
5271413 Dalamagas et al. Dec 1993 A
5300029 Denance Apr 1994 A
5318522 D'Antonio Jun 1994 A
5352196 Haber et al. Oct 1994 A
5354286 Mesa et al. Oct 1994 A
5354287 Wacks Oct 1994 A
5382785 Rink Jan 1995 A
5393497 Haber et al. Feb 1995 A
5425715 Dalling et al. Jun 1995 A
5431627 Pastrone et al. Jul 1995 A
5451210 Kramer et al. Sep 1995 A
5456670 Neer et al. Oct 1995 A
5458263 Ciammitti et al. Oct 1995 A
5478316 Bitdinger et al. Dec 1995 A
5540664 Wyrick Jul 1996 A
5569190 D'Antonio Oct 1996 A
5569197 Helmus et al. Oct 1996 A
5569212 Brown Oct 1996 A
5578014 Erez et al. Nov 1996 A
5584815 Pawelka et al. Dec 1996 A
5593390 Castellano et al. Jan 1997 A
5599302 Lilley et al. Feb 1997 A
5616132 Newman Apr 1997 A
5647851 Pokras Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5665071 Wyrick Sep 1997 A
5681291 Galli Oct 1997 A
5690618 Smith et al. Nov 1997 A
5695472 Wyrick Dec 1997 A
5698189 Rowe et al. Dec 1997 A
5709662 Olive et al. Jan 1998 A
5720729 Kriesel Feb 1998 A
5728074 Castellano et al. Mar 1998 A
5746714 Salo et al. May 1998 A
5779675 Reilly Jul 1998 A
5779683 Meyer Jul 1998 A
5807346 Frezza Sep 1998 A
5843036 Olive et al. Dec 1998 A
5868711 Kramer et al. Feb 1999 A
5911703 Slate et al. Jun 1999 A
5919159 Lilley et al. Jul 1999 A
5921963 Erez et al. Jul 1999 A
5921966 Bendek et al. Jul 1999 A
5928158 Aristides Jul 1999 A
5945046 Hehl et al. Aug 1999 A
5957897 Jeffrey Sep 1999 A
5968063 Chu et al. Oct 1999 A
5993423 Choi Nov 1999 A
6019745 Gray Feb 2000 A
6019747 McPhee Feb 2000 A
6051896 Shibuya et al. Apr 2000 A
6090082 King et al. Jul 2000 A
6099503 Stradella Aug 2000 A
6104941 Huey et al. Aug 2000 A
6149626 Bachynsky et al. Nov 2000 A
6159184 Perez et al. Dec 2000 A
6171276 Lippe et al. Jan 2001 B1
6171283 Perez et al. Jan 2001 B1
6183442 Athanasiou et al. Feb 2001 B1
6203530 Stewart, Sr. Mar 2001 B1
6210369 Wilmot et al. Apr 2001 B1
6213987 Hirsch et al. Apr 2001 B1
6241709 Bechtold et al. Jun 2001 B1
6245043 Villette Jun 2001 B1
6248093 Moberg Jun 2001 B1
6270479 Bergens et al. Aug 2001 B1
6270481 Mason et al. Aug 2001 B1
6280421 Kirchhofer et al. Aug 2001 B1
6290683 Erez et al. Sep 2001 B1
6344030 Duchon et al. Feb 2002 B1
6344032 Perez et al. Feb 2002 B1
6371939 Bergens et al. Apr 2002 B2
6387078 Gillespie, III May 2002 B1
6406456 Slate et al. Jun 2002 B1
6447482 Ronborg et al. Sep 2002 B1
6454743 Weber Sep 2002 B1
6503454 Hadimioglu et al. Jan 2003 B1
6520928 Junior Feb 2003 B1
6540672 Simonsen et al. Apr 2003 B1
6544234 Gabriel Apr 2003 B1
6547755 Lippe et al. Apr 2003 B1
6562006 Hjertman et al. May 2003 B1
6569123 Alohas et al. May 2003 B2
6569127 Fago et al. May 2003 B1
6599272 Hjertman et al. Jul 2003 B1
6641561 Hill et al. Nov 2003 B1
6645169 Slate et al. Nov 2003 B1
6645177 Shearn Nov 2003 B1
6648858 Asbaghi Nov 2003 B2
6652483 Slate et al. Nov 2003 B2
D483116 Castellano Dec 2003 S
6656163 Marshall et al. Dec 2003 B1
6656164 Smith Dec 2003 B1
6669664 Slate et al. Dec 2003 B2
6692469 Weekes et al. Feb 2004 B1
6743202 Hirschman et al. Jun 2004 B2
6746427 Duchon et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6767336 Kaplan Jul 2004 B1
6770052 Hill et al. Aug 2004 B2
6796957 Carpenter et al. Sep 2004 B2
6805686 Fathallah et al. Oct 2004 B1
6808507 Roser Oct 2004 B2
6817986 Slate et al. Nov 2004 B2
6835193 Epstein et al. Dec 2004 B2
6854620 Ramey Feb 2005 B2
6890319 Crocker May 2005 B1
6932793 Marshall et al. Aug 2005 B1
6979316 Rubin et al. Dec 2005 B1
6986760 Giambattista et al. Jan 2006 B2
7008399 Larsen et al. Mar 2006 B2
7011649 De La Serna et al. Mar 2006 B2
7025774 Freeman et al. Apr 2006 B2
7041085 Perez et al. May 2006 B2
7066909 Peter et al. Jun 2006 B1
7094230 Flaherty et al. Aug 2006 B2
7104400 Kiehne Sep 2006 B2
7118553 Scherer Oct 2006 B2
7226450 Athanasiou et al. Jun 2007 B2
7255684 Zubry Aug 2007 B2
7273469 Chan et al. Sep 2007 B1
7290573 Py et al. Nov 2007 B2
7291132 DeRuntz et al. Nov 2007 B2
7297135 Jeffrey Nov 2007 B2
7297136 Wyrick Nov 2007 B2
7357790 Hommann et al. Apr 2008 B2
7361160 Hommann et al. Apr 2008 B2
7370759 Hommann May 2008 B2
7381201 Gilbert et al. Jun 2008 B2
7390319 Friedman Jun 2008 B2
7442185 Amark et al. Oct 2008 B2
7449012 Young et al. Nov 2008 B2
7476217 Martin et al. Jan 2009 B2
7500963 Westbye Mar 2009 B2
7500966 Hommann Mar 2009 B2
7553294 Lazzaro et al. Jun 2009 B2
7597685 Olson Oct 2009 B2
7635348 Raven et al. Dec 2009 B2
7635350 Scherer Dec 2009 B2
7648483 Edwards et al. Jan 2010 B2
7654987 Hommann et al. Feb 2010 B2
7670314 Wall et al. Mar 2010 B2
7686789 Nemoto et al. Mar 2010 B2
7731686 Edwards et al. Jun 2010 B2
D619706 Schon et al. Jul 2010 S
7749195 Hommann Jul 2010 B2
7760099 Knight Jul 2010 B2
7785292 Harrison Aug 2010 B2
D625015 Hansen et al. Oct 2010 S
7828776 Nemoto et al. Nov 2010 B2
D628690 Galbraith Dec 2010 S
7857791 Jacobs et al. Dec 2010 B2
7887513 Nemoto et al. Feb 2011 B2
7901377 Harrison et al. Mar 2011 B1
7909796 Weber Mar 2011 B2
7918823 Edwards et al. Apr 2011 B2
7922695 Wiegel et al. Apr 2011 B2
D637713 Nord et al. May 2011 S
7938803 Mernoe et al. May 2011 B2
D642261 York et al. Jul 2011 S
7976499 Grunhut et al. Jul 2011 B2
8012120 Slate et al. Sep 2011 B2
8012125 Fago et al. Sep 2011 B1
8016797 Gratwohl et al. Sep 2011 B2
8043262 Streit et al. Oct 2011 B2
8048037 Kohlbrenner et al. Nov 2011 B2
8052645 Slate et al. Nov 2011 B2
D650070 Mori Dec 2011 S
8088096 Lauchard et al. Jan 2012 B2
8105271 Matusch Jan 2012 B2
8141417 Gibson et al. Mar 2012 B2
8152779 Cabiri Apr 2012 B2
8177749 Slate et al. May 2012 B2
8221356 Enggaard et al. Jul 2012 B2
8226610 Edwards et al. Jul 2012 B2
8277414 Barrow-Williams et al. Oct 2012 B2
8298171 Ishikawa et al. Oct 2012 B2
8308687 Carrel et al. Nov 2012 B2
8337472 Edginton et al. Dec 2012 B2
D673677 Noda et al. Jan 2013 S
8343103 Moser Jan 2013 B2
8376985 Pongpairochana et al. Feb 2013 B2
D679008 Schroeder et al. Mar 2013 S
D679391 Chinowsky et al. Apr 2013 S
8491538 Kohlbrenner et al. Jul 2013 B2
8523803 Favreau Sep 2013 B1
8591465 Hommann Nov 2013 B2
D694879 Julian et al. Dec 2013 S
8603026 Favreau Dec 2013 B2
8603027 Favreau Dec 2013 B2
8609621 Bedzyk et al. Dec 2013 B2
8628723 Vandergaw Jan 2014 B2
D702343 Dale et al. Apr 2014 S
D702835 Vinchon Apr 2014 S
8690827 Edwards et al. Apr 2014 B2
8696628 Grunhut Apr 2014 B2
8716711 Iwasaki May 2014 B2
D718439 Woehr et al. Nov 2014 S
8900204 Geertsen Dec 2014 B2
8911410 Ekman et al. Dec 2014 B2
8960827 McMillin et al. Feb 2015 B2
8961473 Heald Feb 2015 B2
8968255 Oakland Mar 2015 B2
9011386 Kronestedt et al. Apr 2015 B2
9138542 Smith Sep 2015 B2
D748783 Zhang et al. Feb 2016 S
9278177 Edwards et al. Mar 2016 B2
D757254 Wohlfahrt et al. May 2016 S
D765241 Holland Aug 2016 S
D768851 Rozwadowski et al. Oct 2016 S
D768852 Rozwadowski et al. Oct 2016 S
9616173 Slate et al. Apr 2017 B2
9649443 Klintenstedt et al. May 2017 B2
9925336 Slate et al. Mar 2018 B2
9974904 Burk et al. May 2018 B2
10092703 Mounce et al. Oct 2018 B2
10092706 Denzer et al. Oct 2018 B2
20010005781 Bergens et al. Jun 2001 A1
20010011163 Nolan et al. Aug 2001 A1
20010018937 Nemoto Sep 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010047153 Trocki et al. Nov 2001 A1
20020016569 Critchlow et al. Feb 2002 A1
20020022066 Matsubayashi et al. Feb 2002 A1
20020029018 Jeffrey Mar 2002 A1
20020095120 Larsen et al. Jul 2002 A1
20020099334 Hanson et al. Jul 2002 A1
20020133113 Madsen et al. Sep 2002 A1
20020151855 Douglas et al. Oct 2002 A1
20020156426 Gagnieux et al. Oct 2002 A1
20030036725 Lavi et al. Feb 2003 A1
20030050592 Slate et al. Mar 2003 A1
20030065536 Hansen et al. Apr 2003 A1
20030105430 Lavi et al. Jun 2003 A1
20030233070 De La Serna et al. Dec 2003 A1
20030236502 De La Serna et al. Dec 2003 A1
20040019326 Gilbert et al. Jan 2004 A1
20040039336 Amark et al. Feb 2004 A1
20040054327 Gillespie Mar 2004 A1
20040068266 Delmotte Apr 2004 A1
20040116861 Trocki et al. Jun 2004 A1
20040129803 Dolder et al. Jul 2004 A1
20040133154 Flaherty et al. Jul 2004 A1
20040133162 Trocki et al. Jul 2004 A1
20040153008 Sharf et al. Aug 2004 A1
20040208845 Michal et al. Oct 2004 A1
20040225262 Fathallah et al. Nov 2004 A1
20040258756 McLoughlin Dec 2004 A1
20050020979 Westbye et al. Jan 2005 A1
20050027255 Lavi et al. Feb 2005 A1
20050033242 Perez et al. Feb 2005 A1
20050049561 Hommann et al. Mar 2005 A1
20050054987 Perez et al. Mar 2005 A1
20050080377 Sadowski et al. Apr 2005 A1
20050148869 Masuda Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050171476 Judson et al. Aug 2005 A1
20050171477 Rubin et al. Aug 2005 A1
20050197650 Sugimoto Sep 2005 A1
20050203466 Hommann et al. Sep 2005 A1
20050209569 Ishikawa et al. Sep 2005 A1
20050261693 Miller et al. Nov 2005 A1
20050277885 Scherer Dec 2005 A1
20060022363 Konno et al. Feb 2006 A1
20060030819 Young et al. Feb 2006 A1
20060157064 Davison et al. Jul 2006 A1
20060173408 Wyrick Aug 2006 A1
20060251646 Utku Nov 2006 A1
20060258990 Weber Nov 2006 A1
20060270985 Hommann et al. Nov 2006 A1
20070021720 Guillermo Jan 2007 A1
20070025879 Vandergaw Feb 2007 A1
20070027430 Hommann Feb 2007 A1
20070066938 Iio et al. Mar 2007 A1
20070100281 Morris et al. May 2007 A1
20070112301 Preuthun et al. May 2007 A1
20070112310 Lavi et al. May 2007 A1
20070118081 Daily et al. May 2007 A1
20070135767 Gillespie, III Jun 2007 A1
20070142787 Scherer Jun 2007 A1
20070149925 Edwards et al. Jun 2007 A1
20070167920 Hommann Jul 2007 A1
20070173770 Stamp Jul 2007 A1
20070197954 Keenan Aug 2007 A1
20070197968 Pongpairochana et al. Aug 2007 A1
20070219498 Malone et al. Sep 2007 A1
20070233001 Burroughs et al. Oct 2007 A1
20070239114 Edwards et al. Oct 2007 A1
20070265568 Tsals et al. Nov 2007 A1
20080015510 Sandoz et al. Jan 2008 A1
20080039795 Slate et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051715 Young et al. Feb 2008 A1
20080097325 Tanaka et al. Apr 2008 A1
20080132841 Chiwanga et al. Jun 2008 A1
20080140007 Glynn Jun 2008 A1
20080262423 Ingram et al. Oct 2008 A1
20080262434 Vaillancourt Oct 2008 A1
20080312602 Barrow-Williams et al. Dec 2008 A1
20090018494 Nemoto et al. Jan 2009 A1
20090018505 Arguedas et al. Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090043253 Podaima Feb 2009 A1
20090076383 Toews et al. Mar 2009 A1
20090149744 Nemoto et al. Jun 2009 A1
20090254060 Hetherington Oct 2009 A1
20090270672 Fago Oct 2009 A1
20090281505 Hansen et al. Nov 2009 A1
20090292246 Slate et al. Nov 2009 A1
20090299288 Sie et al. Dec 2009 A1
20090299290 Moberg Dec 2009 A1
20090312705 Grunhut et al. Dec 2009 A1
20090322545 Gibson et al. Dec 2009 A1
20090326459 Shipway et al. Dec 2009 A1
20100016793 Jennings et al. Jan 2010 A1
20100016795 McLoughlin Jan 2010 A1
20100021456 Miossec et al. Jan 2010 A1
20100022955 Slate et al. Jan 2010 A1
20100036318 Raday et al. Feb 2010 A1
20100036320 Cox et al. Feb 2010 A1
20100042054 Elahi et al. Feb 2010 A1
20100112679 Vandergaw May 2010 A1
20100152655 Stamp Jun 2010 A1
20100152659 Streit et al. Jun 2010 A1
20100160894 Julian et al. Jun 2010 A1
20100198060 Fago et al. Aug 2010 A1
20100268170 Carrel et al. Oct 2010 A1
20100312195 Johansen et al. Dec 2010 A1
20110004165 Iio et al. Jan 2011 A1
20110023281 Schraga Feb 2011 A1
20110044998 Bedian et al. Feb 2011 A1
20110047153 Betz Feb 2011 A1
20110092915 Olson et al. Apr 2011 A1
20110097229 Cauley, III et al. Apr 2011 A1
20110098655 Jennings et al. Apr 2011 A1
20110137286 Mudd et al. Jun 2011 A1
20110144594 Sund et al. Jun 2011 A1
20110152781 Brunnberg et al. Jun 2011 A1
20110160580 Perkins et al. Jun 2011 A1
20110166512 Both et al. Jul 2011 A1
20110184383 Hasegawa Jul 2011 A1
20110190693 Takatsuka et al. Aug 2011 A1
20110190702 Stumber Aug 2011 A1
20110196339 Hirschel et al. Aug 2011 A1
20110202011 Wozencroft Aug 2011 A1
20110213315 Sweeney et al. Sep 2011 A1
20110224616 Slate et al. Sep 2011 A1
20110224620 Johansen et al. Sep 2011 A1
20110224621 Johansen et al. Sep 2011 A1
20110230833 Landman et al. Sep 2011 A1
20110245761 Jennings et al. Oct 2011 A1
20110257596 Gaudet Oct 2011 A1
20110257604 Banik Oct 2011 A1
20110264046 Nyholm et al. Oct 2011 A1
20110270220 Genosar Nov 2011 A1
20120035472 Bruce et al. Feb 2012 A1
20120035538 Elmen et al. Feb 2012 A1
20120056019 Renz et al. Mar 2012 A1
20120059319 Segal Mar 2012 A1
20120089119 Slate et al. Apr 2012 A1
20120101439 Slate et al. Apr 2012 A9
20120172815 Holmqvist Jul 2012 A1
20120238961 Julian et al. Sep 2012 A1
20120253314 Harish et al. Oct 2012 A1
20120265142 Slate et al. Oct 2012 A1
20120296286 Raab et al. Nov 2012 A1
20120323176 Watanabe et al. Dec 2012 A1
20130018313 Kramer et al. Jan 2013 A1
20130018315 Blomquist Jan 2013 A1
20130030383 Keitel Jan 2013 A1
20130035647 Veasey et al. Feb 2013 A1
20130046248 Raab Feb 2013 A1
20130110049 Cronenberg et al. May 2013 A1
20130110054 Raab et al. May 2013 A1
20130112521 Ekman et al. May 2013 A1
20130131595 Ekman et al. May 2013 A1
20130131601 Pommereau et al. May 2013 A1
20130190719 Smith et al. Jul 2013 A1
20130190721 Kemp et al. Jul 2013 A1
20130204198 Burnell et al. Aug 2013 A1
20130204204 Butler et al. Aug 2013 A1
20130218092 Davies et al. Aug 2013 A1
20130226091 Nzike et al. Aug 2013 A1
20130261558 Hourmand et al. Oct 2013 A1
20130274668 Barrow-Williams et al. Oct 2013 A1
20130289491 Kramer et al. Oct 2013 A1
20130310744 Brereton et al. Nov 2013 A1
20130310761 Plumptre Nov 2013 A1
20130317430 Brereton et al. Nov 2013 A1
20130317480 Reber et al. Nov 2013 A1
20130324935 Brereton et al. Dec 2013 A1
20130338601 Cowe Dec 2013 A1
20140046259 Reber et al. Feb 2014 A1
20140148784 Anderson et al. May 2014 A1
20140194854 Tsals Jul 2014 A1
20140236087 Alderete, Jr. et al. Aug 2014 A1
20140257197 Madsen et al. Sep 2014 A1
20140276448 Muller-Pathle et al. Sep 2014 A1
20140296825 Lemaire et al. Oct 2014 A1
20140303556 Travanty Oct 2014 A1
20140316369 Centeno et al. Oct 2014 A1
20140330203 McLoughlin et al. Nov 2014 A1
20140330216 Weaver et al. Nov 2014 A1
20140336590 Hourmand et al. Nov 2014 A1
20140364808 Niklaus et al. Dec 2014 A1
20150045729 Denzer et al. Feb 2015 A1
20150080809 Dasbach et al. Mar 2015 A1
20150136809 Hamann et al. May 2015 A1
20150141923 Wurmbauer et al. May 2015 A1
20150151046 Nagel et al. Jun 2015 A1
20150165130 Butler et al. Jun 2015 A1
20150217057 Hogdahl Aug 2015 A1
20160022914 Mounce et al. Jan 2016 A1
20160120751 Mounce et al. May 2016 A1
20160271326 Slate et al. Sep 2016 A1
20170043105 Elmen Feb 2017 A1
20170157326 Slate et al. Jun 2017 A1
Foreign Referenced Citations (192)
Number Date Country
2009249027 Aug 2014 AU
2074565 Jan 1993 CA
2594627 Aug 2006 CA
102007061775 Jul 2009 DE
0654279 May 1995 EP
1219312 Jul 2002 EP
1227423 Jul 2002 EP
1518575 Mar 2005 EP
1859827 Nov 2007 EP
2121536 Nov 1998 ES
2390175 Dec 1978 FR
2581548 Nov 1986 FR
2592307 Jul 1987 FR
2622457 May 1989 FR
2716375 Aug 1995 FR
87559 Jun 1993 IL
877559 Jun 1993 IL
S63139563 Jun 1988 JP
2008157 Jan 1990 JP
H07503384 Apr 1995 JP
07-184938 Jul 1995 JP
H07185000 Jul 1995 JP
H11-276583 Oct 1999 JP
2000-237309 Sep 2000 JP
2001518366 Oct 2001 JP
20020531228 Sep 2002 JP
2002543931 Dec 2002 JP
2003-180828 Jul 2003 JP
2003220142 Aug 2003 JP
2005-131007 May 2005 JP
2005514082 May 2005 JP
2005-287676 Oct 2005 JP
2006507061 Mar 2006 JP
2006-230701 Sep 2006 JP
2006-523507 Oct 2006 JP
2006528040 Dec 2006 JP
2007500561 Jan 2007 JP
2007-507260 Mar 2007 JP
2007-127086 May 2007 JP
2007111518 May 2007 JP
2007529243 Oct 2007 JP
2008508961 Mar 2008 JP
2009-511177 Mar 2009 JP
2010-051828 Mar 2010 JP
2010511414 Apr 2010 JP
2015186876 Oct 2015 JP
6038884 Dec 2016 JP
2017-023813 Feb 2017 JP
200833383 Aug 2008 TW
200833387 Aug 2008 TW
200836787 Sep 2008 TW
200840606 Oct 2008 TW
201004667 Feb 2010 TW
201004668 Feb 2010 TW
WO-1986006967 Dec 1986 WO
WO-1987003494 Jun 1987 WO
WO-1987007160 Dec 1987 WO
WO-1991018634 Dec 1991 WO
WO-1992006725 Apr 1992 WO
WO-1992008506 May 1992 WO
WO-1992021392 Dec 1992 WO
WO-1993002728 Feb 1993 WO
WO-1993013817 Jul 1993 WO
WO-1993024160 Dec 1993 WO
WO-1993025256 Dec 1993 WO
WO-1994006494 Mar 1994 WO
WO-9407553 Apr 1994 WO
WO-1995021645 Aug 1995 WO
WO-1995025555 Sep 1995 WO
WO-1995031235 Nov 1995 WO
WO-1995034333 Dec 1995 WO
WO-1996000594 Jan 1996 WO
WO-1996021482 Jul 1996 WO
WO-1996026754 Sep 1996 WO
WO-1996038190 Dec 1996 WO
WO-1997007839 Mar 1997 WO
WO-1997031665 Sep 1997 WO
WO-1998013077 Apr 1998 WO
WO-1998017332 Apr 1998 WO
WO-1998021408 May 1998 WO
WO-9828032 Jul 1998 WO
WO-9917823 Apr 1999 WO
WO-1999017823 Apr 1999 WO
WO-1999020327 Apr 1999 WO
WO-1999021600 May 1999 WO
WO-9965548 Dec 1999 WO
WO-2000002605 Jan 2000 WO
WO-2000009186 Feb 2000 WO
WO-2000024441 May 2000 WO
WO-2000025846 May 2000 WO
WO-2001000261 Jan 2001 WO
WO-2001037903 May 2001 WO
WO-0141835 Jun 2001 WO
WO-2001041835 Jun 2001 WO
WO-01089634 Nov 2001 WO
WO-2001089634 Nov 2001 WO
WO-0207812 Jan 2002 WO
WO-2002007812 Jan 2002 WO
WO-200211792 Feb 2002 WO
WO-0249691 Jun 2002 WO
WO-2002049691 Jun 2002 WO
WO-2002060513 Aug 2002 WO
WO-02092153 Nov 2002 WO
WO-2002092153 Nov 2002 WO
WO-0303934 Jan 2003 WO
WO-03006099 Jan 2003 WO
WO-03008023 Jan 2003 WO
WO-2003006099 Jan 2003 WO
WO-2003008023 Jan 2003 WO
WO-2003024385 Mar 2003 WO
WO-03039634 May 2003 WO
WO-03047663 Jun 2003 WO
WO-2003047659 Jun 2003 WO
WO-2003047663 Jun 2003 WO
WO-0390509 Nov 2003 WO
WO-2003090509 Nov 2003 WO
WO-03103749 Dec 2003 WO
WO-2003103749 Dec 2003 WO
WO-2004004809 Jan 2004 WO
WO-2004004825 Jan 2004 WO
WO-2004069303 Aug 2004 WO
WO-2004084795 Oct 2004 WO
WO-2004108193 Dec 2004 WO
WO-2005032449 Apr 2005 WO
WO-2005053771 Jun 2005 WO
WO-2005070481 Aug 2005 WO
WO-2005079440 Sep 2005 WO
WO-2005089831 Sep 2005 WO
WO-2005094923 Oct 2005 WO
WO-2006015501 Feb 2006 WO
WO-2006017732 Feb 2006 WO
WO-2006020609 Feb 2006 WO
WO-2006062788 Jun 2006 WO
WO-2006063015 Jun 2006 WO
WO-2006084821 Aug 2006 WO
WO-2006086774 Aug 2006 WO
WO-2007002053 Jan 2007 WO
WO-2007044980 Apr 2007 WO
WO-2007047200 Apr 2007 WO
WO-2007053779 May 2007 WO
WO-2007075677 Jul 2007 WO
WO-2007099044 Sep 2007 WO
WO-2007126851 Nov 2007 WO
WO-2007138313 Dec 2007 WO
WO-2007138299 Dec 2007 WO
WO-2007140610 Dec 2007 WO
WO-2008004670 Jan 2008 WO
WO-2008024810 Feb 2008 WO
WO-2008021776 Feb 2008 WO
WO-2008048750 Apr 2008 WO
WO-2008064092 May 2008 WO
WO-2008075033 Jun 2008 WO
WO-2008083313 Jul 2008 WO
WO-2008093063 Aug 2008 WO
WO-2008094984 Aug 2008 WO
WO-2008095124 Aug 2008 WO
WO-2008113772 Sep 2008 WO
WO-2008107670 Sep 2008 WO
WO-2008139458 Nov 2008 WO
WO-2008139460 Nov 2008 WO
WO-2008146021 Dec 2008 WO
WO-2009006725 Jan 2009 WO
WO-2009019437 Feb 2009 WO
WO-2009097325 Aug 2009 WO
WO-2009125879 Oct 2009 WO
WO-2009143255 Nov 2009 WO
WO-2010023481 Mar 2010 WO
WO-2010026414 Mar 2010 WO
WO-2010076275 Jul 2010 WO
WO-2010091133 Aug 2010 WO
WO-2010099850 Sep 2010 WO
WO-2010100213 Sep 2010 WO
WO-2010127449 Nov 2010 WO
WO-2011014525 Feb 2011 WO
WO-2011056888 May 2011 WO
WO-2011057065 May 2011 WO
WO-2011089206 Jul 2011 WO
WO-2012000871 Jan 2012 WO
WO-2012000940 Jan 2012 WO
WO-2012022771 Feb 2012 WO
WO-2012080481 Jun 2012 WO
WO-2012103140 Aug 2012 WO
WO-2012145685 Oct 2012 WO
WO-2012164389 Dec 2012 WO
WO-2012164394 Dec 2012 WO
WO-2012164397 Dec 2012 WO
WO-2013001378 Jan 2013 WO
WO-2013034984 Mar 2013 WO
WO-2013034986 Mar 2013 WO
WO-2013065055 May 2013 WO
WO-2014144096 Sep 2014 WO
WO-2014143815 Sep 2014 WO
Non-Patent Literature Citations (154)
Entry
“Final Office Action” dated Oct. 18, 2016 issued related U.S. Appl. No. 13/269,150.
“Office Action”, dated Mar. 8, 2015, issued in related U.S. Appl. No. 13/269,750.
Australian Patent Application No. 2009249027, Notice of Acceptance, dated Aug. 7, 2014.
Australian Patent Application No. 2009249027, Office Action, dated Jul. 24, 2013.
Australian Patent Application No. 2012245231, Notice of Allowance, dated Oct. 4, 2016.
Australian Patent Application No. 2012245231, Office Action, dated Jul. 5, 2016.
Australian Patent Application No. 2012245231, Office Action, dated Oct. 19, 2015.
Australian Patent Application No. 2014268139, Office Action, dated Jul. 19, 2016.
Australian Patent Application No. 2014268140, Office Action, dated Jul. 22, 2016.
Australian Patent Application No. 2014268140, Office Action, dated Sep. 2, 2016.
Australian Patent Application No. 2017200125, Examination Report No. 1, dated Sep. 18, 2017.
Australian Patent Application No. 2017202210, Examination Report No. 1, dated Oct. 25, 2018.
Australian Patent Application No. 2018253467, Examination Report No. 1, dated Dec. 6, 2019.
Australian Patent Application No. 2019202863, Examination Report No. 1, dated Sep. 13, 2019.
Canadian patent application No. 2724641, Examination Report, dated Dec. 15, 2016.
Canadian patent application No. 2724641, Examination Report, dated Sep. 29, 2017.
Canadian Patent Application No. 2724641, Office Action, dated Jun. 4, 2015.
Canadian Patent Application No. 2724641, Office Action, dated May 27, 2019.
Canadian patent application No. 2833748, Examination Report, dated May 2, 2017.
Canadian Patent Application No. 2833748, Office Action, dated Aug. 12, 2016.
Canadian Patent Application No. 2833748, Office Action, dated Nov. 23, 2015.
Canadian Patent Application No. 3021845, Examiner's Report, dated Aug. 19, 2019.
European patent application No. 09751483.0, Extended Search Report, dated Aug. 1, 2013.
European Patent Application No. 09751483.0, Office Action, dated Apr. 10, 2015.
European patent application No. 09751483.0, Office Action, dated Aug. 1, 2016.
European Patent Application No. 09751483.0, Office Action, dated May 14, 2014.
European Patent Application No. 09751483.0, Office Action, dated Nov. 16, 2015.
European patent application No. 12774589.1, Examination Report, dated Oct. 31, 2017.
European patent application No. 12774589.1, Extended Search Report, dated Feb. 23, 2015.
European Patent Application No. 12774589.1, Extended Search Report, dated Jul. 8, 2015.
European patent application No. 14763010.7, Extended Search Report and Opinion, dated Jan. 10, 2017.
European patent application No. 14763010.7, Partial Supplementary Search Report, dated Oct. 24, 2016.
European patent application No. 14765760.5, Extended Search Report, dated Jan. 11, 2017.
European patent application No. 14765760.5, Partial Supplementary Search Report, dated Oct. 24, 2016.
European Patent Application No. 19191313.6, European Search Report, dated Dec. 16, 2019.
European Patent Application No. 9751483.0, Office Action, dated Aug. 1, 2016.
European Search Report and Search Opinion Received for EP Application No. 19154409.7, dated Oct. 31, 2019, 9 pages.
International Patent Application No. PCT/US2014/027950, International Preliminary Report on Patentability, dated Jun. 15, 2015.
International Application No. PCT/US09/44693, filed May 20, 2009, entitled, “Autoinjector System”, Slate, et al.
International Patent Application No. PCT/US09/44693, International Preliminary Report on Patentability, dated Nov. 23, 2010.
International Patent Application No. PCT/US09/44693, International Search Report, dated Jul. 21, 2009.
International Patent Application No. PCT/US09/44693, Written Opinion of the International Searching Authority, dated May 20, 2009.
International Patent Application No. PCT/US14/27950, International Preliminary Report on Patentability, dated Sep. 15, 2015.
International Patent Application No. PCT/US2012/034535, International Preliminary Report on Patentability, dated Oct. 22, 2013.
International Patent Application No. PCT/US2012/34535, International Search Report and Written Opinion, dated Aug. 17, 2012.
International Patent Application No. PCT/US2012/34535, International Search Report, dated Aug. 17, 2012.
International Patent Application No. PCT/US2014/027950, International Search Report and Written Opinion, dated Oct. 7, 2014.
International Patent Application No. PCT/US2014/028363, International Search Report and Written Opinion, dated Aug. 18, 2014.
Japanese Patent Application No. 2011-510683, Notice of Allowance, dated Oct. 5, 2015.
Japanese Patent Application No. 2011-510683, Office Action, dated Jul. 30, 2013.
Japanese Patent Application No. 2011-510683, Office Action, dated Jun. 30, 2014.
Japanese Patent Application No. 2014-021052, Notice of Allowance, dated Aug. 24, 2015.
Japanese Patent Application No. 2014-021052, Office Action, dated Jan. 5, 2015.
Japanese Patent Application No. 2014-506591, Notice of Allowance, dated Oct. 3, 2016.
Japanese Patent Application No. 2014-506591, Office Action, dated Jan. 4, 2016.
Japanese Patent Application No. 2014021052, Final Office Action, dated Apr. 20, 2015.
Japanese Patent Application No. 2015-171851, Decision of Rejection, dated Feb. 6, 2017.
Japanese Patent Application No. 2015-186876, Office Action, dated Jul. 15, 2016.
Japanese Patent Application No. 2016-214237, Notice of Reasons for Rejection, dated Sep. 4, 2017.
Japanese Patent Application No. 2016-502669, Notice of Reasons for Rejection, dated Jan. 14, 2020.
Japanese Patent Application No. 2017-089529, Notice of Reasons for Rejection, dated Apr. 2, 2018.
Japanese Patent Application No. 2017-089529, Notice of Reasons for Rejection, dated Sep. 14, 2018.
Japanese Patent Application No. 2018-086731, Decision of Rejection, dated Feb. 3, 2020.
Japanese Patent Application No. 2018-188224, Notice of Reasons for Rejection, dated Aug. 5, 2019.
Japanese Patent Application No. 2019-070580, Notice of Reasons for Rejection, dated Feb. 25, 2020.
Mexican Application No. 2010012691, Office Action, dated Sep. 24, 2014.
Mexican Patent Application No. 2010012691, Office Action, dated Feb. 10, 2014.
Michael Denzer et al., related copending U.S. Appl. No. 14/112,479, 371(c) dated Sep. 17, 2014.
Non-Final Office Action issued in related U.S. Appl. No. 12/993,163, dated Sep. 11, 2014.
Office Action received for European Patent Application No. 14765760.5, dated Jul. 9, 2019, 4 pages.
Related International Patent Application No. PCT/US2014/028363, Mar. 14, 2014.
Search Report for Taiwan Patent Application No. 106100512, Office Action, dated Dec. 4, 2017.
Taiwan Patent Application No. 103109332, Office Action, dated Aug. 22, 2016.
Taiwan Patent Application No. 103109475, Office Action, dated Aug. 26, 2016.
U.S. Appl. filed Apr. 24, 2012, John B. Slate et al., U.S. Appl. No. 13/454,531.
U.S. Appl. filed Jul. 23, 2008, John B. Slate et al., U.S. Appl. No. 12/178,447.
U.S. Appl. filed May 27, 2011, entitled, “Autoinjector System,” of Slate et al., U.S. Appl. No. 12/993,163.
U.S. Appl. filed May 27, 2016, John B. Slate et al., U.S. Appl. No. 15/167,068.
U.S. Appl. filed Oct. 10, 2011, John B. Slate et al., U.S. Appl. No. 13/269,750.
U.S. Appl. No. 15/167,068, Final Office Action, dated Apr. 24, 2019.
U.S. Appl. No. 15/167,068, Nonfinal Office Action, dated Feb. 14, 2020.
U.S. Appl. No. 15/782,951, Notice of Allowance, dated Oct. 11, 2019.
U.S. Appl. No. 16/026,294, Nonfinal Office Action, dated Mar. 18, 2020.
Unpublished related U.S. Appl. No. 14/777,255.
U.S. Appl. No. 12/123,888, Final Office Action, dated Apr. 8, 2010.
U.S. Appl. No. 12/123,888, Final Office Action, dated Jun. 8, 2011.
U.S. Appl. No. 12/123,888, Non-Final Office Action, dated Dec. 22, 2010.
U.S. Appl. No. 12/123,888, Notice of Allowance, dated Jan. 12, 2012.
U.S. Appl. No. 12/123,888, Office Action, dated Oct. 5, 2009.
U.S. Appl. No. 12/178,447, Final Office Action, dated Mar. 30, 2010.
U.S. Appl. No. 12/178,447, Non-Final Office Action, dated Dec. 22, 2010.
U.S. Appl. No. 12/178,447, Non-Final Office Action, dated Oct. 15, 2009.
U.S. Appl. No. 12/178,447, Notice of Allowance, dated Apr. 6, 2011.
U.S. Appl. No. 12/178,447, Notice of Allowance, dated Jun. 24, 2011.
U.S. Appl. No. 12/454,531, Non-Final Office Action, dated Sep. 13, 2013.
U.S. Appl. No. 12/993,163, Final Office Action, dated Feb. 22, 2016.
U.S. Appl. No. 12/993,163, Non-Final Office Action, dated Dec. 27, 2013.
U.S. Appl. No. 12/993,163, Non-Final Office Action, dated Jul. 28, 2016.
U.S. Appl. No. 12/993,163, Office Action, dated May 8, 2015.
U.S. Appl. No. 13/269,740, Office Action, dated May 20, 2013.
U.S. Appl. No. 13/269,740, Restriction Requirement, dated Apr. 2, 2013.
U.S. Appl. No. 13/269,750, Final Office Action, dated Dec. 26, 2013.
U.S. Appl. No. 13/269,750, Final Office Action, dated Oct. 18, 2016.
U.S. Appl. No. 13/269,750, Non Final Office Action, dated May 3, 2016.
U.S. Appl. No. 13/269,750, Non-Final Office Action, dated Aug. 21, 2014.
U.S. Appl. No. 13/269,750, Non-final Office Action, dated Jun. 21, 2013.
U.S. Appl. No. 13/269,750, Notice of Allowance, dated Feb. 8, 2017.
U.S. Appl. No. 13/269,750, Office Action, dated Aug. 10, 2015.
U.S. Appl. No. 13/269,750, Office Action, dated Mar. 12, 2015.
U.S. Appl. No. 13/269,750, Office Action, dated Nov. 18, 2015.
U.S. Appl. No. 13/454,531, Final Office Action, dated Sep. 23, 2016.
U.S. Appl. No. 13/454,531, Non-Final Office Action, dated Dec. 28, 2012.
U.S. Appl. No. 13/454,531, Non-Final Office Action, dated Mar. 17, 2016.
U.S. Appl. No. 13/454,531, Notice of Allowance, dated Oct. 5, 2015.
U.S. Appl. No. 13/454,531, Office Action, dated Apr. 21, 2015.
U.S. Appl. No. 13/454,531, Office Action, dated Oct. 7, 2014.
U.S. Appl. No. 14/112,479, Final Office Action, dated Feb. 27, 2017.
U.S. Appl. No. 14/112,479, Final Office Action, dated Mar. 29, 2018.
U.S. Appl. No. 14/112,479, Nonfinal Office Action, dated Jul. 12, 2017.
U.S. Appl. No. 14/112,479, Nonfinal Office Action, dated Jul. 29, 2016.
U.S. Appl. No. 14/112,479, Notice of Allowance, dated Jul. 5, 2018.
U.S. Appl. No. 15/167,068, Nonfinal Office Action, dated Oct. 18, 2018.
U.S. Appl. No. 15/167,068, Nonfinal Office Action, dated Oct. 9, 2019.
U.S. Appl. No. 15/782,925, Final Office Action, dated Oct. 11, 2019.
U.S. Appl. No. 29/548,507, Denzer et al., dated Dec. 14, 2015.
U.S. Appl. No. 29/548,508, Denzer et al., dated Feb. 14, 2015.
Japanese Application No. 2020-041954 Notice of Reasons for Rejection dated Jan. 4, 2021.
Examiner initiated interview summary, U.S. Appl. No. 15/782,951, dated Oct. 11, 2019, 2 pages.
Final Office Action, dated Apr. 20, 2015, issued in related Japanese Patent Application No. JP 2014-021052 (counterpart to related U.S. Appl. No. 12/993,163).
Final Office Action, dated Jun. 1, 2015, issued in Related Japanese Patent Application No. 2011-510683 (counterpart to related U.S. Appl. No. 12/993,163).
First Examination Report dated Jun. 4, 2015, issued in Counterpart Canadian Application No. 2,724,641.
International Application No. PCT/US2014/028363, International Preliminary Report on Patentability, dated Sep. 15, 2015.
Japanese Patent Application No. 2018-228060, Notice of Reasons for Rejection, dated Oct. 21, 2019.
Lee W. Young, “International Search Report, dated Jul. 21, 2009, issed in related International Patent Application No. PCT/US09/044693”.
Notice of Allowance issued in related U.S. Appl. No. 12/123,888, dated Oct. 3, 2011.
Notice of Allowance issued in related U.S. Appl. No. 13/454,531, dated Apr. 3, 2014.
Notice of Allowance, issued in Japanese Continuation Application No. 2014-021052 (Foreign counterpart of U.S. Appl. No. 12/993,163), dated Aug. 24, 2015.
Office Action dated Nov. 23, 2015, issued in Canadian Application No. 2,833,748 (foreign counterpart of related U.S. Appl. No. 14/112,479).
Office Action, dated Jan. 5, 2015, issued in related Japanese Application JP2014-021052 (counterpart to U.S. Appl. No. 12/123,888).
Related U.S. Appl. No. 14/112,479, filed Oct. 17, 2013, Publisher: USPTO.
U.S. Appl. filed Feb. 23, 2017, John B. Slate et al., U.S. Appl. No. 15/440,420.
U.S. Appl. No. 15/782,951, Notice of Allowance, dated May 20, 2020.
U.S. Appl. No. 15/952,296, Nonfinal Office Action, dated Jan. 14, 2020.
U.S. Appl. No. 15/952,296, Notice of Allowance, dated Jun. 1, 2020.
US. Appl. filed May 20, 2008, entitled, “Cassette for a Hidden Injection Needle”, Slate, et al., U.S. Appl. No. 12/123,888.
Japanese Patent Application No. 2020-041954, Decision of Rejection, dated Aug. 2, 2021.
CA Patent Application No. 3070644, Examination Report, dated Aug. 16, 2021.
U.S. Appl. No. 15/782,925, Non-Final Office Action, dated Oct. 7, 2020.
U.S. Appl. No. 16/026,294, Notice of Allowance, dated Oct. 16, 2020.
Canadian Patent Application No. 3021845, Office Action, dated Dec. 4, 2020.
Canadian Patent Application No. 3021845, Examiner's Report, dated May 7, 2020.
U.S. Appl. No. 15/167,068, Notice of Allowance, dated Jul. 2, 2020.
U.S. Appl. No. 16/026,294, Final Office Action, dated Jul. 30, 2020.
Japanese Patent Application No. 2021-078657, Office Action, dated Jun. 6, 2022.
Related Publications (1)
Number Date Country
20200197626 A1 Jun 2020 US
Provisional Applications (1)
Number Date Country
61477553 Apr 2011 US
Continuations (2)
Number Date Country
Parent 16026294 Jul 2018 US
Child 16810414 US
Parent 14112479 US
Child 16026294 US