This invention relates generally to devices for inflating balloons. This invention relates more specifically to automated devices for inflating balloons which are operable with remote control.
Cowboy mounted shooting has become one of the fastest growing equestrian sports in the country. Blending such disciplines as reining, barrel racing, and horsemanship, the sport of mounted shooting requires teamwork between contestant and horse. Inflated balloons are mounted as targets on top of bases of various sorts, conventionally traffic cones or 55-gallon drums. Using two 0.45 caliber revolvers and blank ammunition, each contestant rides through the course and shoots at the balloons; the hot powder from the gun bursts the balloons when a shot is aimed properly. The contestant tries to accurately shoot 10 balloon targets set in one of over 75 various patterns on a course while controlling his or her horses' speed and direction. Scores are based on how many balloons were successfully burst and the time it took to complete the course. The sport has over 60 courses of varying difficulties.
After each competitor has completed the course, human volunteers run onto the course and replace the burst balloons on the bases. There is significant time and effort involved to take a balloon to each of the bases and attach it prior to each contestant's run. One of the limitations for the number of contestants who can compete in one day is the time required to set the balloons on the barrels between the contestants. Another consideration is the safety of the balloon setters, who need to clear the course before a racing horse takes to the course. It would be desirable to be able to quickly replace all the burst balloons between contestants. It would also be desirable to replace the balloons without having people run onto the course between contestants.
In addition to cowboy mounted shooting, many other events need to have a large number of balloons inflated. Conventionally, to inflate a large number of balloons, the lip of each balloon is manually seated over a nozzle of a pressurized gas source and held in place by hand until the balloon is full. Then the balloon is removed and a knot tied in its neck to seal the balloon. It can be tricky to seat the lip of the limp, uninflated balloon properly over the nozzle. This causes some inefficiency as it becomes necessary to re-seat balloons before they are inflated. It would be desirable to provide an automated feeding mechanism for inflating balloons.
Therefore, it is an object of this invention to provide a device that enables balloons to be quickly replaced on the bases for cowboy mounted shooting. It is another object to place balloons on courses without having to have people run on the course. It is a further object of this invention to provide an automated feeding mechanism for inflating balloons.
This invention is an automated system for inflating balloons. A balloon inflator employs an electronic control system that activates the pressurized gas source to inflate a balloon. Balloons are automatically fed to the inflator via a belt and, at the appropriate time as governed by the electronic control system, pressurized gas is emitted into a balloon. Once the balloon bursts or is removed from the inflator, the belt can be advanced and the next balloon is inflated. In the preferred embodiment, the system comprises multiple inflators and the electronic control system is operated remotely using radio frequency signals.
a is a top view of a part of the loading belt without balloons inserted.
b is a side view of a part of the loading belt with balloons inserted.
The present invention is an automated balloon inflator system. The system comprises generally an inflator 10 and a communication device 33 that instructs the inflator to inflate a balloon to a predetermined size. The inflator employs a collection of components that cooperate to repeatedly advance a balloon into a position to be inflated, inflate the balloon, and once the balloon bursts or is otherwise removed from the inflation position, advance the next balloon into place. Balloons can be advanced automatically or on command, either by remote control or at the inflator.
The inflator 10 components include a frame 2, a loading belt 21, a belt advancement assembly, a balloon seal block 23, an actuator 15 for moving the seal block, a pressurized gas source 3, a power source 4, and an electronic control system, each of which is explained in more detail below.
The frame 2 of the inflator serves to structurally collect all the inflator components. The preferred embodiment of the inflator is used for cowboy mounted shooting and thus its frame is preferably oriented vertically, as shown in
The loading belt 21 is a continuous flexible pulley belt with holes 24 spaced evenly along its centerline. See
A belt advancement assembly moves the belt through the inflator. The advancement assembly is generally a multiple pulley system using both fixed and tensioned pulleys. Any number of pulleys can be used to provide a smooth, continuous motion.
The balloon seal block 23 and actuator 15 cooperate to position a balloon 36 for inflation. The seal block 23 has a passageway 43 for gas. See
The pressurized gas source 3 is typically an air compressor, but may also be a canister or tank of pressurized gas such as helium. One or more air filters (not shown) may be installed to prevent dust and other contaminates from entering the compressor. In the preferred embodiment, the pressurized gas source 3 supplies about 2 cfm of air. Pressurized gas sources are typically heavy and therefore when positioned at the base 1 of the frame 2 provides a convenient weight to keep the device upright, even when bumped by a horse. Preferably, a power source 4 in the form of a battery is also mounted at the base 1 of the frame to provide additional weight and stability to the device. A computer back-up battery of 12 volts is the proper size, weight and power for the preferred embodiment of this invention. Ideally, the air compressor and battery are positioned at the base to counter balance each other if the device is bumped.
The electronic control system receives commands from the communication device 33 and controls the balloon inflation. The electronic control system can be configured in many ways, as known the electronics arts, including with discrete circuits, integrated circuits, or a combination of both. In the preferred embodiment, the electronic control system comprises a microcontroller including memory and a timer, housed on a control board 11, which sends and receives signals from an air control valve 6, an air pressure sensor 8, and a contact switch 29. The electronic control system may include the receiver of the communication device 33.
The electronic control system activates an inflation assembly which acts in coordination with the advancement mechanism to inflate the balloon. The inflation assembly is generally a system of connecting arms, lever arms, air lines, springs, and an air cylinder that produces force and movement powered by compressed gas. See
The balloon seal block 23 retracts from the bottom of the belt 21 freeing the belt 21 to be advanced to the next hole 24 by the belt advancement assembly. To move the belt 21, the swing arm 13 pulls the pull arm 16, which in turn pulls on the ratcheting arm 19 to rotate the toothed gear pulley 20. The toothed gear pulley 20 turns a sufficient amount to pull the belt 21 the distance 25 to the next hole, thus establishing the timing. The toothed gear pulley may have a ratchet system that allows the pulley to rotate in only one direction. The pull arm 16 may be a cable instead of a rod, to pull the ratcheting arm 19. Springs and other components may be placed in different locations to achieve the same results, as known in the art.
When the swing arm 13 is at full stroke it activates an electrical contact switch 29 that signals the electrical control system to switch the air path through the air control valve 6 to the fill balloon 36 through the air line 12 connected to the balloon seal block 23. Once the air control valve 6 is switched, the air then travels through a check valve 7 to prevent any back flow, and passes the air pressure sensor 8 into air line 12. The air is then emitted out of the top of the balloon seal block 23 through passageway 43 before the block 23 seals to lip 38 and while the air cylinder is relaxing under tension of seal spring 17. As explained above, this partial inflation assures a proper alignment for sealing the seal block to the balloon. While the air cylinder 15 is relaxing from the removal of air pressure it is retarded in its movement by the pressurized air being released from the cylinder through the air control valve 6, which is now in its relaxed state.
While the balloon seal block 23 is sealed to the balloon and air is inflating the balloon, and the control arms are returning to their relaxed state, the electrical control system is monitoring the run time of the pressurized gas source 3 to control the size of the balloon. Settings on the electrical control system can be changed to reflect the desired size of the balloon, for example by determining how long, in seconds, the compressor 3 is set to run in order to inflate the balloon the desired amount. In other embodiments air pressure may be from an air tank, and the amount of gas released may be controlled by a valve. In yet other embodiments a pressure sensor or gas flow sensor can be employed in the electrical control system to sense when the balloon is filled the desired amount. For cowboy mounted shooting, the balloons are sized per the rule book to about 9-10 inches long and about 6 inches diameter.
The inflator 10 is operatively connected to a communication device 33 that instructs the inflator to inflate a balloon. Preferably the communication device 33 is a wireless device that signals the electrical control system from a distance. See
Preferably all inflators are responsive to a single communication device 33 so that one command instructs all inflators simultaneously to index the belt to the next balloon and inflate. This increases the speed at which a course can be reset with balloons for cowboy mounted shooting, which in turn increases the throughput of the number of contestants per day. For example, when balloons are reset on the course by hand, about 40 contestants can complete the course in an hour. With the present automated system, those 40 contestants can complete the course in about 18 minutes. More contestants in a shorter time means that facilities have to be rented for less time to complete the competition, and cost is reduced. More importantly, reducing the wait time between contestants creates a more exciting event for spectators.
To avoid wasting balloons that are still inflated after a course is run, each inflator can be equipped with a pressure sensor that determines by sensing back pressure whether a balloon is still inflated and, if so, will not allow the belt to be indexed. That is, while a balloon is present and above a predetermined pressure, any new inflate commands will be ignored or overridden. Preferably there is as much as a two-second delay before the inflate command can be given again. The delay is used to allow the pressure in the system from the compressor drop to zero or nearly zero. Otherwise. undesirable pulses of air can be conveyed to the seal block and dislodge the seal between the balloon and the seal block.
The system can be operatively connected to electronic score cards that indicate how many balloons each contestant successfully deflates, and also to timing sensors. Results can be posted nearly instantaneously as to the number of balloons hit and the amount of time it took to complete the course. This is not only more exciting for the spectators, but helps automate scoring.
While there has been illustrated and described what is at present considered to be the preferred embodiment of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made and equivalents may be substituted for elements thereof without departing from the true scope of the invention. Therefore, it is intended that this invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of co-pending provisional application No. 61/034,943 filed Mar. 7, 2008.
Number | Date | Country | |
---|---|---|---|
61034943 | Mar 2008 | US |