The present disclosure relates to automotive vehicles, and more particularly to driver assistance systems for automotive vehicles.
Advancements in sensor technology available have led to the ability to improve safety systems for vehicles. Arrangements and methods for detecting and avoiding collisions are becoming available. Such driver assistance systems use sensors located on the vehicle to detect an oncoming collision. The systems may warn the driver of various driving situations to prevent or minimize collisions. Additionally, sensors and cameras are also used to alert the driver of possible obstacles when the vehicle is traveling in reverse. Such systems are especially useful for increasing safety in vehicles which operate under autonomous or semi-autonomous conditions.
Attaching a vehicle to a trailer requires multiple persons one to control the vehicle and the other to view the vehicle and trailer and provide direction regarding the path the vehicle to align with the hitch. Additionally, those unaccustomed to hitching a vehicle to a trailer may have some difficulty in providing efficient instructions for directing the path of the vehicle.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
A method of controlling a vehicle comprises initiating a trailer hitch assist system with an input device and detecting a trailer proximate to a vehicle with at least one sensor mounted to the vehicle. A vehicle hitch ball location and a trailer hitch location are determined. A vehicle path from an initial position to a final position is calculated with the controller, such that the vehicle hitch ball is laterally aligned with the trailer hitch in the final position. The controller calculates the steering and braking maneuvers necessary to move the vehicle along the path to the final position and sends instructions to a vehicle steering system and a vehicle brake system to perform the calculated maneuvers.
A hitch assist system for a vehicle comprises a camera mounted to view a reverse path of a vehicle, an input device connected for the hitch assist system, and a controller. The controller includes instructions for detecting a trailer proximate to a vehicle with the camera, determining a vehicle hitch ball location, determining a trailer hitch location, and calculating a vehicle path from an initial position to a final position. The vehicle hitch ball is laterally aligned with the trailer hitch in the final position. The controller also includes instructions for calculating the steering and braking maneuvers necessary to move the vehicle along the path to the final position and sending instructions to a vehicle steering system and a vehicle brake system to perform the calculated maneuvers.
A method of controlling a vehicle comprises providing an controller configured to provide signals for controlling the steerable wheels via a powered steering system operatively coupled to the steerable wheel, and providing a driver input device for receiving a directional input from the driver related to an intended direction of travel of the vehicle in reverse. A camera is provided for viewing a rear of the vehicle and an controller receives the directional input from the driver comprising the intended direction of travel of the vehicle. The controller then implements a command to the powered steering system to steer the wheels to correspond to the intended direction of travel of the vehicle.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.
Referring to
The hitch assist system 12 may be used along with other vehicle systems, such as a suspension adjustment system 14, and an electronic brake system (EBS) 16. The hitch assist system 12 may also be included with a trailer backing assist system, which can be used to maneuver the vehicle 10 and trailer 11 combination after the trailer 11 is secured to the vehicle 10. A controller 18 for the hitch assist system 12 can be common with other vehicle systems 14, 16 and the trailer backing assist system or may be independent.
The hitch assist system 12 provides semi-autonomous and autonomous vehicle operation to move the vehicle 10 into the appropriate location to align the hitch ball 20 on the vehicle 10 with the hitch 21 of the trailer 11. When backing a vehicle 10 to a trailer 11 for hitching a vehicle operator typically needs another person to provide direction regarding the relative position between the vehicle 10 and trailer 11 and the movement needed to align the vehicle hitch ball 20 with the trailer hitch 21. The hitch assist system 12 allows a single operator to align the vehicle hitch ball 20 with the trailer hitch 21.
An input device 22 for to inputting commands to the hitch assist system 12 is provided. The input device may be HMI located in the vehicle 10 or may be provided in a device 22 that is wirelessly connected to the controller 18 to control of the vehicle 10 remotely. Thus, in one embodiment the hitch assist system 12 can be operated while outside the vehicle 10 and proximate to the vehicle 10 and trailer 11.
The hitch assist system 12 includes a camera 30 mounted to provide a view of a rear driving direction for the vehicle 10. The camera 30 may be a monocular camera, binocular camera, or another type of sensing device capable of providing a view of the rear travelling path of the vehicle 10. The camera 30 may be mounted in any location that provides a view of the rear driving path of the vehicle 10. The controller 18 may be connected to the camera 30 to analyze the image/data and identify objects 34, shown in
In one embodiment, the hitch assist system 12 or another similar system 14 can determine a probability of collision when an object 34 is detected. If the probability of collision exceeds a predetermined threshold, the controller 18 indicates that at least one vehicle collision avoidance action is required. The required action can be in the form of a warning to the operator when an object is detected and/or the hitch assist system 12 or the other system 14 may be actuated to slow, stop, or steer the vehicle 10
Referring to
The hitch assist system 12 may calculate the path 44 (shown in
To calculate the vehicle path 44 to the final position 42 the hitch assist system 12 must know the location of the vehicle hitch ball 20 and the trailer hitch 21. The controller 18 may use a coordinate system which is centered on the rear axle 46 of the vehicle 10. The vehicle hitch ball 20 may be a known distance from the rear axle 46. Alternatively, the controller 18 may calculate the location of the hitch ball 20 based on information from the camera 30 or sensors 36. Likewise, the location of the trailer hitch 21 may also be determined by the controller 18 based on information from the camera 30 and sensors 36. The position of the trailer hitch 21 can also be determined by marking the position with a position marking device 48. For example, the position marking device 48 may be a digital GPS or a keyfob for the vehicle 10. The position marking device 48 may be placed on the trailer hitch for the duration of moving from the initial position 40 to the final position 42, or the position marking device 48 may mark the trailer hitch 21 location at the outset of the maneuver and that marked location is used for the duration of the maneuver, e.g. the keyfob is placed back in the vehicle 10 after marking the trailer hitch 21 position and before the path following begins.
Referring to
A further embodiment, the controller 18 includes instructions for detecting objects 34 proximate to the vehicle 10 with at least one of the sensors 36, camera 30 and GPS system 38. The controller 18 algorithm performs a probabilistic analysis of sensor-reported objects including fixed objects and moving pedestrians, expected and/or possible motion of a detected pedestrian, and the planned vehicle path. The objects identified proximate the vehicle are classified. Classification can include identifying if the object is fixed or moving and if moving at what speed and direction. The information obtained regarding the proximate objects is utilized to generate a predictive model of possible locations of a moving object at some future time. The predictive model can account for movement in view of the type of object, such as whether the object is a pedestrian walking or riding a bike. Movement of the pedestrian may also be predicted based on other identifying characteristics, such as whether the pedestrian is an adult or child.
The controller 18 executes an algorithm based on the predictive models of the vehicle path 40 and the object path 42. If a vehicle path and predicted pedestrian path (or a static object's position) intersects than a potential collision is indicated. Of all of the potential collisions that are detected, one will require intervention before the others, and that one will be acted upon.
The algorithm implements the following loop: predict all potential collisions; determine how confident we are that each detected collision will occur; determine which detected collision will require intervention first; and calculate the optimal response for the most relevant collision, e.g. braking for moving objects and steering around stationary objects. As the collision confidence changes, due to e.g. vehicle movement, object movement as the car is moving, the desired vehicle 10 response may also be changed. The controller 18 continually generates updated predictive models based on movement of the object 34 and the vehicle 10 to enable recalculation of the confidence number over the course of the backing maneuver. As the collision confidence changes, due to e.g. vehicle movement, object movement as the car is moving, the desired vehicle response may also be changed. The controller 18 for the hitch assist system 12 determines the collision confidence, while a separate controller may determine the desired braking rate, steering rate, etc. Alternatively, the same controller 18 may perform two or more functions.
Alternately, the operator can identify stationary objects 34 in a similar manner as selecting the trailer 11. The controller 18 can plot a path that avoids those objects 34. When any new or moving objects 34 are detected the hitch assist system 12 will stop the vehicle 10 motion until the object is removed. The hitch assist system 12 can then start moving again independently or when re-initiated by the user. Ultimately, the operator has the responsibility to ensure that there are no obstructions before requesting the automated hitching.
Further, the hitch assist system 12 may stop the vehicle 10 at an intermediate position, when the vehicle 10 is a predetermined distance away from the final position 42, e.g. when the vehicle is within 0.5-1.5 meters away. The operator can be asked to verify that the height of the hitch ball 20 is correct as compared to the trailer hitch 21. The predetermined distance for the intermediate position should be selected to make this visual comparison relatively easy for the operator. The trailer hitch 21 can be adjusted if necessary or an adjustable suspension system 16 for the vehicle 10 can be used to adjust the height of the hitch ball 20 to the desired height. Once the hitch 20, 21 height is confirmed the hitch assist system 12 may finish following the path 40 to the final position 42 (shown in
While the best modes for carrying out the invention have been described in detail the true scope of the disclosure should not be so limited, since those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
This application claims priority to U.S. Provisional Application No. 62/063,116 filed on Apr. 14, 2015.
Number | Name | Date | Kind |
---|---|---|---|
5191328 | Nelson | Mar 1993 | A |
5970619 | Wells | Oct 1999 | A |
7195267 | Thompson | Mar 2007 | B1 |
7777615 | Okuda | Aug 2010 | B2 |
8798842 | Woolf | Aug 2014 | B2 |
9290204 | Lavoie | Mar 2016 | B2 |
9403413 | Talty | Aug 2016 | B2 |
9511799 | Lavoie | Dec 2016 | B2 |
9555832 | Smit | Jan 2017 | B2 |
9566911 | Greenwood | Feb 2017 | B2 |
9592851 | Lavoie | Mar 2017 | B2 |
9607242 | Lavoie | Mar 2017 | B2 |
9610975 | Hu | Apr 2017 | B1 |
9683848 | Lavoie | Jun 2017 | B2 |
9696723 | Zeng | Jul 2017 | B2 |
20020145662 | Mizusawa | Oct 2002 | A1 |
20050046147 | Piper | Mar 2005 | A1 |
20060255560 | Dietz | Nov 2006 | A1 |
20090236825 | Okuda | Sep 2009 | A1 |
20150321666 | Talty | Nov 2015 | A1 |
20160304122 | Herzog | Oct 2016 | A1 |
20170188505 | Potier | Jul 2017 | A1 |
20170217372 | Lu | Aug 2017 | A1 |
20170240204 | Raad | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
104159757 | Nov 2014 | CN |
2513393 | Oct 2014 | GB |
2004230947 | Aug 2004 | JP |
2005010893 | Aug 2004 | JP |
2005112004 | Apr 2005 | JP |
2002036908 | Nov 2014 | JP |
Entry |
---|
Japanese Office Action dated Apr. 3, 2017 for corresponding application 2016-080697. |
Chinese Office Action dated Jan. 25, 2018 for corresponding Chinese patent application No. 201610347437.1. |
Japanese Office Action dated Feb. 19, 2018 for corresponding Japanese patent application No. 2016-080967. |
Japanese Office Action dated Aug. 6, 2018 for corresponding Japanese patent application No. 2016-080967. |
Number | Date | Country | |
---|---|---|---|
20160304122 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62147303 | Apr 2015 | US |