The exemplary and non-limiting embodiments described herein relate generally to an automated retail supply chain storage and retrieval system, and more particularly to an inventory management system for use in supply chains in accordance with an illustrative embodiment.
In a chain of conventional self-service stores, the most cost-efficient method of replenishing store inventories, by far, is by the “case”, that is, to supply stores with the shipping cases of products received from supplying manufacturers. The alternative is to replenish by the “each” or “eaches”, i.e. to supply stores with individual product units in less-than-case quantities, but that method is so much more costly that universally the primary unit of replenishment in large-format stores like supermarkets and hypermarkets is by the cases shipped in pallet shipments.
In a conventional distribution model, the retailer receives pallets of cases at a distribution center (“DC”), the essential role of which is to replenish the inventories in a network of stores by periodically shipping to each store a specific set of cases of products that are needed (have been “ordered”) by that store. In the vast majority of DCs, those orders are fulfilled using a manual case-picking process in which pallets of cases are arrayed in aisles and human operators travel from one product pallet to another to transfer from each the number of cases ordered by the store, placing the selected cases on an order pallet to be shipped to the store. In some DCs, automated case-picking systems are used, the most advanced of which use mobile robots, such as those described in U.S. Pat. No. 8,425,173. Whether the order-fulfillment process is manual or automated, however, the only unit of ordering available to the stores for almost all products is a case. This means that whenever a store needs to replenish its inventory of a given product (represented by a Stock Keeping Unit or “SKU”), it will receive at a minimum the number of eaches of that SKU that are contained in the standard shipping case supplied by the manufacturer, regardless of the velocity of movement that product typically experiences in the store. The term “SKU” is utilized herein to refer to a single product or good (aka, each). However, the present invention is not limited to only items that have SKUs, as would be appreciated by those of skill in the art. SKU is merely utilized herein in association with the selected illustrative embodiment for purposes of clarity of description.
While operationally efficient, case-level replenishment forces the retailer to carry considerably more inventory in their stores than would be required if the only replenishment consideration were the avoidance of out-of-stocks. The smallest replenishment quantity needed to prevent out-of-stocks depends on the speed and certainty of replenishment deliveries from the DC, and can be defined as the Minimum Safe Replenishment Quantity (“MSRQ”) measured in number of average days of supply. While the number of eaches in an MSRQ is SKU-specific, the number of days of supply used to calculate MSRQs would typically be the same for all SKUs. For example, if a DC guarantees a delivery service-level of one day to a given store, the MSRQ for that store might only be four average days of supply, across all SKUs. An SKU that sells five units per day on average would therefore have an MSRQ of twenty eaches, but an SKU that sells only one unit per day would have an MSRQ of four eaches.
Except for a small number of “high-velocity” products, a typical shipping case of product might contain three weeks' worth or more of sales of that SKU. In other words, the store must allocate three to five times the amount of shelf space to that product than the minimum amount that would be needed purely to avoid out-of-stocks (e.g., the MSRQ for each product). Thus, if the store could reduce the replenishment quantity by a factor of three across all SKUs, the retailer could either reduce the size of its stores by two-thirds for the same assortment of products, or else increase the number of products offered by a factor of three.
A method of supplying one or more goods to a physical store location is provided, the method comprising: receiving, at a distribution DC, the one or more goods from one or more suppliers, the distribution center (DC) comprising: a DC storage structure comprising a plurality of rack modules separated by aisles and having a plurality of storage levels, the DC storage structure storing a plurality of totes comprised of empty totes, product totes, or combinations thereof; and at least one DC mobile robot places totes into the DC storage structure, removing totes from the DC storage structure, and transporting totes throughout the storage structure; pickers at workstations depositing the one or more goods into an empty tote or a product tote, wherein when the one or more goods are placed into the empty tote the empty tote is then designated as a product tote and the one or more goods are designated as eaches, and when the one or more goods are placed into the product tote the one or more goods are designated as eaches; one of the at least one DC mobile robot transporting the product tote to the DC storage structure and placing the product tote into the DC storage structure for storage; and one of the at least one DC mobile robot retrieving the product tote from the DC storage structure and transporting the product tote to a shipping dock for shipment to a physical store, the physical store comprising: a building having an automated fulfillment section and a shopping section including a checkout section, and a delivery section; and the physical store receiving the product tote at the receiving section.
In one aspect, the physical store further comprises: a store storage structure comprising a plurality of rack modules separated by aisles and having a plurality of storage levels, the store storage structure storing a plurality of totes that are empty when empty storage totes, contain eaches when storage totes, contain orders when order totes, or combinations thereof; and at least one store mobile robot that propels itself horizontally and vertically throughout the store storage structure, placing totes into the store storage structure, removing totes from the store storage structure, and transporting totes.
In another aspect, an automated order fulfillment system at the physical store picks one or more fungible goods from the product tote eaches and organizes the one or more fungible goods into one or more order totes for delivery to customers in the physical store.
In another aspect, the method further comprises one or more sub-totes sized, dimensioned, and configured to fit within the empty tote and/or the product tote, and wherein a plurality of empty totes and/or product totes are sized, dimensioned, and configured to fit on a standard pallet.
In another aspect, a standard pallet comprises one or more of a North American pallet, a European pallet, an Australian pallet, or an Asian pallet.
In another aspect, the one or more sub-totes comprise one or more of ¼ sub-totes, ½ sub-totes, and/or ¾ sub-totes.
In another aspect, the step of the pickers at workstations depositing the one or more goods into an empty tote or a product tote further comprises the one or more goods being placed into the one or more sub-totes.
In another aspect, when the one or more goods are placed into the empty tote the one or more goods are placed within one or more sub-totes within the empty tote, and when the one or more goods are placed into the product tote the one or more goods are placed within one or more sub-totes within the product tote.
In another aspect, eaches contained in a single product tote have different stock keeping units (SKUs).
In another aspect, eaches contained in a single sub-tote have the same SKUs.
In another aspect, eaches contained in a single product tote have different SKUs.
In another aspect, eaches contained on a single pallet have different SKUs.
In another aspect, the step of receiving, at the DC, the one or more goods from one or more suppliers, further comprises de-trashing shipment cases from suppliers at decanting workstations of the DC.
In another aspect, the receiving, at the DC, the one or more goods from one or more suppliers further comprises the at least one mobile robot transporting shipping cases from the shipping dock to a decanting workstation.
In another aspect, the method may further comprise: tracking a number and location of eaches contained in each of the product totes in real time according to SKU; and instructing one of the pickers to allocate a predetermined quantity of eaches into the product tote.
In another aspect, the predetermined quantity of eaches is determined based on an inventory requirement at an associated automated store.
In another aspect, the inventory requirement is based on an automated real-time inventory count, based on SKUs, at the associated automated store.
In another aspect, the inventory requirement is based on a human order from the associated automated store.
In another aspect, the inventory requirement is based on a sales history at the associated automated store.
In another aspect, the pickers are human.
In another aspect, the pickers are mobile robots.
In accordance with another aspect, a method is provided, comprising: a DC storage structure comprising a plurality of rack modules separated by aisles and having a plurality of storage levels, the DC storage structure storing a plurality of totes comprised of empty totes, product totes, or combinations thereof; and at least one DC mobile robot places totes into the DC storage structure, removing totes from the DC storage structure, and transporting totes throughout the storage structure; the DC receiving, from a physical store, a request for replenishment of a desired quantity of eaches that is less than a quantity conventionally required to fill a pallet of eaches; tasking the at least one DC mobile robot to retrieve one or more sub-totes from the DC storage structure containing the desired quantity of eaches, the at least one DC mobile robot retrieving the one or more sub-totes and placing them in one or more product totes for delivery to the physical store.
In accordance with another aspect, the method further comprises the at least one DC mobile robot transporting the one or more product totes to a shipping dock for pickup and transfer to the physical store.
In accordance with another aspect, eaches contained in a single product tote of the one or more product totes have different stock keeping units (SKUs).
In accordance with another aspect, eaches contained in a single sub-tote of the one or more sub-totes have the same SKUs.
In accordance with another aspect, the method further comprises the physical store receiving the one or more product totes at a receiving section.
In accordance with another aspect, the physical store comprises a building having a receiving section, an automated fulfillment section, a shopping section including a checkout section, and a delivery section.
In accordance with another aspect, the method further comprises the physical store receiving the product tote at the receiving section.
In accordance with another aspect, an automated order fulfillment system at the physical store picks one or more fungible goods from the product tote eaches and organizes the one or more fungible goods into one or more order totes for delivery to customers in the physical store.
In accordance with another aspect, a plurality of physical stores are in networked communication with the DC, enabling replenishment of eaches based on real-time demand from the plurality of physical stores and wherein the plurality of physical stores utilize sub-totes and totes of a standardized size.
In accordance with another aspect, the method is fully automated without human interaction.
These and other characteristics of the present disclosed embodiments will be more fully understood by reference to the following detailed description in conjunction with the attached drawings, in which:
Compared to a self-service store, the automated retail store as taught in U.S. Provisional Patent Application Ser. No. 62/423,614 entitled “Automated-Service Retail System and Method” filed Nov. 17, 2016, (hereby incorporated by reference herein in its entirety), enables dramatic increases in both space and labor efficiencies in the construction and the operation of a retail store, due to the replacement of the self-service packaged-goods market with a robotic each-pick system such as the one taught in “Storage and Retrieval System”. A key element of that each-pick system is the “Tote/Sub-tote” containment architecture in which the primary storage container (“tote”) can be subdivided into multiple compartments that each contain a different product through the use of a secondary container (“sub-tote”). The key reason for this architecture, in preference to the widely used alternative method of divider partitions, is that the totes and sub-totes are designed to be manipulated by robots, so that eaches can be transferred between totes simply by transferring the sub-totes containing said eaches.
This capability also makes possible a completely automated method of replenishing a network of retail stores, especially a network of automated retail stores, that is a significant improvement over the conventional method of replenishing stores with the shipping cases of products received from the manufacturers.
Because inventory is relatively high in traditional storage facilities based on case level inventory storage and other inefficiencies, the replenishment times or frequencies are long, whereas with the present embodiment inventory may be smaller and replenished more frequently and with more granularities, such that inventory accuracy is improved with reduced inventory levels as will be described herein. The present example embodiment reduces inventory and associated storage space requirements by leveraging a tote/sub-tote containment architecture of the automated each-picking system used in automated stores to change the process of fulfilling store-replenishment orders at the DC. In accordance with an example embodiment of the present invention, the DC is an automated DC. In the method and system of the present invention, cases of product arriving on pallets from one or more suppliers or supplying manufacturers are first opened and the contained eaches are transferred to sub-totes at one or more decanting workstations. This process is called “decanting” and is preferably performed as soon as cases are received at the DC. While not essential to the disclosed embodiment, it may be advantageous to automate this decanting process so that robots perform the transfer of goods from the cases to the sub-totes rather than humans. As would be appreciated by one skilled in the art, the present invention is configured to perform automated, semi-automated, or human decanting.
Upon completion of the decanting process, the sub-totes filled during the decanting process are loaded into “product totes”. Since multiple cases of the same goods or SKUs will be typically be decanted consecutively (having arrived on the same pallet), these product totes will typically be single product or single SKU totes. That is, all of the eaches in the tote will be the same SKU, though they will typically be distributed over multiple sub-totes within the tote.
A feature of the example embodiment is that the eaches of a given SKU can be decanted into multiple sizes of sub-totes, such that they are not limited to a single size sub-tote. The replenishment quantity for each SKU can therefore vary by store based on a calculated MSRQ for that SKU in each store. A further feature of the example embodiment is that the sub-totes contain some number of eaches less than an amount that comes shipped in a case, and including down to a single each per sub-tote.
In accordance with an example embodiment of the present invention, once a tote has been filled to capacity with product, it is then transferred by mobile robots from the decanting workstation and placed into a DC storage structure where the inventory remains available to fill replenishment orders from remote stores. The order-fulfillment process for those orders is nearly identical to the each-picking process performed at the store to fulfill customer orders, as discussed in U.S. Provisional Patent Application Ser. No. 62/423,614 incorporated herein. In particular, mobile robots bring product totes (“P-totes”), from the storage structure, and order totes (“O-totes”) to a workstation where eaches are transferred from the P-totes to O-totes. The difference is that in this example embodiment the transfer is performed by a mobile robot handling sub-totes containing the eaches instead of human or robotic pickers handling eaches directly. As would be appreciated by one skilled in the art, this process can similarly be performed by human pickers without departing from the scope of the present invention.
The fulfilled O-totes, each typically containing multiple SKUs contained in multiple single SKU sub-totes, are shipped from the DC to a network of automated stores supported by the DC. At each store, the delivered O-totes are received as P-totes and inducted directly into the automated each-pick system operating within the store, where they are held in storage ready to allocate eaches to fill customer orders as discussed in U.S. Provisional Patent Application Ser. No. 62/423,614 incorporated herein.
The automated retail supply chain of the present example embodiment includes an automated DC and a network of automated retail stores which are supplied with replenishment inventory from the DC.
The flowchart illustrates where a truck or other suitable transport may arrive at a distribution center, for example, with eaches of goods in cases on pallets. The pallets may be scanned to identify case information. A decision is made as to what type of decanting workstation the pallet is to be directed and the pallet is directed to the appropriate decanting workstation. For example, the decanting workstation can be one of a manual, automatic, or semi-automatic decanting workstation. A first robot transfers case(s) from the pallet to a box opener where the box is automatically opened/cut and the first robot disposes of the top of the case. A second robot selects the correct corresponding size sub-tote and places the sub-tote in a tote (e.g., a product tote). The second robot then place eaches from the open case into the sub-tote and when the tote is full of filled sub-totes a mobile robot stores the completed (or partially completed) tote in the storage rack system. The selection of sub-tote size(s) and/or mix of sizes can be a function of the product velocity requirements for a given store to be supplied. For example, mixes of sub-tote sizes may be provided as a function of different stores to be supplied based on product velocity requirements of those stores. Each of these steps is represented in the flow of
When an order is received from a given store for goods or creating demand for goods, the order fulfillment process depicted in
In accordance with an example embodiment of the present invention, a first articulated arm robot uses a camera mounted on its distal link to identify the position of cases situated on the pallet. The first robot adjusts its variable width gripper to the size of the case previously identified, and uses its camera to grip and lift a case from the pallet and place it onto a first conveyor.
The case is conveyed into a box cutter that uses blades on a rotating head to cut along the bottom perimeter of the case. The box cutter uses the identification of the case, along with a camera to guide the rotating head around the perimeter of the case. Alternatively, the box cutter may use stationary blades that cut the bottom of the box as it is conveyed in two orthogonal directions through the box cutter.
Once the case is cut along its bottom perimeter, it is conveyed onto a second orthogonal conveyor where the top and sides of the case are lifted upward and off by the first articulated arm robot. The first robot disposes the top and sides of the case onto a third cardboard conveyor shown underneath the second conveyor. Thereafter, the cardboard is transported on a third conveyor to a location where it is collected to be recycled.
A second articulated arm robot uses a variable width end-effector to load a sub-tote, from stacks of variable sized sub-totes, and places the selected sub-tote into a tote. The size of the sub-tote selected corresponds to the identification of the eaches to be transferred and the desired quantity of eaches to be stored within a sub-tote. For example, the quantity of eaches placed in a sub-tote is calculated based on the inventory rules and velocity of the particular eaches at the retail stores served by the automated DC. Sub-totes of varying size and configuration may be placed within a tote to maximize storage density and decanting efficiency. The identification mark (e.g. alphanumeric or bar code) is read by the camera mounted on the second robot and stored.
Once the sub-tote is placed into the tote, the second robot adjusts its variable pitch vacuum cup gripper to the eaches to be picked. The second robot uses a camera mounted on its distal link to position the grip and transfer the eaches from the opened case into the sub-tote. As would be appreciated by one skilled in the art, each picking grippers other than vacuum may be alternatively used by the second robot (e.g. mechanical, conformal, etc.). The second robot may also be configured to automatically change gripper types based on the eaches to be transferred.
After all eaches are transferred from the open case, the second conveyor transports the bottom of the case off of its end, and down onto the third cardboard transporting conveyor.
A key feature of the example embodiment of the present invention is the ability to load the eaches of a given SKU into sub-totes of different sizes at the decanting workstation(s), which allows the replenishment quantity of each SKU to vary by store. In accordance with an example embodiment of the present invention, a standard replenishment quantity (“SRQ”) can be calculated for each SKU for each store, based on an MSRQ for that SKU/store. As an example, if a ⅛-sub-tote can hold four eaches of a given SKU (“XYZ”), a ¼ sub-tote can hold eight eaches of that SKU, and a ½ sub-tote can hold sixteen eaches of that SKU. Furthermore, in this example, the MSRQ for all stores supported by a given DC is five average days of supply across all SKUs. In this example, then, the SRQ for SKU XYZ will be a ⅛ sub-tote containing four eaches for all stores that sell no more than 5.6 XYZ eaches per week (4/(5/7)=5.6). For all stores that sell between 5.7 and 11.2 eaches per average week, the SRQ would be a ¼ sub-totes containing eight eaches, and stores that sell between 11.3 and 22.4 XYZ eaches per average week would use an SRQ of ½ sub-totes when ordering SKU XYZ from the DC. Note that the SRQ can also be a combination of multiple sub-totes. For example, if a store sells between 22.5 and 28.0 eaches per average week of SKU XYZ, the SRQ would be a combination of ½ sub-tote containing sixteen eaches plus a ¼ sub-tote containing four eaches.
In accordance with an example embodiment of the present invention, the distribution of sub-tote sizes into which a total number of eaches of a given SKU are loaded at the decanting workstation should generally align with the distribution of sub-tote sizes produced by summing all of the SRQs for that SKU across all stores supported by the DC. For example, if there are one-hundred stores supported by a DC, and a summation of all of the sub-tote sizes in the SRQs for those stores for SKU XYZ yields forty ⅛-sub-totes, sixty ¼-sub-totes, and ten ½-sub-totes, when cases of SKU XYZ are being decanted, then, 36% of the sub-totes into which the eaches are loaded should be ¼-sub-totes (40/110=0.36), 55% should be ¼-sub-totes (60/110=0.55), and 9% should be ½-sub-totes (10/110=0.09).
The next step in the material flow according to the illustrative embodiment is to place totes loaded with filled sub-totes into the storage structure, and this step is performed by one or more mobile robots. In particular, once a tote is filled with sub-totes containing eaches, the filled tote is retrieved and placed in the storage structure or rack by a mobile robot as described in U.S. patent application Ser. No. 15/171,802 having a filing date of Jun. 2, 2016 and entitled “Storage and Retrieval System” hereby incorporated by reference herein in its entirety. These Totes may be the product totes used in the order-fulfillment process.
The next step in the material flow is the order-fulfillment process in which replenishment sub-totes are transferred from product totes to order totes, and this process is also performed entirely robotically.
The mobile robots deliver the totes (the product totes) containing sub-totes containing eaches to a picking workstation as shown in
The next step in the material flow according to the present disclosed embodiment is to ship the filled replenishment totes from the DC to the stores.
The portable storage racks are transported using a mobile rack robot configured to move the portable storage racks. In particular, the mobile rack robot positions itself underneath the portable storage rack, lifts the portable storage rack slightly, and uses computer navigation to move the portable storage rack to a destination. The mobile rack robot is capable of entering the space underneath the portable storage rack either between its support legs at its narrow end, or between its support legs along its length. The mobile rack robot may alternatively be controlled by a human operator.
The portable storage rack may alternatively be manually transported on wheels attached to it, or using a human-guided wheeled lift.
The open side of the portable storage rack where mobile robots are able to load totes that have latches that secure totes from sliding out of their storage position when not affixed to the storage structure. Moreover, the top of the trailer may have beams along the length of the trailer which help guide the portable storage racks into the trailer and prevent them from tipping during transport.
The rail structure and storage structure at the retail store contain the same registration features to permit the portable storage rack to be quickly and accurately aligned with it, and totes transferred into the storage structure. After the incoming full totes have been transferred in the store's storage structure, empty totes with empty sub-totes can be transferred onto the portable storage rack for transport back to the automated DC.
In the scenario where ample space is not available to transport the totes and sub-totes back to the automated DC on the portable storage rack, the store may nest the sub-totes and totes using an automated picking workstation normally used for picking eaches or transferring sub-totes between totes to increase storage density, i.e. defragmenting the stored sub-totes. The nested totes and sub-totes may be placed on the truck for delivery back to the automated DC.
Once at the retail the store, the portable storage rack is removed from the truck and affixed to the storage structure at the store. At the store, mobile robots transfer the totes with sub-totes containing eaches into the storage structure of the automated each picking system operating within the store.
The remaining steps in the product flow according to the disclosed embodiment involve the fulfillment of customer orders at each-picking workstations, and the transfer of completed orders to customers, as described in U.S. patent application Ser. No. 15/171,802 having a filing date of Jun. 2, 2016 and entitled “Storage and Retrieval System” which is hereby incorporated by reference in its entirety.
While the decanting workstation, picking workstation, storage rack and portable rack are all illustrated and described as singular for simplicity, it is expected an automated distribution center contains multiples of each that interact.
As utilized herein, the terms “robot” and “bot” are utilized interchangeably herein in accordance with their conventional meanings, specifically a useful machine or device, namely, a programmable, multifunctional device capable of moving material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks, allocations, designations, or the like; and/or the machine or device being capable of carrying out a simple or complex series of actions; and/or the machine or device being capable of performing tasks that may or may not otherwise be work of a person; and/or the machine or device being a programmable mechanical device capable of performing tasks and interacting with its environment, without the aid of human interaction; and the machine or device being capable of operating automatically or being controlled by a computer.
Numerous modifications and alternative embodiments of the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode for carrying out the present invention. Details of the structure may vary substantially without departing from the spirit of the present invention, and exclusive use of all modifications is reserved. Within this specification embodiments have been described in a way which enables a clear and concise specification to be written, but it is intended and will be appreciated that embodiments may be variously combined or separated without parting from the invention. It is intended that the present invention be limited only to the extent required by the applicable rules of law.
The present application claims priority to U.S. patent application Ser. No. 15/826,045, filed on Nov. 29, 2017, entitled “AUTOMATED RETAIL SUPPLY CHAIN AND INVENTORY MANAGEMENT SYSTEM,” which application claims priority to U.S. Provisional Patent Application No. 62/427,652, filed on Nov. 29, 2016, entitled “AUTOMATED RETAIL SUPPLY CHAIN AND INVENTORY MANAGEMENT SYSTEM,” which applications are incorporated by reference herein in their entirety. This application relates to U.S. Provisional Patent Application Ser. No. 62/423,614 entitled “Automated-Service Retail System and Method” and having a file date of Nov. 17, 2016, for all subject matter common to both applications. The disclosure of said provisional application is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3927773 | Bright | Dec 1975 | A |
4007843 | Lubbers | Feb 1977 | A |
4221076 | Ozawa | Sep 1980 | A |
4415975 | Burt | Nov 1983 | A |
4428708 | Burt | Jan 1984 | A |
5143246 | Johnson | Sep 1992 | A |
5179329 | Nishikawa et al. | Jan 1993 | A |
5433293 | Sager | Jul 1995 | A |
5472309 | Bernard et al. | Dec 1995 | A |
5501295 | Muller et al. | Mar 1996 | A |
5526940 | Shea et al. | Jun 1996 | A |
5551823 | Maruyama | Sep 1996 | A |
5595264 | Trotta, Jr. | Jan 1997 | A |
5636966 | Lyon et al. | Jun 1997 | A |
5642976 | Konstant | Jul 1997 | A |
5890136 | Kipp | Mar 1999 | A |
5953234 | Singer et al. | Sep 1999 | A |
5996316 | Kirschner | Dec 1999 | A |
6289260 | Bradley et al. | Sep 2001 | B1 |
6325586 | Loy | Dec 2001 | B1 |
6327576 | Ogasawara | Dec 2001 | B1 |
6494313 | Trescott | Dec 2002 | B1 |
6539876 | Campbell et al. | Apr 2003 | B1 |
6671580 | Campbell et al. | Dec 2003 | B2 |
6729836 | Stingel, III et al. | May 2004 | B2 |
6744436 | Chirieleison, Jr. et al. | Jun 2004 | B1 |
6805526 | Stefani | Oct 2004 | B2 |
6895301 | Mountz | May 2005 | B2 |
7054832 | Vallabh | May 2006 | B1 |
7101139 | Benedict | Sep 2006 | B1 |
7110855 | Leishman | Sep 2006 | B2 |
7139637 | Waddington et al. | Nov 2006 | B1 |
7246706 | Shakes et al. | Jul 2007 | B1 |
7255525 | Smith et al. | Aug 2007 | B2 |
7381022 | King | Jun 2008 | B1 |
7532947 | Waddington et al. | May 2009 | B2 |
7591630 | Lert, Jr. | Sep 2009 | B2 |
7603299 | Dewey, Jr. et al. | Oct 2009 | B1 |
7640863 | Minges | Jan 2010 | B2 |
7751928 | Antony et al. | Jul 2010 | B1 |
7861844 | Hayduchok et al. | Jan 2011 | B2 |
7894932 | Mountz et al. | Feb 2011 | B2 |
7894933 | Mountz et al. | Feb 2011 | B2 |
7896243 | Herskovitz | Mar 2011 | B2 |
7931431 | Benedict et al. | Apr 2011 | B2 |
7938324 | Tamarkin et al. | May 2011 | B2 |
7991505 | Lert, Jr. et al. | Aug 2011 | B2 |
8104601 | Hayduchok et al. | Jan 2012 | B2 |
8201737 | Palacios Durazo et al. | Jun 2012 | B1 |
8276740 | Hayduchok et al. | Oct 2012 | B2 |
8311902 | Mountz et al. | Nov 2012 | B2 |
8327609 | Krizmanic et al. | Dec 2012 | B2 |
8425173 | Lert et al. | Apr 2013 | B2 |
8447665 | Schoenharl et al. | May 2013 | B1 |
8483869 | Wurman et al. | Jul 2013 | B2 |
8527325 | Atreya et al. | Sep 2013 | B1 |
8579574 | Hanel | Nov 2013 | B2 |
8594835 | Lert et al. | Nov 2013 | B2 |
8622194 | DeWitt et al. | Jan 2014 | B2 |
8626335 | Wurman et al. | Jan 2014 | B2 |
8639531 | Hasan et al. | Jan 2014 | B2 |
8690510 | Razumov | Apr 2014 | B1 |
8694152 | Cyrulik et al. | Apr 2014 | B2 |
8718814 | Clark et al. | May 2014 | B1 |
8721250 | Razumov | May 2014 | B2 |
8721251 | Razumov | May 2014 | B1 |
8734079 | Razumov | May 2014 | B1 |
8738177 | Van Ooyen et al. | May 2014 | B2 |
8740538 | Lert et al. | Jun 2014 | B2 |
8831984 | Hoffman et al. | Sep 2014 | B2 |
8892240 | Vliet et al. | Nov 2014 | B1 |
8965562 | Wurman et al. | Feb 2015 | B1 |
8972045 | Mountz et al. | Mar 2015 | B1 |
8983647 | Dwarakanath et al. | Mar 2015 | B1 |
9008828 | Worsley | Apr 2015 | B2 |
9008829 | Worsley | Apr 2015 | B2 |
9008830 | Worsley | Apr 2015 | B2 |
9010517 | Hayduchok et al. | Apr 2015 | B2 |
9020632 | Naylor | Apr 2015 | B2 |
9037286 | Lert | May 2015 | B2 |
9051120 | Lert et al. | Jun 2015 | B2 |
9096375 | Lert et al. | Aug 2015 | B2 |
9111251 | Brazeau | Aug 2015 | B1 |
9120622 | Elazary et al. | Sep 2015 | B1 |
9129250 | Sestini et al. | Sep 2015 | B1 |
9139363 | Lert | Sep 2015 | B2 |
9147208 | Argue et al. | Sep 2015 | B1 |
9216857 | Kalyan et al. | Dec 2015 | B1 |
9242798 | Guan | Jan 2016 | B2 |
9242799 | O'Brien et al. | Jan 2016 | B1 |
9260245 | Este et al. | Feb 2016 | B2 |
9321591 | Lert et al. | Apr 2016 | B2 |
9330373 | Mountz et al. | May 2016 | B2 |
9334113 | Naylor | May 2016 | B2 |
9334116 | DeWitt et al. | May 2016 | B2 |
9336509 | Arun Singhal | May 2016 | B1 |
9378482 | Pikler et al. | Jun 2016 | B1 |
9409664 | Vliet et al. | Aug 2016 | B1 |
9423796 | Sullivan et al. | Aug 2016 | B2 |
9428295 | Vliet et al. | Aug 2016 | B2 |
9466045 | Kumar | Oct 2016 | B1 |
9487356 | Aggarwal | Nov 2016 | B1 |
9550624 | Khodl et al. | Jan 2017 | B2 |
9558472 | Tubilla Kuri | Jan 2017 | B1 |
9626709 | Koch et al. | Apr 2017 | B2 |
9630777 | Yamashita | Apr 2017 | B2 |
9733646 | Nusser | Aug 2017 | B1 |
9751693 | Battles et al. | Sep 2017 | B1 |
9815625 | DeWitt et al. | Nov 2017 | B2 |
9821959 | Hognaland | Nov 2017 | B2 |
9827683 | Hance et al. | Nov 2017 | B1 |
9852396 | Jones et al. | Dec 2017 | B2 |
9978036 | Eller | May 2018 | B1 |
10000338 | Lert, Jr. | Jun 2018 | B2 |
10127514 | Napoli | Nov 2018 | B2 |
10189641 | Hognaland | Jan 2019 | B2 |
10192195 | Brazeau | Jan 2019 | B1 |
10229385 | Evers et al. | Mar 2019 | B2 |
10336543 | Sills et al. | Jul 2019 | B1 |
10360531 | Stallman et al. | Jul 2019 | B1 |
10482421 | Ducrou et al. | Nov 2019 | B1 |
10579965 | Meurer | Mar 2020 | B2 |
20010049690 | McConnell | Dec 2001 | A1 |
20020059121 | Schneider et al. | May 2002 | A1 |
20020077937 | Lyons et al. | Jun 2002 | A1 |
20020082887 | Boyert et al. | Jun 2002 | A1 |
20020133415 | Zarovinsky | Sep 2002 | A1 |
20020143669 | Scheer | Oct 2002 | A1 |
20030110104 | King et al. | Jun 2003 | A1 |
20030197061 | Din | Oct 2003 | A1 |
20040010337 | Mountz | Jan 2004 | A1 |
20040010339 | Mountz | Jan 2004 | A1 |
20040024730 | Brown et al. | Feb 2004 | A1 |
20040084527 | Bong | May 2004 | A1 |
20040111337 | Feeney et al. | Jun 2004 | A1 |
20040249497 | Saigh et al. | Dec 2004 | A1 |
20040254825 | Hsu et al. | Dec 2004 | A1 |
20050035694 | Stevens | Feb 2005 | A1 |
20050043850 | Stevens et al. | Feb 2005 | A1 |
20050047895 | Lert | Mar 2005 | A1 |
20050060246 | Lastinger et al. | Mar 2005 | A1 |
20050096936 | Lambers | May 2005 | A1 |
20050108114 | Kaled | May 2005 | A1 |
20050149226 | Stevens et al. | Jul 2005 | A1 |
20050182695 | Lubow et al. | Aug 2005 | A1 |
20050256787 | Wadawadigi et al. | Nov 2005 | A1 |
20050267791 | LaVoie et al. | Dec 2005 | A1 |
20050278062 | Janert et al. | Dec 2005 | A1 |
20060020366 | Bloom | Jan 2006 | A1 |
20060108419 | Som | May 2006 | A1 |
20060182548 | Gretsch et al. | Aug 2006 | A1 |
20060257236 | Stingel, III et al. | Nov 2006 | A1 |
20070011053 | Yap | Jan 2007 | A1 |
20070016496 | Bar et al. | Jan 2007 | A1 |
20070127691 | Lert, Jr. | Jun 2007 | A1 |
20070162353 | Borders et al. | Jul 2007 | A1 |
20070210164 | Conlon et al. | Sep 2007 | A1 |
20070244758 | Xie | Oct 2007 | A1 |
20070276535 | Haag | Nov 2007 | A1 |
20070293978 | Wurman | Dec 2007 | A1 |
20070294029 | D'Andrea et al. | Dec 2007 | A1 |
20080040244 | Ricciuti et al. | Feb 2008 | A1 |
20080041947 | Hollister et al. | Feb 2008 | A1 |
20080131241 | King | Jun 2008 | A1 |
20080131255 | Hessler et al. | Jun 2008 | A1 |
20080181753 | Bastian et al. | Jul 2008 | A1 |
20080215180 | Kota | Sep 2008 | A1 |
20090074545 | Lert, Jr. | Mar 2009 | A1 |
20090149985 | Chirnomas | Jun 2009 | A1 |
20090157472 | Burazin et al. | Jun 2009 | A1 |
20090249749 | Schill et al. | Oct 2009 | A1 |
20090276264 | Pandit et al. | Nov 2009 | A1 |
20100010902 | Casey | Jan 2010 | A1 |
20100060455 | Frabasile | Mar 2010 | A1 |
20100076591 | Lert, Jr. | Mar 2010 | A1 |
20100114790 | Strimling et al. | May 2010 | A1 |
20100234980 | Lapre | Sep 2010 | A1 |
20100262278 | Winkler | Oct 2010 | A1 |
20100310344 | Hinnen et al. | Dec 2010 | A1 |
20100316468 | Lert et al. | Dec 2010 | A1 |
20100316469 | Lert et al. | Dec 2010 | A1 |
20100316470 | Lert et al. | Dec 2010 | A1 |
20100322746 | Lert | Dec 2010 | A1 |
20100322747 | Lert et al. | Dec 2010 | A1 |
20110008138 | Yamashita | Jan 2011 | A1 |
20110238207 | Bastian, II et al. | Sep 2011 | A1 |
20110243707 | Dumas et al. | Oct 2011 | A1 |
20110320034 | Dearlove et al. | Dec 2011 | A1 |
20120029683 | Keller et al. | Feb 2012 | A1 |
20120029685 | Keller et al. | Feb 2012 | A1 |
20120101627 | Lert | Apr 2012 | A1 |
20120143427 | Hoffman et al. | Jun 2012 | A1 |
20120150340 | Suess et al. | Jun 2012 | A1 |
20120173351 | Hanson et al. | Jul 2012 | A1 |
20120186942 | Toebes et al. | Jul 2012 | A1 |
20120195720 | Sullivan et al. | Aug 2012 | A1 |
20120219397 | Baker | Aug 2012 | A1 |
20120298688 | Stiernagle | Nov 2012 | A1 |
20120330458 | Weiss | Dec 2012 | A1 |
20130087610 | Shin et al. | Apr 2013 | A1 |
20130181586 | Hognaland | Jul 2013 | A1 |
20130226649 | Grissom | Aug 2013 | A1 |
20130226718 | Ascarrunz et al. | Aug 2013 | A1 |
20130235206 | Smith et al. | Sep 2013 | A1 |
20130246229 | Mountz et al. | Sep 2013 | A1 |
20130310967 | Olson et al. | Nov 2013 | A1 |
20130317642 | Asaria et al. | Nov 2013 | A1 |
20130346204 | Wissner-Gross et al. | Dec 2013 | A1 |
20140003727 | Lortz et al. | Jan 2014 | A1 |
20140040075 | Perry et al. | Feb 2014 | A1 |
20140052498 | Marshall et al. | Feb 2014 | A1 |
20140062699 | Heine et al. | Mar 2014 | A1 |
20140088758 | Lert et al. | Mar 2014 | A1 |
20140100769 | Wurman et al. | Apr 2014 | A1 |
20140100999 | Mountz | Apr 2014 | A1 |
20140136218 | Bolene et al. | May 2014 | A1 |
20140143099 | Wilkins | May 2014 | A1 |
20140156553 | Leach et al. | Jun 2014 | A1 |
20140212249 | Kawano | Jul 2014 | A1 |
20140244026 | Neiser | Aug 2014 | A1 |
20140257555 | Bastian, II | Sep 2014 | A1 |
20140271063 | Lert et al. | Sep 2014 | A1 |
20140279294 | Field-Darragh et al. | Sep 2014 | A1 |
20140288696 | Lert | Sep 2014 | A1 |
20140308098 | Lert et al. | Oct 2014 | A1 |
20140324491 | Banks et al. | Oct 2014 | A1 |
20140330603 | Corder et al. | Nov 2014 | A1 |
20140336814 | Moore et al. | Nov 2014 | A1 |
20140343717 | Dorval et al. | Nov 2014 | A1 |
20140350715 | Gopalakrishnan et al. | Nov 2014 | A1 |
20140351101 | Danelski | Nov 2014 | A1 |
20140365341 | MacLaurin et al. | Dec 2014 | A1 |
20150032252 | Galluzzo et al. | Jan 2015 | A1 |
20150051994 | Ward et al. | Feb 2015 | A1 |
20150071743 | Lert | Mar 2015 | A1 |
20150134490 | Collin | May 2015 | A1 |
20150154535 | Wappler et al. | Jun 2015 | A1 |
20150170256 | Pettyjohn et al. | Jun 2015 | A1 |
20150178671 | Jones et al. | Jun 2015 | A1 |
20150178673 | Penneman | Jun 2015 | A1 |
20150220896 | Carr et al. | Aug 2015 | A1 |
20150262118 | Grissom | Sep 2015 | A1 |
20150266672 | Lert et al. | Sep 2015 | A1 |
20150286967 | Lert et al. | Oct 2015 | A1 |
20150291357 | Razumov | Oct 2015 | A1 |
20150294333 | Avegliano et al. | Oct 2015 | A1 |
20150307279 | Almada et al. | Oct 2015 | A1 |
20150310447 | Shaw | Oct 2015 | A1 |
20150375938 | Lert et al. | Dec 2015 | A9 |
20160016733 | Lert | Jan 2016 | A1 |
20160031644 | Schubilske | Feb 2016 | A1 |
20160055452 | Qin | Feb 2016 | A1 |
20160063604 | Shaffer et al. | Mar 2016 | A1 |
20160075512 | Lert | Mar 2016 | A1 |
20160086255 | Sainfort et al. | Mar 2016 | A1 |
20160101940 | Grinnell | Apr 2016 | A1 |
20160107838 | Swinkels et al. | Apr 2016 | A1 |
20160110702 | Landers, Jr. et al. | Apr 2016 | A1 |
20160129592 | Saboo et al. | May 2016 | A1 |
20160140488 | Lindbo | May 2016 | A1 |
20160145045 | Mountz et al. | May 2016 | A1 |
20160167227 | Wellman | Jun 2016 | A1 |
20160171592 | Pugh et al. | Jun 2016 | A1 |
20160194151 | Lindbo et al. | Jul 2016 | A1 |
20160223339 | Pellow et al. | Aug 2016 | A1 |
20160236867 | Brazeau et al. | Aug 2016 | A1 |
20160244262 | O'Brien et al. | Aug 2016 | A1 |
20160253740 | Goulart | Sep 2016 | A1 |
20160260158 | High et al. | Sep 2016 | A1 |
20160299782 | Jones et al. | Oct 2016 | A1 |
20160304281 | Elazary et al. | Oct 2016 | A1 |
20160307153 | Loken et al. | Oct 2016 | A1 |
20160311617 | Van Den Berk | Oct 2016 | A1 |
20160314431 | Quezada | Oct 2016 | A1 |
20160325933 | Stiernagle et al. | Nov 2016 | A1 |
20160327941 | Stiernagle et al. | Nov 2016 | A1 |
20160342931 | Muench | Nov 2016 | A1 |
20160347545 | Lindbo et al. | Dec 2016 | A1 |
20160355337 | Lert et al. | Dec 2016 | A1 |
20160364786 | Wankhede | Dec 2016 | A1 |
20160371650 | Schmidt et al. | Dec 2016 | A1 |
20170036798 | Prahlad et al. | Feb 2017 | A1 |
20170043953 | Battles | Feb 2017 | A1 |
20170066592 | Bastian, II et al. | Mar 2017 | A1 |
20170068973 | Sinkel | Mar 2017 | A1 |
20170088360 | Brazeau et al. | Mar 2017 | A1 |
20170113910 | Becchi et al. | Apr 2017 | A1 |
20170132559 | Jones et al. | May 2017 | A1 |
20170137222 | Lert, Jr. | May 2017 | A1 |
20170137223 | Lert, Jr. | May 2017 | A1 |
20170158430 | Raizer | Jun 2017 | A1 |
20170166356 | Tubilla Kuri | Jun 2017 | A1 |
20170166399 | Stubbs et al. | Jun 2017 | A1 |
20170183159 | Weiss | Jun 2017 | A1 |
20170185933 | Adulyasak et al. | Jun 2017 | A1 |
20170185955 | Hufschmid et al. | Jun 2017 | A1 |
20170200108 | Au et al. | Jul 2017 | A1 |
20170206480 | Naumann et al. | Jul 2017 | A1 |
20170213186 | Grifoni | Jul 2017 | A1 |
20170220995 | Paulweber et al. | Aug 2017 | A1 |
20170228701 | Wosk et al. | Aug 2017 | A1 |
20170260008 | DeWitt et al. | Sep 2017 | A1 |
20170267452 | Goren et al. | Sep 2017 | A1 |
20170269607 | Fulop | Sep 2017 | A1 |
20170278047 | Welty et al. | Sep 2017 | A1 |
20170285648 | Welty et al. | Oct 2017 | A1 |
20170297820 | Grinnell et al. | Oct 2017 | A1 |
20170301004 | Chirnomas | Oct 2017 | A1 |
20170313514 | Lert, Jr. et al. | Nov 2017 | A1 |
20170316233 | Kherani et al. | Nov 2017 | A1 |
20170320102 | McVaugh et al. | Nov 2017 | A1 |
20170322561 | Stiernagle | Nov 2017 | A1 |
20170323250 | Lindbo et al. | Nov 2017 | A1 |
20170330142 | Kanellos et al. | Nov 2017 | A1 |
20170330270 | Kanellos et al. | Nov 2017 | A1 |
20170334646 | High et al. | Nov 2017 | A1 |
20170369244 | Battles et al. | Dec 2017 | A1 |
20180005173 | Elazary et al. | Jan 2018 | A1 |
20180005174 | Dixon et al. | Jan 2018 | A1 |
20180029797 | Hance et al. | Feb 2018 | A1 |
20180032949 | Galluzzo et al. | Feb 2018 | A1 |
20180068139 | Aalund | Mar 2018 | A1 |
20180068255 | Hance | Mar 2018 | A1 |
20180127212 | Jarvis | May 2018 | A1 |
20180130015 | Jones | May 2018 | A1 |
20180137452 | Khatravath et al. | May 2018 | A1 |
20180150793 | Lert, Jr. | May 2018 | A1 |
20180182054 | Yao et al. | Jun 2018 | A1 |
20180211203 | Greenberg | Jun 2018 | A1 |
20180237221 | Lindbo | Aug 2018 | A1 |
20180237222 | Issing et al. | Aug 2018 | A1 |
20180300680 | Undernehr et al. | Oct 2018 | A1 |
20180314991 | Grundberg | Nov 2018 | A1 |
20180319590 | Lindbo | Nov 2018 | A1 |
20180342031 | Tada et al. | Nov 2018 | A1 |
20190026770 | Murugesan et al. | Jan 2019 | A1 |
20190139637 | Ceh | May 2019 | A1 |
20190197451 | Balasingham | Jun 2019 | A1 |
20190389659 | Grinnell et al. | Dec 2019 | A1 |
20210032034 | Kalouche | Feb 2021 | A1 |
20210224731 | Lert, Jr. | Jul 2021 | A1 |
20220274776 | Lert, Jr. | Sep 2022 | A1 |
20220315333 | Lert, Jr. | Oct 2022 | A1 |
20220343269 | Lert, Jr. | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
110100256 | Aug 2019 | CN |
3624033 | Aug 1987 | DE |
102012100354 | Jul 2013 | DE |
0302205 | Feb 1989 | EP |
1348646 | Oct 2003 | EP |
2650237 | Nov 2014 | EP |
2995579 | Mar 2016 | EP |
2651786 | May 2016 | EP |
2651787 | May 2016 | EP |
3056454 | Aug 2016 | EP |
3855376 | Jul 2021 | EP |
H0642810 | Jun 1994 | JP |
H1135107 | Feb 1999 | JP |
2002160813 | Jun 2002 | JP |
2007246226 | Sep 2007 | JP |
2019537183 | Dec 2019 | JP |
2022008553 | Jan 2022 | JP |
0068856 | Nov 2000 | WO |
2005097550 | Oct 2005 | WO |
2007067868 | Jun 2007 | WO |
2010100513 | Sep 2010 | WO |
20100118412 | Oct 2010 | WO |
2014166640 | Oct 2014 | WO |
2015005873 | Jan 2015 | WO |
2016172793 | Nov 2016 | WO |
2016199033 | Dec 2016 | WO |
2017064401 | Apr 2017 | WO |
2018102444 | Jun 2018 | WO |
2018156966 | Aug 2018 | WO |
Entry |
---|
Final Office Action dated Oct. 20, 2021 in U.S. Appl. No. 16/594,647. |
Office Action dated Jun. 18, 2021 in U.S. Appl. No. 15/903,993. |
Office Action dated Dec. 24, 2020 in U.S. Appl. No. 16/273,449. |
Notice of Allowance and Fee(s) Due dated Apr. 1, 2021 in U.S. Appl. No. 15/816,832. |
Notice of Allowance and Fee(s) Due dated Feb. 11, 2021 in U.S. Appl. No. 15/903,993. |
C. Wurll, “Mixed Case Palletizing with Industrial Robots,” Proceedings of ISR 2016: 47st International Symposium on Robotics, Munich, Germany, pp. 1-6, Jun. 21-22, 2016. |
Office Action dated Dec. 5, 2022 in Japanese Patent Application No. 2021-156451. |
Non-Final Rejection dated Jan. 12, 2016 in U.S. Appl. No. 14/860,410. |
Amendment filed Apr. 8, 2016 in U.S. Appl. No. 14/860,410. |
Non-Final Rejection dated Jul. 20, 2016 in U.S. Appl. No. 14/860,410. |
Amendment filed Sep. 27, 2016 in U.S. Appl. No. 14/860,410. |
Notice of Allowance and Fees Due dated Nov. 10, 2016 in U.S. Appl. No. 14/860,410. |
Non-Final Rejection dated Apr. 10, 2017 in U.S. Appl. No. 15/421,208. |
Amendment filed Sep. 11, 2017 in U.S. Appl. No. 15/421,208. |
Supplemental Amendment filed Oct. 12, 2017 in U.S. Appl. No. 15/421,208. |
Notice of Allowance and Fees Due dated Oct. 5, 2017 in U.S. Appl. No. 15/421,239. |
International Search Report dated Oct. 7, 2016 in International Application No. PCT/US2016/035547. |
Restriction Requirement dated Nov. 3, 2017 in U.S. Appl. No. 15/171,802, filed Jun. 2, 2016. |
International Search Report and Written Opinion dated Sep. 6, 2017 in International Patent Application No. PCT/US2017/032171. |
English language Abstract for WO2014166640 published Oct. 16, 2014. |
U.S. Appl. No. 15/699,700, filed Sep. 8, 2017. |
U.S. Appl. No. 15/816,832, filed Nov. 17, 2017. |
Response to Restriction Requirement filed Nov. 20, 2017 in U.S. Appl. No. 15/171,802. |
Office Action dated Dec. 5, 2019 in U.S. Appl. No. 15/867,373. |
Preliminary Amendment filed Dec. 20, 2019 in U.S. Appl. No. 16/594,647. |
Response to Office Action filed Jan. 24, 2020 in U.S. Appl. No. 15/951,956. |
Notice of Allowance and Fees Due dated Dec. 8, 2017 in U.S. Appl. No. 15/421,209. |
Notice of Allowance and Fees Due dated Jan. 19, 2018 in U.S. Appl. No. 15/421,239. |
Office Action dated Feb. 12, 2018 in U.S. Appl. No. 15/171,802. |
International Search Report for International Application No. PCT/US2017/062423 dated Feb. 5, 2018. |
Notice of Allowance and Fees Due dated Jan. 16, 2018 in U.S. Appl. No. 15/699,700. |
Notice of Allowance and Fees Due dated Jan. 17, 2019 in U.S. Appl. No. 15/421,208. |
Response to Office Action filed Sep. 23, 2019 in European Patent Application No. 16804451.9. |
Office Action dated Jun. 21, 2019 in U.S. Appl. No. 15/867,373. |
Response to Office Action filed Aug. 2, 2018 in U.S. Appl. No. 15/816,832. |
Final Office Action dated Aug. 7, 2018 in U.S. Appl. No. 15/171,802. |
Response to Office Action filed Sep. 12, 2018 in U.S. Appl. No. 15/171,802. |
Notice of Allowance and Fees Due dated Aug. 31, 2018 in U.S. Appl. No. 15/978,423. |
International Search Report for International Application No. PCT/US2018/013203 dated Apr. 5, 2018. |
International Search Report for International Application No. PCT/US2018/19537 dated Apr. 13, 2018. |
Office Action dated May 4, 2018 in U.S. Appl. No. 15/816,832. |
Response to Office Action filed May 9, 2018 in U.S. Appl. No. 15/171,802. |
Notice of Allowance and Fees Due dated Oct. 9, 2018 in U.S. Appl. No. 15/171,802. |
Final Office Action dated Nov. 2, 2018 in U.S. Appl. No. 15/816,832. |
Response to Office Action filed Nov. 13, 2018 in U.S. Appl. No. 15/421,208. |
Non-Final Rejection dated Nov. 24, 2020 in U.S. Appl. No. 15/826,045. |
Non-Final Rejection dated Nov. 20, 2019 in U.S. Appl. No. 15/826,045. |
Non-Final Rejection dated Nov. 26, 2018 in U.S. Appl. No. 15/826,045. |
Final Rejection dated Jun. 18, 2020 in U.S. Appl. No. 15/826,045. |
Final Rejection dated Jul. 29, 2019 in U.S. Appl. No. 15/826,045. |
Amendment filed Nov. 16, 2020 in U.S. Appl. No. 15/826,045. |
Amendment filed Apr. 15, 2020 in U.S. Appl. No. 15/826,045. |
Amendment filed Oct. 29, 2019 in U.S. Appl. No. 15/826,045. |
Response to Office Action filed Dec. 18, 2020, with English language translation of claims as amended, in Japanese Patent Application No. 2018-515183. |
Office Action dated Dec. 24, 2020, with English language translation, in Japanese Patent Application No. 2020-038556. |
Office Action dated Nov. 25, 2020, with English language translation, in Japanese Patent Application No. 2019-526569. |
Amendment filed Apr. 26, 2019 in U.S. Appl. No. 15/826,045. |
Extended European Search Report dated May 12, 2021 in European Patent Application No. 21163777.2. |
Response to Office Action filed May 17, 2021 in U.S. Appl. No. 16/273,449. |
Supplemental Response to Office Action filed May 26, 2021 in U.S. Appl. No. 16/273,449. |
Notice of Allowance dated Mar. 20, 2019 in U.S. Appl. No. 15/421,208. |
Response to Office Action filed Mar. 22, 2019 in U.S. Appl. No. 15/816,832. |
Office Action dated Apr. 15, 2019 in U.S. Appl. No. 15/816,832. |
Office Action dated Nov. 18, 2019 in U.S. Appl. No. 15/903,993. |
Response to Office Action filed Apr. 16, 2020 in U.S. Appl. No. 15/903,993. |
Notice of Allowance and Fees Due dated May 15, 2020 in U.S. Appl. No. 15/903,993. |
Qi Ux, “Improving Responsiveness of Supply Chain through RFID Visibility Technology”, 2009 IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, Chicago, IL. Jul. 22-24, 2009, pp. 513-517. |
Harrison et al., “Intelligent distribution and logistics”, IEE Proceedings—Intelligent Transport Systems, vol. 153, No. 2, pp. 167-180, Jun. 2006. |
N. Viswanadham, “The past, present, and future of supply-chain automation”, IEE Robotics & Automation Magazine, vol. 9, No. 2, pp. 48-56, Jun. 2002. |
C. Prasse et al., “How IoT will change the design and operation of logistics systems”, 2014 International Conference on the Internet of Things (IOT), Oct. 6-8, 2014, pp. 55-60. |
Leung et al., “Design of a Case-Based Multi-Agent Wave Picking Decision Support System for Handling E-Commerce Shipments”, 2016 Portland International Conference on Management of Engineering and Technology (PICMET), Sep. 4-8, 2016, pp. 2248-2256. |
Response to Office Action filed Jul. 20, 2020 in U.S. Appl. No. 15/867,373. |
Office Action dated Aug. 11, 2020 in Japanese Patent application No. 2018-515183. |
Notice of Allowance and Fees Due dated Aug. 19, 2020 in U.S. Appl. No. 15/867,373. |
Office Action dated Aug. 20, 2020 in U.S. Appl. No. 16/121,212. |
Response to Office Action filed Aug. 31, 2020 in U.S. Appl. No. 15/816,832. |
Response to Office Action filed Aug. 24, 2020 in U.S. Appl. No. 15/591,956. |
Response to Office Action filed Nov. 2, 2020, with English machine translation, in Chinese Patent Application No. 201780042943.2. |
Office Action dated Sep. 14, 2020 in U.S. Appl. No. 15/591,956. |
Office Action dated Sep. 14, 2020 in U.S. Appl. No. 15/903,993. |
International Search Report and Written Opinion dated Sep. 4, 2020 in International Patent Application No. PCT/US2020/033250. |
English language Abstract for DE3624033 published Aug. 6, 1987. |
Office Action filed Oct. 19, 2020 in U.S. Appl. No. 15/816,832. |
English language Abstract for DE102012100354 published Jul. 18, 2013. |
Response to Office Action filed Oct. 21, 2019 in U.S. Appl. No. 15/867,373. |
Final Office Action dated Nov. 1, 2019 in U.S. Appl. No. 15/816,832. |
Response to Office Action filed Mar. 5, 2020 in U.S. Appl. No. 15/867,373. |
Office Action dated Mar. 20, 2020 in U.S. Appl. No. 15/867,373. |
Extended European Search Report dated Mar. 13, 2020 in European Patent Application No. 19217215.3. |
Final Office Action dated Mar. 24, 2020 in U.S. Appl. No. 15/951,956. |
Response to Office Action filed Mar. 30, 2020 in U.S. Appl. No. 15/816,832. |
Office Action dated Apr. 30, 2020 in U.S. Appl. No. 15/816,832. |
Response to Office Action filed Mar. 6, 2020 in European Patent application No. 18702006.0. |
Response to Office Action filed Apr. 17, 2020 in European Patent Application No. 18709235.8. |
Notice of Allowance and Fees Due dated Jan. 29, 2019 in U.S. Appl. No. 15/171,802. |
English language Abstract for WO2017064401 published Apr. 20, 2017. |
Non-Final Rejection dated Sep. 3, 2014 in U.S. Appl. No. 14/213,187. |
Amendment filed Feb. 27, 2015 in U.S. Appl. No. 14/213,187. |
Notice of Allowance and Fees Due dated May 20, 2015 in U.S. Appl. No. 14/213,187. |
Office Action dated Sep. 14, 2022 in Japanese Patent Application No. 2019-546194. |
Notice of Allowance and Fee(s) Due dated May 26, 2021 in U.S. Appl. No. 15/591,956. |
Notice of Allowance and Fee(s) Due dated Jun. 4, 2021 in U.S. Appl. No. 15/591,956. |
Notice of Allowance and Fee(s) Due dated Jun. 9, 2021 in U.S. Appl. No. 15/816,832. |
Decision for Final Rejection dated May 27, 2021, and English language translation thereof, in Japanese Patent Application No. 2019-548543. |
Response to Office Action filed Jun. 15, 2021, and English language machine translation thereof, in Chinese Patent Application No. 201780042943.2. |
Office Action dated Feb. 2, 2023 in U.S. Appl. No. 17/223,714. |
Final Office Action dated Mar. 24, 2020 in U.S. Appl. No. 15/591,956. |
Response to Office Action filed Jan. 24, 2020 in U.S. Appl. No. 15/591,956. |
Office Action dated Mar. 13, 2023 in U.S. Appl. No. 17/745,627. |
Office Action dated Apr. 7, 2023 in U.S. Appl. No. 17/499,783. |
APO; App. No. 2017366895; Examination Report dated Aug. 24, 2022; (3 pages). |
CIPO; App. No. 3,049,022; Examiner Report dated Feb. 7, 2023; (3 pages). |
CIPO; App. No. 3,054,148; Examiner Report dated Jan. 24, 2023; (5 pages). |
CNIPA; App. No. 201780080099.2; Office Action dated Jun. 29, 2023; (12 pages). |
CNIPA; App. No. 201780080099.2; Office Action dated Sep. 2, 2022; (13 pages). |
EPO; App. No. 21163777.2; Office Action dated Nov. 14, 2022; (7 pages). |
IMPI; App. No. MX/a/2019/005988; Office Action dated Jan. 10, 2023; (16 pages). |
IMPI; App. No. MX/a/2019/005988; Office Action dated Jul. 31, 2023; (17 pages). |
International Search report for International Application No. PCT/US2017/063761 dated Feb. 19, 2018. |
JPO; App. No. 2019-546194; Office Action dated May 17, 2023; (5 pages). |
JPO; App. No. 2019-548543; Notice of Allowance dated Aug. 21, 2023; (40 pages). |
JPO; App. No. 2021-156451; Office Action dated Sep. 4, 2023; (5 pages). |
PCT; App. No. PCT/US2017/063761; International Preliminary Report on Patentability dated Jun. 19, 2019; (9 pages). |
USPTO; U.S. Appl. No. 17/223,714; Notice of Allowance dated Jul. 31, 2023; (10 pages). |
USPTO; U.S. Appl. No. 17/843,124; Office Actom dated May 23, 2023; (pp. 1-32). |
USPTO; U.S. Appl. No. 17/240,777; Notice of Allowance and Fees Due (PTOL-85) dated Aug. 4, 2023; (pp. 1-9). |
Number | Date | Country | |
---|---|---|---|
20210261335 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62427652 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15826045 | Nov 2017 | US |
Child | 17240777 | US |