Draper, N. and Smith, H., Applied Regression Analysis, (3d Ed., Wiley-Interscience), p. 120 (1998). |
Harrington, P., Temperature-Constrained Backpropagation Neural Networks, Analytical Chemistry, vol. 66, No. 6, pp. 802-807 (Mar. 15, 1994). |
Osborne, B.G., et al., Practical NIR Spectroscopy, with Applications in Food and Beverage Analysis, Longman Scientific and Technical (2d Edition) (1993). |
Mark, H., Use of Mahalanobis Distances To Evaluate Sample Preparation Methods for Near-IOnfrared Reflectance Analysis, Analytical Chemistry, vol. 59, No. 5, pp. 790-795 (Mar. 1, 1987). |
Mark, H., Normalized Distances for Qualitative Near-Infrared Reflectance Analysis, Analytical Chemistry, vol. 58, No. 2, pp. 379-456 (Feb. 1986). |
Honigs D.E., et al., Unique-Sample Selection via Near-Infrared Spectral Subtraction, Anlaytical Chemistry, vol. 57, No. 12, pp. 2299-2303 (Oct. 1985). |
Mark, H.L. and Tunnell, D., Qualitative Near-Infrared Reflectance Analysis Using Mahalanobis Distances, Analytical Chemistry, vol. 57, No. 7, pp. 1449-1456 (Jun. 1985). |
Savitzky, A. and Golay, M.J.E., Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical Chemistry, vol. 36, No. 8, pp. 1627-1640 (Jul. 1964). |
Peuchant, E., Salles, C., Jensen, R.; “Determination of Serum Cholesterol by Near-Infrared Reflectance Spectrometry,” Analytical Chemistry, vol. 59, No. 14, pp. 1816-1819 (Jul. 15, 1987). |
Small, G.W., Arnold, M.A., Marquardt, LA.; “Strategies for Coupling Digital Filtering with Partial Least-Squares Regression: Application to the Determination of Glucose in Plasma by Fourier Transform Near-Infrared Spectroscopy,” Analytical Chemistry, vol. 65, pp. 3279-3289 (1993). |
Kruggel W.G., et al., “Near-Infrared Reflectance Determination of Fat, Protein, and Moisture in Fresh Meat,” J. Assoc. Off. Anal. Chem. , vol. 64, No. 3, pp. 692-696 (1981). |
Arnold, M.A., “Motivation for Developing Optical Sensors for Blood Electrolyte Measurement”; Clinical Chemnistry, vol. 37, No. 8, pp. 1319-1320 (1991). |
Shengtian Pan, et al., “Near-Infrared Spectroscopic Measurement of Physiological Glucose Levels in Variable Matrices of Protein and Triglycerides”, Anal. Chem., vol. 68, No. 7, pp. 1124-1135 (Apr. 1, 1996). |
Marquardt, Lois A., et al., “Near-Infrared Spectroscopic Measurement of Glucose in a Protein Matrix”, Analytical Chemistry, vol. 65, No. 22, pp. 3271-3278 (Nov. 15, 1993). |
Arnold, Mark A., et al., “Determination of Physiological Levels of Glucose in an Aqueous Matrix with Digitally Filtered Fourier Transform Near-Infrared Spectra”, Analytical Chemistry, vol. 62, No. 14, pp. 1457-1464 (Jul. 15, 1990). |
Zee, Van Der P., et al. “Simulation of the Point Spread Function for Light in Tissue by a Monte Carlo Method,” Department of Medical Physics and Bioengineering, University College Hospital, Shropshire House, Capper Street, London Wc1E 6JA, U.K., pp. 179-191. |
Takada, M., et al., “Non-Invasive Near-Infrared Measurements of Human Arm Tissue In Vivo,” R & D Engineering-Spectrophotometric, Instrument Analytical Instrument Division, Shimadzu Corporation, Nakagyo-ku, Kyoto 604, and *Biophysics Division, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan., pp. 301-304. |
Heise, H.M., et al. “Noninvasive Blood Glucose Sensors Based on Near-Infrared Spectroscopy”, Artif Organs, vol. 18, No. 6, pp. 439-447 (Nov. 6, 1994). |
Glaister, D.H., “Current and Emergining Technology in G-Loc Detection: Noninvasive Monitoring of Cerebral Microcirculation Using Near Infrared”, Aviation, Space, and Environmental Medicine, pp. 23-28 (Jan. 1988). |
Burfeindt, J., et al., “Angewandte optische Untersuchungen im nahen Infrarot- und Rotbereich an Humanvollblut; Anwendungsbeispiele”, Biomedizinische Technik Band 30, Heft 1-2/1985, pp. 18-23. |
Muller, U.A., et al., “Non-invasive Blood Glucose Monitoring by Means of Near Infrared Spectroscopy: Methods for Improving the Reliability of the Calibration Models,” The International Journal of Artificial Organs, vol. 20, pp. 285-290 (Nov. 5, 1997). |
Arnold, Mark A., “Non-invasive Glucose Monitoring”, Current Opinion in Biotechnology, 1996, 7:46-49. |
Eggert, Hans R., et al., “Optical Properties of Human Brain Tissue, Meninges,m and Brain Tumors in the Spectral Range of 200 to 900 nm”, Neurosurgery, vol. 21, No. 4, pp. 459-464 (1987). |
Giannini, Ivo et al., “Rat Brain Monitoring by Near-Infrared Spectroscopy; An Assessment of Possible Clincal Significance” Physiol. Chem. Phys., 14, pp. 295-305 (1982). |
Israel, Richard G., et al., “Validity of a Near-Infrared Spectrophotometry Device for Estimating Human Body Composition”, Research Quarterly for Exercise and Sport, vol. 60, No. 4, pp. 379-383 (1989). |
Blazek,, V., “Verhalten der menschlichen Haut gegenuber Elektromagnetischer Strahlung im Sichtbaren Und Nahen IR-Bereich”, Z. Rechtsmedizin 77, 99-103 (1976). |
van Toorenbergen, A.W., et al., “Measurement of Total Serum Protein by Near-Infrared Reflectance Spectroscopy,” J. Clin. Chem. Clin. Biochem., vol. 26, No. 4, pp. 209-211 (1988). |
Ciurczak, E.W., et al., “Chapter II.B.2 Identification of Actoves in Multicomponent Pharmaceutical Dosage Forms Using Near-Infrared Reflectance Analysis;” Molecular Spectroscopy Workbench, pp. 89-109, John Wiley & Sons, Inc. (1998). |
Ciurczak, E.W., et al., “Chapter II.B.8 Analysis of Solid and Liquid Dosage Forms Using Near-Infrared Reflectance Spectroscopy,” Molecular Spectroscopy Workbench, pp. 143-149, Joh Wiley & Sons, Inc. (1998). |
Ciurczak, E.W., et al., “Chapter II.C. 1 Chemometrics: A Powerful Toolbox For UV/VIS Spectroscopy;” Molecular Spectroscopy Workbench, pp. 165-172, John Wiley & Sons, Inc. (1998). |
Ciurczak, E.W., et al., “Chapter III.1 Purgamenta Inuit, Purgamenta Exiunt;” Molecular Spectroscopy Workbench, pp. 315-317, John Wiley & Sons, Inc. (1998). |
Burns, D.A., et al., “Chapter 4 Commercial NIR Instrumentation,” Handbook of Near-Infrared Analysis, pp. 37-51, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 5 Process Analysis,” Handbook of Near-Infrared Analysis, pp. 53-105, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 6 Data Analysis: Multilinear Regression and Principal Component Analysis,” Handbook of Near-Infrared Analysis, pp. 107-158, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 7 Data Analysis: Calibration of NIR Instruments by PLS Regression,” Handbook of Near-Infrared Analysis, pp. 159-180, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 10 NIR Spectroscopy Calibration Basics,” Handbook of Near-Infrared Analysis, pp. 247-280, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 13 Qualitative Discriminant Analysis,” Handbook of Near-Infrared Analysis, pp. 329-363, Mracel Dekker, Inc. (1992). |
Burns, D.A., et al., “Chapter 20 NIR Analysis of Pharmaceuticals,” Handbook of Near-Infrared Analysis, pp. 549-563, Mracel Dekker, Inc. (1992). |
Harrington, P.B.; “Temperature-Constrained Backpropagation Neural Networks,” Analytical Chemistry, vol. 66, pp. 802-807 (1994). |
Savitsky, A and Golay, Marcel J.E.; “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Analytical Chemistry, vol. 36, No. 8 (1964). |
Osborne, B.G., Fearn, T. and Hindle, P.H.; “Practical NIR Spectroscopy, With Applications in Food and Beverage Analysis,” 2nd Ed, Longman Scientific and Technical, pp. 114-116 (1993). |
Draper, N. and Smith, H.; “Chapter 14 Dummy Variables,” Applied Regression Analysis, 3rd Ed, pp. 299-324 (1998). |
Mark, H.; “Use of Mahalanobis Distances To Evaluate Sample Preparation Methods for Near-Infrared Reflectance Analysis,” Analytical Chemistry, vol. 59, pp. 790-795 (1987). |
Mark, H.; “Normalized Distances for Qualitative Near-Infrared Reflectance Analysis,” Analytical Chemistry, vol. 58, pp. 379-384 (1986). |
Mark, H. and Tunnell, D.; “Qualitative Near-Infrared Reflectance Analysis Using Mahalanobis Distances,” Analytical Chemistry, vol. 57, pp. 1446-1456 (1985). |
Honigs, D.E., Hieftje, G.M., Mark, H.L., Hirschfeld, T.B.; “Unique-Sample Selection via Near-Infrared Spectral Subtraction,” Analytical Chemistry, vol. 57, pp. 2299-2303 (1985). |