The present invention relates generally to the precise automatic measurement of granules by weight; and more particularly to the precise automatic high speed portioning of dry granular chemicals and compounds, such as in the mass production of ammunition cartridges.
The measurement of portions of granulated compounds is a critical process in a wide range of manufacturing processes. As an example, without limiting the application of the present disclosure, in the manufacture of small arms ammunition cartridges, precise propellant loads are required to ensure that projectiles (bullets) are accelerated consistently. The prior art discloses various methods to measure the volume of propellant prior to being loaded into cartridge cases. Although the prior art also teaches several different methods of measuring the weight of portions of granules, the methods are either too slow or too inaccurate to be practically applied to the high speed mass production of precision small arms ammunition.
The size and density of propellant granules vary with each manufactured batch or “lot” of propellant. At present the density of each granule of propellant can vary by as much as 16%. Contributing factors to the variability of propellant lots include the temperature and humidity of the environment at the time propellant granules are manufactured, shipped, and handled; minute variations in the calibration of the equipment that determines the size of each granule; statistically anomalous granulation; and other factors. While volumetric measurement of spherically shaped propellant can be accurate to within one tenth of a grain (0.000229 ounces) of propellant granules of the same lot, because the size and specific density of granules in different lots is inconsistent, portions of measured propellant, and the specific impulse imparted when the propellant is fired, is significantly inconsistent from lot to lot. Moreover, ammunition propellant granules are designed in several different varieties of shapes and sizes for use with various types of cartridges and in various types of firearms. Non-spherical shapes and larger sizes are less accurately measured by volumetric means alone.
Additionally, the metering system should be capable of feeding the cartridge loading process at a rate consistent with the speed with which automatic cartridge loading apparatus are capable of assembly. Depending on the size and shape of cartridges being loaded, the speed with which modern cartridge loading systems operate can exceed 240 units per minute. Generally, the speed of production is constrained by the speed with which propellant can be apportioned and deposited into ammunition cartridge cases during assembly.
The prior art teaches various means of mechanically producing portions of granules. Whereas these processes may be reasonably accurate in the uniform portioning of spherical granules, volumetric measurement of granules that are not spherical in shape produce inconsistent results because the volume such granules occupy is affected by the position of the granules within the volume. As an example, granule flakes, as well as elongated cylindrical forms called “stick” granules, may either be randomly oriented or stacked. The density, and therefore the weight, of a small volume of flake or stick granules can significantly vary depending on the orientation of the granules within the volume of measurement.
Additionally, the most accurate methods of mechanically producing portions of granules by volume disclosed in prior art involve techniques such as worm screws and various methods of volume isolation by means of the movement of hard-edged volumetric capsules relative to hard-edged granule feed source tubes or troughs. These mechanical methods have a tendency to crush or slice non-spherical granules such as flake and stick shaped granules. Crushing and slicing propellant granules results with burn rate variations and inconsistency in the rate of acceleration of projectiles. This results with undesirable and inconsistent barrel pressure, projectile acceleration, muzzle velocity, and thereby accuracy, when ammunition is fired.
Military personnel are trained to select ammunition of the same lot where accuracy of fired projectiles is considered mission critical. By selecting ammunition of the same lot, it is assumed that each lot of ammunition contains the same lot of manufactured propellant material. Using a particular manufactured lot of spherical propellant material, the prior art can obtain volumetric measurement accuracy to within ten percent (10%) of a grain (0.000229 ounces) of each successively measured portion of granules. Since the specific density of a volume of propellant varies widely by manufactured lot, using the same volume to measure a different lot of propellant results with significant deviation between manufactured cartridges. However, volumetric measurement of various shapes of granules can be widely inconsistent. The volumetric measurement of flat or “flake” propellant, or elongated cylindrical forms, called “stick” propellants, are significantly less accurate by volume than spherical granules, called “ball” propellants. The shape of propellant granules is a critical design attribute of the propellant affecting the rate of burn and thereby the internal ballistics of ammunition when fired. The physical shape of propellant granules is a preferred means of regulating the internal pressure and the specific impulse imparted by during the propellant burn.
Moreover, the mass production of harmonically resonant ammunition, which in the best instance differentiates minutely precise variations in the weight of portions of propellant loads to a resolution of individual granules of propellant, the specific weight of propellant of various classes of harmonic loads necessitates that the granule metering system be capable of adjustment so as to consistently conform production to the specifically desired weight of propellant. It is well known that harmonically resonant or “tuned” ammunition, when matched to specific individual rifles, can more than double the accuracy of fired projectiles. However, because harmonically resonant ammunition requires precise portions of propellant measured to consistently match the rate of projectile acceleration with the harmonic properties of individual rifles, cost effective mass production of such ammunition has not been practicable. The present invention enables the mass production of such harmonically resonant ammunition by providing not only for more accurate measurement of propellant by weight, but also by enabling the automatic adjustment of portions of propellant to accurately differentiate between a range of propellant load classes so that users can reliably select the class that is most accurate when used with a particular rifle.
The most accurate way to measure granulated compounds is by weight. The accuracy of measurement and portioning by the present invention is consistent regardless of variations in the size, shape, density, and the volume of aggregates of various lots of granules of the same chemical or compound. In the production of ammunition propellant loads, provided that isolated portions of propellant do not contain crushed or sliced granules, the specific impulse, rate of burn, and internal ballistic pressure curves are most consistent.
The present disclosure applies to the accurate portioning by weight of any granulated chemicals or compounds in industrial materials applications as diverse as, without limitation, pharmaceuticals, metallurgy, polymers, composites, ceramics, nanomaterials formulation and synthesis, and ammunition assembly.
The present disclosure is of a high speed automatic apparatus that precisely measures granular chemicals and compounds by weight and automatically recalibrates and adjusts portions to match desired target weights. Inconsistency in the size, shape, and density of the material both by manufactured lot as well within each lot, does not result with significant variation in the mass of the precisely measured portions. Moreover, the accuracy of portioning of granules by the disclosed apparatus can be to within the weight of an individual granule; and the apparatus avoids crushing and slicing of granules during processing.
As an example, without limiting applications of the present disclosure, a preferred embodiment of the present invention may be applied to the manufacture of ammunition. The accuracy of conventional ammunition when fired is significantly affected by the accuracy of propellant apportioned to cartridges during manufacture. In addition to precise uniformity of propellant loads, the present invention enables the mass production of harmonically resonant ammunition by providing not only for more accurate high speed measurement of propellant by weight, but also by enabling the automatic adjustment of portions of propellant to accurately differentiate between a range of propellant load classes such that users can reliably select the class of cartridge that is most accurate when used with a particular individual rifle.
The present disclosure also provides for the portioning by weight of ammunition propellant loads at rates equal to or greater than the nominal production rate of high speed automatic mass production cartridge assembly apparatus and is capable of exceeding 240 portions per minute.
The present invention also eliminates the need for manual calculation of the specific density of a manufactured lot of propellant. Volumetric measure of propellant requires such calculation to approximate the volume required to produce portions that approximate an intended product weight.
Additionally, volumetric measurement of non-spherical propellant used in rifle ammunition cartridges is notoriously inaccurate and frequently results with inconsistent cartridge loads.
According to an exemplary embodiment of the invention, the apparatus effectively improves the accuracy of the measure of portions of granules by weight. The physical shape, size, and weight of each of the granules of the type being processed are not significant to the accuracy of measure or to the speed with which they are processed. The accuracy of weight measurement of a portion of granules are within the weight of an individual granule regardless of the shape, size, physical configuration, or weight of the type of granules being processed.
According to the exemplary embodiment of the invention, the apparatus effectively avoids crushing or slicing spherical and non-spherical granules as the portions are measured and processed.
According to the exemplary embodiment of the invention, the apparatus can be entirely computer controlled such that no manual operator is necessary. The apparatus is capable of quick and automatic adjustment of the measure of each portion. The apparatus is capable of automatically purging the type of granules being processed so that another type can be processed. The measurement of the weight of each portion of granules can be accomplished without friction that could otherwise affect the accuracy of said weight measurement. The calibration of measures can be quickly and automatically accomplished.
According to the exemplary embodiment of the invention, the apparatus provides for the production of accurately measured portions at a rate comparable to the highest rate of consumption of such portions by subsequent manufacturing processes. The apparatus provides for extensibility to increase the practical production rate of the present invention as needed such that future increased production rates of subsequent manufacturing processes are possible without the replacement of the majority of the existing apparatus. The apparatus design configuration provides for a high MTBF (Mean Time Between Failure) of the apparatus as a whole. The apparatus design configuration provides for ease of maintenance, repair, and replacement of components that comprise the system.
Numerous other advantages and features of the present invention will become readily apparent from the following detailed description of the invention and the embodiments thereof, from the claims and from the accompanying drawings.
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings, and will be described herein in detail, specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the specific embodiments illustrated.
This application incorporates by reference U.S. Provisional Application 61/947,274, filed Mar. 3, 2014, and U.S. application Ser. No. 14/464,339, filed on the same day as the present application, naming the same inventor.
The present invention comprises a number of unique innovations in the measurement and portioning of granular chemicals and compounds by mass. The application of the methods herein disclosed pertain to the accurate automated measurement and portioning of dry granulated chemicals and compounds in industrial materials applications as diverse as, without limitation, pharmaceuticals, metallurgy, polymers, coatings, composites, ceramics, and nanomaterials formulation and synthesis. Variation in the physical shape of the granules has no effect on the accuracy of granule portioning.
One advantageous use for the present invention is to precisely load ammunition to tune ammunition to the utilized rifle for shooting accuracy as described in U.S. Provisional Application 61/947,274, filed Mar. 3, 2014, and U.S. application Ser. No. 14/464,339, filed on the same day as the present application, naming the same inventor, herein incorporated by reference.
An exemplary embodiment of the invention shown in
Granular material 10 is retained by a granule source hopper 12 that releases small quantities of free flowing granular material so as to limit the weight of material bearing down on the volumetric metering system or volumetric assembly 14. A photo sensor 16 detects when the small portion of granules being fed into a chamber 18 of the volumetric assembly 14 requires replenishment. Granular material from the small portion of granules is fed by gravity into the volumetric assembly 14 comprised of a multiplicity of spring-loaded telescoping chambers 18, the compression of which, and thereby the interior volume of which, may be modified as needed by a gear mechanism 26 (
If the material 10 is overweight, the computer causes the retention of the material as the rotational platform 50, under computer control, causes the granule cup assembly 36 to pass over other stations until the subject granule cup assembly is positioned where the overweight portion may be dumped. Preferably, the granule cup assembly 36 is emptied of all granules during the dump. The subject material is dumped into a chute 66 that directs the material 10 into a container 70 for rejected granule portions so that the material 10 may be reprocessed. Simultaneously, the computer causes the interior volumes of the volumetric assembly's 14 volumetric measurement chambers 18 to be automatically incrementally reduced, thus reducing the weight of subsequent granule portions.
If the weight of the subject portion 10 is more than a small number of granules underweight, the computer causes the retention of the material as the rotational platform 50, under computer control, causes the granule cup assembly 36 to pass over other stations until the subject granule cup assembly 36 is positioned where the underweight portion may be dumped. Preferably, the granule cup assembly 36 is emptied of all granules during the dump. The subject material 10 is dumped into a chute that directs the material into a container for rejected granule portions so that the material may be reprocessed. Simultaneously, the computer causes the interior volumes of the volumetric assembly's 14 volumetric measurement chambers 18 to be automatically incrementally increased, thus increasing the weight of subsequent granule portions.
When the weight of the subject volumetric measure is equal to or slightly less than, but never over, the target weight specification, the automatic volumetric calibration is complete. However, automatic volumetric calibration is reinitiated whenever this said condition is no longer valid.
With the subject granule cup assembly 36 is in position on the scale 56, a granule meter assembly 80 that can be computer controlled, adds a small number of additional individual granules 10 until the target weight of the portion is achieved to within the weight of an individual granule 10. Any error causing an overweight portion in this instance does not initiate volumetric calibration, but the computer causes the retention of the material as the rotational platform, under computer control, rotates the granule cup assembly 36 to pass it over other stations until the subject granule cup assembly 36 is positioned where the overweight portion may be dumped. Preferably, the granule cup assembly 36 is emptied of all granules during the dump. The subject material is dumped into the chute 66 that directs the material into the container 70 for rejected granule portions so that the material may be reprocessed.
When a weighed portion of granules meets the target weight specification, the computer causes the rotational platform 50 to move the subject granule cup assembly 36 to where the portion may be delivered by means of a chute 88 to a granule consolidation assembly 92 to time the release of the portion for further processing depending on the intended application of the subject material. Preferably, the granule cup assembly 36 is emptied of all granules during the delivery to the chute 88.
The operation of the granule meter assembly 80 is as follows: granular material is retained by a second granule source hopper 96 that releases small quantities of free flowing granular material 10 so as to limit the weight of material bearing down into the internal working of the granule meter assembly 80; a horizontal conveyor 106 limits the flow and regulates the feed rate of granular material 10 into the assembly 80; a narrow inclined conveyor 110 with compartments, cups, indentations, or depressions 116 such that only one granule of the type being processed may be situated within a compartment 116 at one time and moves and isolates individual granules in preparation for release from the assembly; a gear mechanism 122 drives the action of both conveyors 106, 110 where the horizontal conveyor 106 is slower than the inclined conveyor 110; a computer controlled stepper motor 128 drives the gear mechanism 122; a V-shaped trough 134 directs the flow of granules 10 onto the inclined conveyor 110 when they fall from the horizontal conveyor 106; an electric motor 140 with an off-axis weight, or a transducer, vibrates the V-shaped trough 134; a brush 144 prohibits back spilling granules 10 as they are fed to the V-shaped trough 134 from the horizontal conveyor 106; a brush 148 at the apex 152 of the inclined conveyor 110 clears granules 10 not properly seated within a compartment 116 of the inclined conveyor 110; a photo sensor 160 at the apex 152 of the inclined conveyor 110 verifies the presence of an individual granule 10; a chute 166 directs individual granules 10 as they fall from the end of the inclined conveyor 110 to an exit port 288 of the granule meter assembly 80; a photo sensor 176 at the exit port 288 of the granule meter assembly 80 verifies the release of an individual granule 10; and a computer controlled solenoid 182 closes an exit port hatch 172 of the granule meter assembly whenever a granule cup assembly 36 is not at rest in position on the scale.
The metered volume of granules is variable as required to most closely yield the target weight 194 of granules, equal to or less than the target weight parameter, as measured by the scale 56. This is accomplish as the screed plate 33 is moved vertically relative to the base plate 173 which changes the relative vertical position of the top and bottom chamber plates 202, 204 of the volumetric assembly 14. The vertical position of the screed plate 33 is automatically adjusted by means of computer control of a stepper motor 28 and gear configuration 26; an example of which configuration is provided in
When a granule filled chamber 18 moves into position, the granules 10 drop, through a slosh ring 240, which is a part of each granule cup assembly 36, that inhibits the loss of any granules as the granule cup assembly 36 is rotated rapidly, and which sits on a rotational platform 50 that transports one or more granule cup assemblies 36. Preferably, the chamber 18 is emptied of all granules during the drop. The orientation of the granule cup assembly 36 is maintained by the positioning pins 60 that guide each granule cup assembly to freely move vertically as needed in the next process. Two or more pins 60 are provided which protrude through respective holes 61 through the plate 50.
The top and bottom plates 202, 204 incorporate top and bottom nesting or telescoping chamber tubes 250, 254. Openings 251, 252 in the chamber tubes 250, 254 permit the tubes to nest, thus providing a variable interior volume with variation in the proximity of the top and bottom plates 202, 204. Apertures 256, 258 through the top and bottom plates permit granules to enter each of the chambers 18 from above, and exit from below.
Although separate hoppers 12, 96 are shown in the drawings, a common hopper could be used to feed both the volumetric assembly 14 and the metering assembly 80 (or 80′) though tubes or ducts. Alternatively, a common hopper, such as the hopper 500, could feed the separate hoppers 12, 96 though tubes or ducts.
As described in
The gates 504a-504c and 604a-604c can be spring loaded and configured like the hatch 330, spring 331 and solenoid 328 shown in
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred.
This application is a divisional application of U.S. patent application Ser. No. 14/464,405 filed Aug. 20, 2014 which claims the benefit of U.S. Provisional Application 61/947,274, filed Mar. 3, 2014.
Number | Name | Date | Kind |
---|---|---|---|
906214 | Freeman | Dec 1908 | A |
1891038 | Barros | Dec 1932 | A |
1978558 | Von Pritzelwitz Van Der Horst | Oct 1934 | A |
2539030 | Parker | Jan 1951 | A |
2558206 | Baird | Jun 1951 | A |
2661876 | Kindseth | Dec 1953 | A |
3140018 | Miller | Jul 1964 | A |
3305067 | Mayer | Feb 1967 | A |
3340641 | Recker | Sep 1967 | A |
3407656 | Chadenson et al. | Oct 1968 | A |
3654970 | Teboul | Apr 1972 | A |
3708025 | Soler et al. | Jan 1973 | A |
3774818 | Alexandrov et al. | Nov 1973 | A |
3783957 | Borghi | Jan 1974 | A |
3802522 | Thompson | Apr 1974 | A |
3827513 | Epstein | Aug 1974 | A |
3938440 | Dooley et al. | Feb 1976 | A |
3977483 | Greanias | Aug 1976 | A |
4002268 | McKinney | Jan 1977 | A |
4108337 | Iijima | Aug 1978 | A |
4402412 | Wood | Sep 1983 | A |
4559981 | Hirano | Dec 1985 | A |
4696356 | Ellion et al. | Sep 1987 | A |
4893966 | Roehl | Jan 1990 | A |
5005657 | Ellion et al. | Apr 1991 | A |
5064009 | Melcher et al. | Nov 1991 | A |
5279200 | Rose et al. | Jan 1994 | A |
5332870 | Strickler | Jul 1994 | A |
5340949 | Fujimura | Aug 1994 | A |
5398557 | Shimizu et al. | Mar 1995 | A |
5409137 | Bonomelli | Apr 1995 | A |
5437393 | Blicher et al. | Aug 1995 | A |
5542583 | Boyer et al. | Aug 1996 | A |
5602485 | Mayer et al. | Feb 1997 | A |
5753868 | Diem | May 1998 | A |
5796052 | Christmann et al. | Aug 1998 | A |
5798473 | Roblyer et al. | Aug 1998 | A |
6056027 | Patterson | May 2000 | A |
6057514 | Maguire | May 2000 | A |
6121556 | Cole | Sep 2000 | A |
6283680 | Vidal | Sep 2001 | B1 |
6472615 | Carlson | Oct 2002 | B1 |
6911607 | Klijn | Jun 2005 | B2 |
7383971 | Hanaoka | Jun 2008 | B2 |
7472808 | Hanaoka | Jan 2009 | B2 |
7950423 | Poole et al. | May 2011 | B2 |
8312663 | Johnson | Nov 2012 | B2 |
9221561 | Maheshwari et al. | Dec 2015 | B2 |
20040245027 | Kawanishi et al. | Dec 2004 | A1 |
20050056339 | Beane | Mar 2005 | A1 |
20070131707 | Poole et al. | Jun 2007 | A1 |
20120227302 | Fonte | Sep 2012 | A1 |
20130139675 | Baxter et al. | Jun 2013 | A1 |
20140014414 | Kawanishi et al. | Jan 2014 | A1 |
Entry |
---|
International Search Report and Written Opinion pertaining to PCT/US2015/018542 dated Jul. 6, 2015. |
International Preliminary Report on Patentability pertaining to PCT/US2015/018542 dated Sep. 15, 2016. |
Number | Date | Country | |
---|---|---|---|
20170217693 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
61947274 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14464405 | Aug 2014 | US |
Child | 15463008 | US |