This disclosure relates generally to ionizers and, more particularly, to automatic emitter point cleaners.
Ionizing devices that function as static eliminators or neutralizers may produce both polarities of ions that combine with and neutralize oppositely charged surfaces. Such devices are useful for maintaining electrostatically neutral conditions usually associated with the manufacture of electronic devices, especially semiconductors. Because these ionizers use discharge electrodes that produce an electric field, they tend to accumulate foreign particles at their emitter points or edges. This particle accumulation can cause an excess emission of ions of one polarity or the other, i.e., ion imbalance, whereby the area at which both polarities of ions are directed tends to become charged rather than electrostatically neutral.
Automatic emitter point cleaners are disclosed, substantially as illustrated by and described in connection with at least one of the figures, as set forth more completely in the claims.
The figures are not necessarily to scale. Where appropriate, similar or identical reference numbers are used to refer to similar or identical components.
Conventional emitter point cleaning devices for ionizing blowers are connected to an axis of rotation of a fan, and the fan speed must be reduced from the speed during operation to enable emitter cleaning. As a result, conventional emitter point cleaning devices require a reduction in performance, or even disabling, of the ionizing blower to perform cleaning of the emitter points. A reduction in performance or disabling of the ionizing blower may provide a window in which charge buildup is more likely to damage sensitive devices.
Disclosed example systems enable emitter point cleaning for ionizing devices such that the ionizing device can continue to function (e.g., clean the air, neutralize charge, etc.) during cleaning. Disclosed example systems include a brush, a first ring coupled to the brush, a second ring to engage the first ring, and a motor to actuate the second ring such that the second ring actuates the first ring.
Disclosed example automatic emitter point cleaning systems include: a fan configured to direct a stream of air through an air path; a point emitter configured to produce at least one of positive ions or negative ions within or proximate to the air path; a brush; a first gear coupled to the brush and configured to move the brush into contact with the point emitter; a second gear to engage the first gear; and a motor to actuate the second gear such that the second gear actuates the first gear to move the brush past the point emitter.
Some example systems further include a plurality of point emitters, in which the first gear is configured to move the brush into contact ones of the plurality of point emitters. In some examples, the plurality of point emitters are arranged in a substantially circular or polygonal arrangement. In some examples, the plurality of point emitters are arranged around an inner circumference of the first gear. In some examples, wherein the substantially circular or polygonal arrangement is substantially coaxial with the fan.
Some example systems further include a position detector configured to determine when the brush is in a predetermined position. In some examples, the motor is bidirectional. Some example systems further include a housing configured to couple the first gear, the second gear, the motor, and the fan. In some examples, the point emitter is configured to generate bipolar ions. In some examples, the motor is configured to actuate the second gear based on at least one of a determination by processing circuitry or an external signal. In some examples, the motor is configured to actuate the second gear to clear the point emitter while the plurality of point emitters are generating the positive ions or the negative ions. In some example systems, the second gear and the motor are outside of the air path.
Disclosed example automatic emitter point cleaning systems include a fan configured to direct a stream of air through an air path; a plurality of point emitters arranged in a circular or polygonal arrangement and configured to produce at least one of positive ions or negative ions within or proximate to the air path; a brush configured to physically clean the plurality of point emitters; and a motor configured to cause the brush to clean the plurality of point emitters via a gearing system having one or more gears.
In some examples, the plurality of point emitters are arranged around an inner circumference of a first gear of the gearing system. In some examples, the substantially circular or polygonal arrangement is substantially coaxial with the fan. In some examples, the motor is configured to drive the gearing system to move the brush in either direction.
Some example systems further include a housing configured to couple the gearing system, the plurality of point emitters, the motor, and the fan. In some examples, the point emitter is configured to generate bipolar ions. In some examples, the gearing system comprises three or more gears. In some examples, the motor is configured to cause the brush to clean the plurality of point emitters while the plurality of point emitters are generating the positive ions or the negative ions.
While examples disclosed below are described with reference to a DC corona ionizer, aspects of this disclosure may additionally or alternatively be used with an AC corona ionizer and/or a combination AC/DC corona ionizer.
The example DC motor 206 may be a brushless DC motor or any other type of AC or DC motor.
The example automatic emitter point cleaner 204 includes a pinion gear 306 and a spur gear 308. The spur gear 308 holds an emitter point brush. The pinion gear 306 is driven by the DC motor 206 of
As illustrated in
The example automatic emitter point cleaner 204 of
While the examples of
The example automatic emitter point cleaner 204 can be actuated in a single direction (e.g., clockwise or counterclockwise) and/or can be operated in both clockwise and counterclockwise to clean the emitters 304 in both directions.
The example automatic emitter point cleaner 204 may clean with any combination of full rotations and/or partial rotations. For example, a processor controlling the motor 206 may execute application-specific cleaning procedures including full rotations and/or partial rotations to perform particular types of cleaning.
The example automatic emitter point cleaner 204 may include position sensing to monitor the location of the emitter point brush 404. For example, the automatic emitter point cleaner 204 may determine when the brush assembly is in a default position at a start and/or finish of the cleaning process. In other examples, a processor controlling the motor 206 may track a location of the emitter point brush 404 along the inner circumference of the emitter frame 302 using a sensor (e.g., a gyroscope, a travel sensor coupled to the pinion gear 306 or the spur gear 308) and/or by tracking the speed and direction of operation of the motor 206.
As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y”. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y and z”. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations.
While the present method and/or system has been described with reference to certain implementations, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present method and/or system. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. For example, blocks and/or components of disclosed examples may be combined, divided, re-arranged, and/or otherwise modified. Therefore, it is intended that the present method and/or system not be limited to the particular implementations disclosed, but that the present method and/or system will include all implementations falling within the scope of the appended claims, both literally and under the doctrine of equivalents.
Number | Date | Country | |
---|---|---|---|
62476144 | Mar 2017 | US |