Information
-
Patent Grant
-
6670964
-
Patent Number
6,670,964
-
Date Filed
Friday, September 18, 199826 years ago
-
Date Issued
Tuesday, December 30, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Luu; Matthew
- Chung; Daniel J
-
CPC
-
US Classifications
Field of Search
US
- 345 428
- 345 660
- 345 12
- 345 31
- 345 34
- 345 502
- 345 698
- 345 694
- 345 699
- 345 33
-
International Classifications
-
Abstract
A system selects either a first scaler in a host computer or a second scaler in a display device, the first scaler having a predetermined output quality. The system instructs the display device to render a pattern; determines the output quality of the second scaler; and compares the quality of the second scaler with the predetermined output quality and selects the scaler with higher quality.
Description
BACKGROUND
The invention relates to a system for automatically selecting one or more scalers available in a video system.
Continual advances in computer technology are making possible cost-effective, yet high performance computers capable of displaying high resolution images. A variety of display devices, including cathode ray tube (CRT) displays or thin-film-transistor (TFT) flat panel displays, may be used. These displays are driven by graphics peripherals such as video cards, which in turn are controlled by processors inside the computers.
Traditionally, due to their high cost, flat panel displays have been used only in notebook computers where size and low power requirements are important. As a notebook computer can drive its built-in flat panel display as well as an external CRT display, the video circuit of the notebook computer automatically handles differences between the CRT display and the flat panel display. In the controlled environment of the notebook computer, the maximum resolution of a flat panel display controller may be greater than or equal to that of the notebook computer's built-in flat panel display. However, in a desktop computer where a particular display attached to the desktop computer may be changed by a user, potential incompatibilities exist when a high resolution flat panel display is used with a desktop computer which is capable of driving only a low resolution flat panel display. For example, certain flat panel capable desktop computers are currently equipped with 65 megahertz (MHZ) video outputs and are limited to a resolution of 1024×768 pixels. When higher resolution flat panel displays become available, these flat panel displays may be incompatible with the original display circuits.
Computer systems capable of supporting both CRT displays as well as flat panel displays need to handle differences between the two types of display. For example, in the CRT display, an electron beam is swept horizontally across a line of the screen and, at the end of the line, the electron beam is moved vertically down to the next line before the horizontal sweep motion is repeated. Upon reaching the end of the screen, the electron beam is moved back to the origin of the screen and the process is repeated. These timing requirements are referred to as horizontal and vertical retrace timing requirements. The flat panel displays do not require as much time for horizontal and vertical blanking since they are digital devices which are addressed via internal counters and latches instead of an electron beam sweeping motion.
Also, each CRT display inherently has a variable resolution and accepts multiple input resolutions. “Multi-sync”circuitry is used to respond to video signals to control the CRT raster scan frequency. The CRT display's control signals include vertical sync (VSYNC), horizontal sync (HSYNC), and RED, GREEN, BLUE (RGB) signals. The HSYNC and VSYNC are signals defining horizontal and vertical raster frequency which are synchronized with the CRT display's logic. RED, GREEN and BLUE are analog signals which contain color data for each pixel. In contrast, the flat panel display operates at a fixed resolution and is controlled by video signals HSYNC, VSYNC, PIXCLOCK, RGBPIXDATA, and DATA_ENABLE. HSYNC and VSYNC are digital signals which provide similar function as the same named signals on a CRT interface. RGBPIXDATA is the digital RGB data and is typically 18-24 bits for each pixel. DATA_ENABLE identifies valid pixel data, which are latched with a pixel clock signal, PIXCLOCK.
Also, a flat panel display controller typically has a maximum resolution limited by a maximum clock frequency supported from its video output circuitry. The controller supports resolutions below the fixed resolution of its flat panel display via circuitry in the flat panel display controller. This circuitry provides at a minimum the ability to center a low resolution display on the panel. Other flat panel display controllers provide circuitry for upscaling the low resolution to the high native resolution of the panel using either pixel replication, or line replication, or interpolation with filtering at various quality levels. However, incompatibilities may exist between the display controller in the computer and the controller in the flat panel display and which may affect the display quality.
SUMMARY
An apparatus and a method are disclosed for selecting either a first scaler in a host computer or a second scaler in a display device where the first scaler has a predetermined output quality. The apparatus causes the display device to render a pattern; determines an output quality of the second scaler; and compares the output quality of the second scaler with the predetermined output quality and selecting the scaler with the higher quality output.
Implementations of the invention include one or more of the following. When the display device has a native resolution and the system has an active mode resolution, the apparatus may determine a scaling mode acceptable to the user when the active mode resolution is not equal to the native resolution. Further, data associated with the pattern rendered by the display device may be analyzed. Moreover, the selecting step may include enabling the first scaler if the first scaler provides higher quality output. The selecting step may include enabling the second scaler if the second scaler provides higher quality output. Additionally, the selecting step may include enabling both the first and second scalers if a combination of the first and second scalers provides the best quality. The comparing step may include receiving a user preference; and applying the user preference as a factor in selecting the scaler. A preference for sharpness or smoothness may be specified. Further, the output quality determining step may include collecting horizontal samples from the second scaler; and collecting vertical samples from the second scaler.
In a second embodiment, the apparatus selects either a first scaler in a host computer or a second scaler in a display device, the first scaler being associated with a predetermined display quality. The apparatus has a horizontal line sample buffer for capturing a horizontal line of image data being displayed on the display device; a vertical line sample buffer for capturing a vertical line of image data being displayed on the display device; and means connected to the horizontal and vertical line sample buffers for retrieving data associated with the pattern rendered by the second scaler and for selecting the scaler with higher display quality.
Implementations of the invention include one or more of the following. The apparatus may include a means for determining the output quality associated with the second scaler based on the retrieved data and the output quality associated with the first scaler. Also, the apparatus may include a means for retrieving and analyzing data associated with the pattern may be rendered by the display device. It may further include selecting means which enables the first scaler if the first scaler provides higher quality, or enables the second scaler if the second scaler provides higher quality. The apparatus may also enable both the first and second scalers if a combination of the first and second scalers provide the best quality. Moreover, the comparing means includes a means for receiving a user preference and for applying the user preference as a factor in selecting the scaler. A preference of sharpness or smoothness may be specified. Finally, the output quality determining means may include collecting horizontal or vertical samples from the second scaler.
In another embodiment of the invention, a display mode may be selected in a system where the display controller is capable of supporting scaling or centering. The display mode is associated with an active resolution, a system output resolution, and a centering option. The system determines whether the display device supports scaling; determines a potential scaler mode combination between a display controller scaler and a display device scaler; and allows the user to select one scaler mode combination using a control panel.
Implementations of the invention may include one or more of the following. A control panel option may be enabled if the system action mode resolution is supported by the display device or the display controller. An error message may be generated if the resolution of the display device is not supported by the display controller. The error message may be an audible message. The lowest resolution supported by either the display device or the display controller may be selected if a resolution configuration has not been set. User preferences may be stored and applied automatically when an application selects a new active mode. The acceptable display resolution options may be displayed to the user for the user to select the scaler in the controller and/or in the display device. The user may also select a center mode if appropriate.
Advantages of the invention may include one or more of the following. The video scaling circuit in the flat panel display device avoids a potential resolution incompatibility between the controller in the computer system and the controller in the peripheral flat panel display device. The system also automatically engages the scaler circuitry with the correct scaling factor based on an automatic mode detection process to migrate from a native flat panel display resolution. Further, the system provides software with a user interface for selecting the highest quality of all potential scaler modes when video scalers in the controller and in the display device have overlapping capabilities.
The scaler system is cost-effective since it flexibly handles the cost and quality tradeoffs required on both the system-side and the monitor-side. Cost sensitive systems or displays can implement minimal centering/scaling functions. High end systems can provide high quality scalers and achieve high quality images even when combined with low cost displays. Thus, the system allows the computer to control its ultimate video quality.
Additionally, the invention provides an automatic scaler mode selection process which avoids user intervention and which supports optimum image quality without requiring any expertise in manually configuring the computer and the display device.
The invention also provides a display with an optimized mode centering capability. The invention also minimizes the bandwidth needed between the system and display for centering a lower resolution display mode on a higher resolution display by varying the line frequency so that it is much higher during times where no pixel data is supplied.
Other features and advantages will become apparent from the following description and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a schematic diagram illustrating an interface between a computer system and a display device.
FIG. 2
is a circuit for performing video mode detection and scaler control.
FIG. 3
is a circuit for performing video upscaling.
FIG. 4
is a circuit to sample output pixels for feedback and analysis.
FIG. 5
is a flowchart illustrating a process for performing automatic scaler mode selection.
FIG. 6
is a diagram illustrating terminologies associated with bandwidth optimized displayed mode centering.
FIGS. 7A
,
7
B,
7
C,
7
D and
7
E are flowcharts illustrating a process for performing low bandwidth display mode centering.
FIG. 8
is a diagram illustrating bandwidth optimized displayed mode centering timing.
FIG. 9A
is a detailed timing diagram illustrating horizontal timing during active vertical display.
FIG. 9B
is a detailed timing diagram illustrating black line timing during active vertical display.
FIG. 10
is a flowchart illustrating a process for identifying and enabling user options during initialization or upon detecting a new display device in the computer system.
FIG. 11
is a flowchart illustrating a process for updating available options for scaling and centering when the user changes the active resolution of the display device.
FIG. 12
is a flowchart illustrating a new active mode selection process.
FIG. 13
is a diagram illustrating a first mode scaling control panel.
FIG. 14
is a diagram showing a second mode scaling control panel.
FIG. 15
is a diagram showing a third mode scaling control panel.
FIG. 16
is a diagram showing a fourth mode scaling control panel.
FIG. 17
is a diagram showing a fifth mode scaling control panel.
FIG. 18
is a block diagram of a computer system.
DESCRIPTION
Turning now to
FIG. 1
, a computer-display system
100
with automatic resolution detection capability is shown. The system
100
has a computer system unit side
300
and a digital flat panel monitor side
310
. On the computer system side
300
, an active mode resolution input
302
represents a selected display resolution. The selection of the active mode resolution is typically made via a display control application such as a Windows95 display control panel. This resolution corresponds to the resolution stored in the frame buffer memory of the system flat panel display controller.
The active mode resolution input
302
is provided to a system graphics upscale and/or centering logic block
304
. Block
304
is generally contained in the flat panel display controller and may include line and/or frame buffers. Block
304
may be implemented with a variety of different cost/quality and architectural tradeoffs. For instance, it may be limited to only allow centering of a low resolution mode in a high resolution display or it may include scaler functions to allow a low resolution image to be stretched to a full screen. Further, the block
304
may support pixel/line replication only, or it may include multi-tap horizontal and vertical filters with line buffers and/or frame buffers required to support them.
The output of block
304
is provided to a system output resolution
308
. The system output resolution
308
specifies a TFT format resolution that comes from the flat panel display controller output section. The output from block
304
may also optionally be provided to a serial transmitter and receiver block
306
. The maximum pixel frequency could be limited by the serial transmitter interface if present or by circuitry in the graphics controller's display output pipeline. The limitation of this output is the source of potential incompatibility between a flat panel display controller and a flat panel display monitor. For example, if a system is capable of a maximum resolution of 1024×768 @ 60 Hz and a digital flat panel monitor has a resolution of 1280×1024, a basic incompatibility may exist between them. The incompatibility may be solved by adding video scaler and or centering logic with a video timing generator to the flat panel monitor.
The output of the system output resolution block
308
, or optionally the serial transmitter and receiver block
306
, is provided to a mode detection and scaler control block
312
. Block
312
supports an automatic setup of the monitor scaler and does not rely on any direct host to monitor communication for control register setup. The mode detection and scaler control block
312
detects whether the resolution produced by the system flat panel display controller is the same as the flat panel display native resolution, which is a fixed resolution. If the resolution is the same, then the monitor side upscale and/or centering logic & buffers block
314
is bypassed. If different, the scale factor control data is provided as an input to the monitor side upscale and/or centering logic & buffers block
314
. The block
314
may be limited to only allow centering of a low resolution mode in the higher resolution display or it could include scaler functions to allow the low resolution image to be stretched to full screen. Additionally, the block
314
may support pixel/line replication only or it could include multi-tap horizontal and vertical filters with line buffers and/or frame buffers required to support them. It could potentially include frame buffer(s) to support refresh rate conversion as well.
The monitor side upscale and/or centering logic, line and/or frame buffer and bypass block
314
converts the resolution from the output of the flat panel display controller to the fixed flat panel display resolution. The output of block
314
is also controlled by a monitor fixed panel resolution block
316
. In one embodiment, each of the resolution inputs
302
,
308
and
316
is provided from a digital pixel interface with the RGB pixel data, HSYNC, VSYNC, pixel clock and DATA_ENABLE signals.
Turning now to
FIG. 2
, a circuit
312
for detecting the display mode and controlling the scaler is illustrated in more detail. The circuit
312
stores data relating to a native resolution or fixed resolution of the flat panel display in order to detect a scaler bypass condition and to affect scale factors. In order to accommodate different standard panel sizes, encoded data relating to vertical and horizontal resolutions for different panel sizes may be provided. Pixel clock and data enable control signals are provided to a horizontal counter
320
. The horizontal counter
320
counts the number of valid pixels between horizontal sync pulses, thus capturing the desired horizontal resolution from the system graphics upscale block
304
. This is accomplished using the DATA_ENABLE signal to qualify the pixel clock as an input to the counter. Once the DATA_ENABLE signal becomes invalid, the counter output is latched for a continuous output. The counter is then reset and is allowed to count again when the DATA_ENABLE signal becomes active.
Similarly, the pixel clock, DATA_ENABLE and horizontal sync control signals are provided to a vertical counter
322
. The vertical counter
322
counts the number of valid lines between vertical sync pulses thus capturing the desired vertical resolution from the system graphics upscale block
304
. This is accomplished by counting active pulses that occur between the horizontal sync signal (HSYNC) and using DATA_ENABLE to qualify the counter input. The counter value may be latched on every vertical sync (VSYNC) pulse and output continuously. The counter would then be reset on the first clock after VSYNC and updated every frame so that any change in resolution may be detected.
The output of the horizontal counter
320
and the vertical counter
322
are provided to a scaler bypass control block
324
. The scaler bypass control block
324
also receives inputs from a panel size decoder
326
. If block
324
detects that the active horizontal resolution and the vertical resolution are equal to the fixed horizontal resolution and vertical resolution, then a “bypass enable” signal is activated. The panel size decoder
326
receives hard coded inputs from various pull-up/pull-down resistors. It provides outputs representing standard horizontal and vertical resolutions for a small range of different panel sizes. These are used as inputs for comparators in the scaler bypass control block
324
and as inputs to dividers in a monitor upscaling block
330
in FIG.
3
.
Turning now to
FIG. 3
, a circuit
315
for providing video upscaling and bypass is shown. The circuit
315
may be used as the system graphics upscale and/or centering logic, line and/or frame buffers block
304
, or may be used as the monitor side upscale and/or centering logic, line and/or frame buffers and bypass block
314
. The difference in the application of the circuit
315
is that the scaler in the display monitor side uses input signals provided by the mode detection and scaler control, while the scaler in the display controller can contain registers with the equivalent signal information provided by the CPU. Although possible, the processor in this embodiment does not directly program the display side scaler due to difficulty in accessing the display scaler signals as well as a lack of specific knowledge about scaler registers available on the display device.
The upscaling and bypass circuit
315
has a block
330
which performs centering and/or scaling/filtering logic from the input resolution to the output resolution. The block
330
also has output timing generators and an output pixel clock phase lock loop (PLL) device. Block
330
receives as input an active vertical resolution bus, an active horizontal resolution bus, a vertical fixed resolution bus and a horizontal fixed resolution bus. Additionally, the block
330
receives pixel data input and several other input signals, including a pixel clock input, a horizontal sync input, a vertical sync input, and DATA_ENABLE input. The block
330
is also connected to a horizontal line buffer
332
. The block
330
controls the block
332
via a clock signal, an address bus, and a read/write signal. Further, data is transferred via a 24 bit bus between the horizontal line buffer
332
and the block
330
. The block
330
in turn drives a pixel data output multiplexer
334
. The multiplexer
334
also receives pixel data input bus and a scale/center enable or bypass control signal. The scale/center enable or bypass control signal is also provided to a pixel_clock_out multiplexer
336
, a horizontal_sync_out multiplexer
337
, a vertical_sync_out multiplexer
338
and a DATA_ENABLE_out multiplexer
339
. Each of the multiplexers
336
,
337
,
338
, and
339
in turn are connected to the block
330
and to pixel clock input, horizontal sync input, vertical sync input, DATA_ENABLE, and data input signals, respectively. The timing generator
330
outputs timing signals that operate the flat panel display at the native resolution or fixed resolution. The timing generator
330
is a slave unit to the input timing in that the output horizontal and/or vertical timing is loosely coupled to the input timing.
The circuit
315
converts the output resolution of the flat panel display controller to the fixed flat panel display resolution. The scaler circuit generates timing for its fixed panel resolution while acting as a slave to the input (lower resolution timing) that it receives. The system side flat panel controller may be an independent master for timing generation purposes.
The horizontal and vertical scale factors (H-scale and V-scale respectively) are computed automatically as follows:
The automatic scaler mode detection based on output quality sample analysis is discussed next. Referring now to
FIG. 4
, a block diagram of a circuit
339
for generating output signal sample and feedback data and is described in detail. First, from the DATA_ENABLE signal, pixel data, pixel clock, and vertical sync signal, a horizontal sample logic and buffer block
340
generates a plurality of horizontal pixel samples. Correspondingly, from the DATA_ENABLE signal, pixel data, pixel clock, horizontal sync and vertical sync signal, a vertical sample buffer
342
generates a plurality of vertical pixel samples. The horizontal and vertical pixel samples are provided to a monitor to host feedback block
344
. The output of block
344
is a plurality of pixel samples which are sent to the host computer
300
.
The circuit
339
provides the computer
300
with the ability to automatically select a scaler mode when it has scaling capability and when it is combined with a flat panel display monitor which also has the ability to scale its input resolution from various sizes to fit its native resolution and to accommodate a given active display mode. This is done by intercepting and sampling the pixel stream within the display monitor just before the data is sent to the physical pixel array. The circuit
339
collects two samples of about 4-16 pixels each. One sample covers contiguous horizontal locations, and the other covers contiguous vertical locations. The memory required to store the pixel is relatively small compared to storage elements used for the scaling function itself.
The host system could display one or more test patterns before accumulating the samples. Once accumulated, the samples could be communicated back to the host system via a Digital Display Connector (DDC) or some other display to host communication means such as Universal Serial Bus (USB). The computer
300
then evaluates the samples to determine the quality of the filter which was applied during the image scaling. The computer
300
can then select the different possible combinations between using the system side scaling and/or the display side scaling and evaluate the display quality of each possibility. After determining the highest quality option, the computer
300
is automatically reconfigured to this mode. The user could optionally be given some control over the quality/selection criterion by being offered a selection such as “sharp edges” vs “smooth edges,” as shown in FIG.
5
.
Turning now to
FIG. 5
, a process for performing automatic scaler mode selection with the circuit of
FIG. 4
is shown. First, a test pattern is displayed (step
490
). Next, horizontal and vertical samples from the display side scaler is collected via logic on the display device (step
491
). The samples are transmitted to the host computer (step
492
). Additionally, a user may also provide inputs to the host computer
300
. These inputs include “sharp edge selection” or “smooth edge selection” (step
494
). Other user preferences may also be provided to the host computer
300
. The inputs from step
492
and
494
are processed by the host computer
300
(step
493
) and the comparison of the sample data to known host scaler quality pattern are stored in memory or on disk. In addition to the test pattern displayed in step
490
, other patterns may be tested and if so, the process loops from step
495
to step
490
to display the next pattern.
Once all test patterns have been compared to known host scaler quality patterns, the system determines whether the system side scaler, the display side scaler, or a combination of scalers are optimum (step
496
). In the event that the system side scaler provides the optimum result, the system side scaler is selected (step
497
). Alternatively, in the event that the display side scaler alone provides the optimum result, the display side scaler is enabled (step
498
). Further, in the event that a combination of both scalers provide the optimum result, both are enabled (step
499
).
Low bandwidth display mode centering capability is discussed next.
FIG. 6
shows a diagram illustrating terminologies associated with a bandwidth optimized display mode. The system has a panel native resolution
450
which is a superset of an active mode resolution
460
. The panel native resolution display includes a line period
462
. The line period
462
includes a left horizontal blank time
464
, an active horizontal display time
465
, a right horizontal blank time
466
, and a horizontal blank time
468
. Correspondingly, a frame period
480
contains a top black line time
471
, a top fast horizontal sync time
472
, an active vertical display time
470
, a bottom black line time
473
, a bottom fast horizontal sync time
474
, and a vertical blank time
476
.
When the maximum output resolution of the host computer is less than the resolution of the flat panel display and the centering option has been selected, the host computer must transmit blank (typically black) pixels for several lines at the top and bottom of the frame. The host must also transmit blank pixels at the start and finish of each line so as to center the active display data in the larger flat panel pixel array. For example, in order for 1024×768 (P1×L1) active pixels from the host to be displayed in the center of a 1280×1024 (P2×L2) pixel panel, P2−P1=1280−1024=256 blank pixels must be added to each line—128 at the start and 128 at the end of each line. Further, L2−L1=1024−768=256 blank lines must be added to each frame—128 at the top and 128 at the bottom of each frame. Normally, the insertion of a blank line entails transmitting 1280 blank pixels, one at a time. Thus, the transmission of 128 blank lines would entail repeating the blank line transmission process 128 times.
FIGS. 7A-7E
shows a process for performing low bandwidth display mode centering on a flat panel display controller which minimizes the blank line transmission timing. The flat panel display controller first asserts a horizontal sync pulse during an active vertical display period. The process determines m black lines from the top of the screen to the top of the image and determines n black lines from the bottom of the screen to the bottom of the image. The n and m lines thus form top and bottom borders around which an original image may be centered. A line buffer in the display device which holds data for the line to be displayed is then filled with black values. The process then displays m black lines using a second horizontal sync period at the start of each frame, where the second horizontal sync period is shorter than the first horizontal sync period. Each line of the image is then horizontally centered and displayed, followed by n black lines which are displayed using the second horizontal sync period at the start of each frame. By using the shortened second horizontal sync periods to generate the top and bottom borders, the top and bottom borders are generated quickly. Moreover, the process only needs to fill the line buffer with black data once or twice for the entire centering process. Thereafter, for the rest of the blank lines, the host controller need only transmit the line synchronization pulse. This operation takes substantially less time and effectively reduces the transmission bandwidth requirement.
As shown in
FIGS. 7A-7E
, the low-bandwidth display mode centering process initially asserts a vertical sync pulse (step
420
) and determines whether the minimum required pulse width has been satisfied (step
421
). If not, the process waits for a predetermined period (step
422
) before rechecking the pulse width duration. Once the required period is satisfied, the vertical sync signal is negated (step
423
). The system may also optionally output a black line at the top of the display screen if a programming bit called “Skip Top Black Line” has been cleared in step
423
A. Alternatively, if the programming bit of step
423
A is set, the process jumps to step
438
via a connector B
1
.
After processing the optional top black line, a number of top fast horizontal sync signals are provided to the flat screen controller to insert the required number of blank lines at the top to center the original image. The process waits for a predetermined period before asserting a horizontal sync pulse (step
424
). If the minimum period is not met, the process waits for a predetermined period (step
425
) before rechecking. When the required period between the negation of the vertical sync pulse and the first horizontal sync pulse is met, the process asserts a horizontal sync pulse (step
426
) until the required pulse width duration is satisfied (steps
427
-
428
). Upon the completion of the required horizontal sync pulse period, the horizontal sync pulse is negated (step
429
).
The process then determines whether the required delay between the horizontal sync signal and the DATA_ENABLE signal has been met (step
430
). If not, the process waits in step
431
. Once the delay is met, the process proceeds from step
430
to step
432
via an A connector.
In step
432
, the process asserts the DATA_ENABLE signal and enables a full line of black pixel data to be copied into a buffer. The process then determines whether the transmission of the active pixel line has been completed (step
433
) and if not, processes the next pixel (step
434
). Once the transfer of the active pixel line has completed, the process then negates the DATA_ENABLE pulse and disables the pixel output (step
435
). Next, the process checks to see if the required period between the DATA_ENABLE signal to the horizontal sync signal (step
436
) has been met. If not, the process inserts a delay (step
437
) before rechecking.
From step
436
, the process then asserts the horizontal sync signal (step
438
) for a predetermined period (steps
439
-
440
). At the end of this period, the horizontal sync signal is negated (step
441
). The process then determines whether the appropriate number of top fast horizontal sync count has been satisfied (step
442
). If not, the top fast horizontal sync count is incremented and a delay for the fast horizontal sync period is asserted (step
443
) before the process loops back to step
438
to drive the next top fast horizontal sync signal.
Once the respective number of top fast horizontal sync signals have been generated in step
442
so that the resulting image is vertically centered, the process waits for the required delay between the horizontal sync signals and the DATA_ENABLE signal (steps
444
-
445
). Upon completion of the required period, the process proceeds from step
444
to step
446
via a D connector. The process then asserts the DATA_ENABLE signal and enables left black pixel data to be transferred to a line buffer (step
446
). The process then determines whether the left black pixel transfer process has completed operation (step
447
) and if not, the next black pixel is transferred (step
448
). When all left black pixels have been transferred, the pixels of the current image are then transmitted to the line buffer in steps
449
-
450
. When all pixels associated with the current line of the original image have been transferred, the process then inserts a black segment to the right of the image by filling the rest of the line buffer with a series of right black pixels (steps
451
-
452
). Once the right black segment has been filled, the DATA_ENABLE pulse is negated and pixel data output is disabled (step
453
). Next, a predetermined delay is inserted between the DATA_ENABLE pulse and the next horizontal sync pulse (steps
454
-
455
). Upon conclusion of the predetermined delay, the horizontal sync signal is asserted (step
456
) and a requisite delay is inserted (steps
457
-
458
) before negating the horizontal sync pulse (step
459
). Next, the process determines whether the active line count has been met (step
460
) and if not, the process looks back to step
444
via a C connector.
From step
460
, in the event that the active line count is met, the process proceeds via an E connector to step
461
where it waits until the required delay between the horizontal sync signal and the DATA_ENABLE signal is met (steps
461
-
462
). The process then asserts the DATA_ENABLE pulse and enables a full line of black pixel data to be transferred (step
463
). The process then determines whether the transfer associated with the active pixel line has been completed (step
464
) and if not, operates on the next pixel (step
465
). Once the transfer completes, the process then negates the DATA_ENABLE pulse and disables pixel data output (step
466
). It then waits for the required period between the deassertion of the DATA_ENABLE signal and the next horizontal sync signal (steps
467
-
468
).
A number of bottom black lines are then generated to complete the low-bandwidth centering of the flat panel display. This is done by filling up the line buffer with black color pixels. First, the horizontal sync signal is asserted (step
469
) and is maintained for the required pulse duration (steps
470
-
471
) before it is negated (step
472
). Next, the process determines whether the bottom fast horizontal sync count has been met (step
473
). If not, the process loops back to step
469
to continue generating the bottom fast horizontal sync signals. When all bottom fast horizontal sync signals have been sent, the process proceeds to step
474
via an F connector and waits for the required delay between the horizontal sync signal to the DATA_ENABLE signal (steps
474
-
475
). Once the horizontal sync to DATA_ENABLE delay is satisfied, the process then waits for another timing period between the last horizontal sync signal to the vertical sync signal (steps
476
-
477
) before looping back to step
420
via a B connector to handle the next frame.
In one implementation, the following groups of registers in the display controller are used. Three registers contain start of frame information: Vsync pulse width, Fast Hsync pulse width, Delay from Vsync trailing edge to first Hsync pulse, Skip top black line bit, and Fast Hsync Period. One register is used to hold the top fast Hsync line count information and another register is used to hold the bottom fast Hsync line count information. Further, a number of registers are used to hold information regarding the active display time, including active Hsync pulse width, active line Hsync trailing edge to DATA_ENABLE delay; active line DATA_ENABLE trailing edge to Hsync delay Active Hsync Line count; active line full pixel count; active line valid pixel count; left black pixel count; and right black pixel count. Additionally, a register is used to hold information regarding the delay from last bottom fast Hsync trailing edge to Vsync.
FIGS.
8
and
FIGS. 9A-B
show timing diagrams
400
and
410
associated with various timing periods for the bandwidth optimized display mode. The horizontal timing diagram
410
of the active vertical display operation of
FIG. 8
is shown in more detail in
FIG. 9A
, while the black timing diagram
411
is shown in more detail in FIG.
9
B.
FIG. 9A
illustrates the timing associated with the centering of lines of the original image after the top borders have been generated. A plurality of black pixels are generated for display during the left horizonal black time, as shown in detail in FIG.
9
B. The black pixels are then followed by a series of pixels associated with the original image. This is done during the active horizontal display time. At the last pixel of the original image, a series of black pixels are generated for display during the right horizontal black time, as shown in detail in FIG.
9
B.
The software control of the dual video scalers is discussed next. The software determines all possible scaler modes supported by the scalers in the display controller and the display device, respectively. The software control also allows the user to select the highest quality display mode. The addition of video centering/scaling to the flat panel display creates the potential for generating certain output modes (resolutions) which could be generated using either the system flat panel controllers, scaling logic or the scaling logic in the flat panel display itself. Since the quality tradeoffs of the two different possible scaler selections are likely to be different, the system provides a method for user selection between the two or more possibilities. This software control assesses the level of centering and/or scaling logic in the system flat panel controller as well as in the flat panel monitor and enables the user to select from the available options. Optionally, the software could make some intelligent decisions to constrain the choices to limit the complexity for the user.
The software may be contained in the system graphics subsystem BIOS, device drivers or both. Several parameters are tracked by the software which determine how it will control the subsystem. The first set of parameters are known to the software since they are provided by the display controller itself and may be hard coded for a particular implementation. The first set of parameters may provide data on the display controller's maximum output frequency (limits highest resolution), minimum output frequency (limits lowest resolution), centering capability, and scaling capability. The software also uses parameters which vary and are under control of the user and/or the graphics subsystem software, including the active mode resolution of the display device. Additionally, the software uses parameters which are communicated from the flat panel display (typically via DDC/EDID or similar means). These parameters include the display device's maximum resolution, minimum resolution, native(fixed) resolution, and centering capability.
The software evaluates these parameters and determines which of the following “available options” flags below can be set. These flags include system side centering, display side centering, system side scaling at 640×480, system side scaling at 800×600, system side scaling at 1024×768 (resolutions below 1024×768 supported by system), system side scaling at 1280×1024, system side scaling at 1600×1200, display side scaling at 640×480, display side scaling at 800×600, display side scaling at 1024×768 ( resolutions below 1024×768 supported by system), display side scaling at 1280×1024, and display side scaling at 1600×1200.
The system side scaling factors describe the resolution of the output of the system flat panel controller. If the chosen system side output mode is different than the active display mode, then the system side scaler is active. If system side output mode is different than the native flat panel display resolution, then the flat panel monitor scaler is active.
The “system side centering” and “display side centering” flags indicate that a lower resolution image can be centered on a high resolution display without any scaling applied. The user would not know the difference if the centering operation were performed by the system flat panel controller or by logic on the flat panel monitor. Therefore, only a single option “Center Mode” needs to be presented to the user. The system should simply choose to default to one or the other when selected if both options are present. If the system side scaler can't support the flat panel native resolution, a proper centering could only be supported on the monitor side. Also, if the system side cannot support the native panel resolution of the flat panel monitor and only the system has a centering capability, a combination of centering from the system controller and scaling in the monitor may be employed. This would result an image being centered on the display but also upscaled.
The system scale resolution could potentially be in between the active resolution and the native panel resolution, meaning that both the system and monitor scalers are being used for a portion of the scaling process. Using both scaler units to achieve the target active resolution might be desirable if the system scaler was a higher quality scaler but had a limit below the panels native resolution. Assuming the monitor had a lower quality scaler, than the optimum mode would probably be to use the system side scaler up to it's maximum resolution, and than use the monitor side scaler to finish the upscaling process.
Once the “available option” flags have been determined, the software can present the user with all options or it can present the user with simplified set of options.
FIG. 13
shows a sample user interface for selecting the mode of operation for the scaler. The software presents the user with all options available and disables any options not available by graying out the selection such that available options would not be grayed out. Further, the user may select an option by checking a radio button or by positioning a slider bar on the interface. The interface is discussed in more detail in
FIGS. 13-17
below.
Referring now to
FIG. 10
, a process
500
for identifying and enabling user options during a system initialization or upon detecting a new display device is shown. First, the process
500
reads data from the new display device (step
504
). The data may be retrieved using the digital display connector (DDC) port. Next, the process
500
checks whether the display supports multiple resolutions (step
510
). If so, the process
500
enables the supported resolutions in the user interface (step
512
). After step
512
, or in the event that the display does not support multiple resolution in step
510
, the process
500
enables the active mode resolution that can be supported by the display controller side scaler for a given fixed panel size (step
514
).
Next, the process
500
determines whether the system supports at least one resolution that is also supported by the display device (step
516
). If not, the process
500
outputs an audio message and indicates that the display is incompatible with the system (step
518
). From step
516
, in the event that the system supports at least one resolution on the display device, the process
500
then determines whether the user has previously configured the system to a predetermined resolution (step
520
). If so, the process
500
further determines whether either the system controller or display device controller supports the predetermined resolution (step
522
). From step
520
or step
522
, in the event of a negative determination, the process
500
selects the lowest supported resolution and defaults first to using the display scaler if both the system controller and the display device can support the resolution (step
524
). Alternatively, from step
522
in the event that the predetermined resolution is supported by either the system or the display side scaler, the process
500
selects the same resolution and defaults first to using the display side scaler (step
526
). From step
524
, step
526
, the process
500
exits (step
528
).
Turning now to
FIG. 11
, a process
530
for updating the user interface available options for scaling and centering when a user changes the active resolution is shown. The process first determines whether the active mode resolution is equal to the native panel resolution (step
532
). If so, the process
530
further determines whether the system can directly drive the active resolution (step
534
). If so, the process
530
then enables or selects the supported system output resolution which is equal to the native panel resolution (step
536
) without enabling other system output resolutions. From step
536
, the process
530
exits (step
550
).
From step
532
or step
534
, in the event that the determination is negative, the process
530
checks whether the system or display supports centering active resolution (step
538
), and if so, enables the control panel option for centering (step
540
). Next, the process
530
further checks whether the system supports scaling of the active resolution to the panel fixed resolution (step
532
). If so, the process in
530
enables the control panel options system output mode that are available from the system side flags (step
544
). Next, the process
530
determines whether the display supports multiple resolution, as referenced by the display side flags (step
546
). If so, the process
530
enables the control panel options for all additional system output modes available from the display side flags (step
540
). From step
546
or
548
, the process
530
exits (step
550
).
A pseudocode for the software method for determining the user selections available is shown below.
If (the system has been rebooted or a new display has been detected)
{
read the monitor digital data to establish the new available display mode options
If (display supports multiple resolutions)
{
store the available display supported resolutions and combine these with the previously known system supported resolutions for the current fixed panel size
}
If (there is at least one supportable mode available)
{
select the previously selected mode or the lowest resolution supported mode if none was previously selected
}
Else
{
output an audible message indicating incompatibility. A voice message is preferred but a sequence of 2 or 3 beeps can be used if voice audio is not available
}
}
If (the display control user interface application has been opened)
{
If (the active mode resolution=the native panel resolution and the system can drive this resolution)
{drive the active resolution directly then do so since no scaling is required }
Else If (system or display can support centering)
{enable user interface option for centering}
If(system supports scaling active resolution to fixed panel resolution)
{enable control panel options for supported system output modes}
If(the display supports multiple resolutions)
{enable any additional control panel options for supported system output modes}
}
If (user applies a change to the display control panel settings)
{
Store the new settings as a user preference for the current active mode and program the system output per the new selection
}
If (an application changes active resolution)
{
If (previously available setting exists for this active resolution)
{
use the stored user preference and program the system output per the new selection
}
Else
{
use display scaler as first default (active mode resolution=system output resolution)
if supported or use system scaler (active mode resolution=native panel resolution) and if display scaler can't support.
Program the system output per the new selection
}
}
Turning now to
FIG. 12
, a process
560
for applying a change to the active mode, the system output mode, or centering is shown. Initially, the process check whether the user has applied a change to the active mode or the system output mode (step
562
). If so, the process
560
stores the new system output setting as a user default chosen for the active mode (step
564
) and then programs the hardware for the selected system output mode and the active mode (step
582
). From step
562
, in the event that the user has not applied a change, the process then determines whether the application software has requested a change to the native mode resolution (step
566
). If not, the process indicates an error (step
580
). Alternatively, if the application software has requested a change, the process
560
then checks whether the store user default setting is available (step
568
). If so, the process
560
reads the previously stored system output mode setting for the chosen active mode (step
570
) and proceeds to step
582
to program the hardware. From step
568
, in the event that there is no stored user default setting, the process checks whether the displayed scaler supports the selected active mode (step
572
). If so, the process
560
sets the system output resolution to be the active mode resolution (step
574
) before proceeding to step
582
. Alternatively, from step
572
, the process then checks whether the system scaler supports the selected active mode (step
576
). If not, the process
560
indicates an error (step
580
). Otherwise, from step
576
, the process
560
sets the system output resolution to the native panel resolution (step
578
) before proceeding to step
582
to program the hardware for the selected system output mode and active mode.
The example control panels below assume that the system is capable of outputting a maximum of 1280×1024 resolution. This example simplifies the selection for the user slightly by only providing one option for centering. This means that the software would use whichever centering mode it determines as optimum when any limitations exist or simply default to one or the other when all things are equal. The software presents the user with all options available and disabling any options not available. As the user changes the active resolution selection, the software updates the system output resolution availability by “graying out” modes that can not be selected.
The example control panel of
FIG. 13
assumes that the system is capable of outputting a maximum of 1280×1024 resolution. However, if only the display could do scaling, then only the active mode resolution needs to be selected by the user. If the scaling is in the system, then the system scale resolution would be locked to the fixed panel resolution with others grayed out or hidden.
FIGS. 14
is similar in concept to
FIG. 13
, but is an alternate user interface which constrains the user to valid options by limiting the display of one or more radio buttons or the range of a slider bar.
FIG. 15
shows a further simplified view to the user with only two options for scaling. Here, the software resolves any limitations between the two options and chooses the closes match to the user selection. The simplified control panel of
FIG. 15
may be presented first, with a more detailed user interface available via an “advanced” control panel. The user interface of
FIG. 15
thus supports the use of a combination of both scalers to produce a final image.
FIGS. 16 and 17
show example scenarios with different assumptions on the system and display and a brief description of how the software handles each case.
FIG. 16
shows an example of a system with an XGA display and wherein only the display controller can perform scaling. In this example, the system is capable of outputting max frequency of 65 MHz (resolution of 1024×768 at 60 Hz), the active mode is 640×480 at 60 Hz resolution, the system can do centering or scaling using pixel/line replication, and the monitor can not do any scaling and accepts only 1024×768 resolution. In this example, the possible modes are (1) the 640×480 resolution is scaled up to 1024×768 by the system side controller; or (2) the 640×480 resolution is centered on the 1024×768 resolution by the system side controller.
FIG. 16
thus shows that these two options as being enabled (shown in bold).
FIG. 17
shows another example for a system with an SXGA display. In this example, the system is capable of outputting a maximum resolution of 1024×768 at 60 Hz and the active mode is at 640×480 at 60 Hz resolution. Further, the system can do centering or scaling using high quality scaling, and the monitor can support any resolution from 640×400 to 1280×1024 and can provide pixel/line replication based scaling, but can not do any centering. In this example, since the display device can scale up to 1280×1024, the system output resolution can be varied between 640×480 up to 1280×1024 for displaying the 640×480 active resolution. Since the system does high quality scaling, this is most likely the preferred scaler to use. If the user selects the system output resolution to be 1280×1024, the system scaler would be engaged. If the user selects the system output to be 640×480, the display scaler would be engaged. Alternatively, if the user selects an in-between resolution, both scalers would be engaged.
In another example where the system is capable of outputting at a maximum frequency of 65 MHz (resolution of 1024×768 at 60 Hz), the active mode is 640×480 at 60 Hz resolution, the system can do centering or scaling, and the display device cannot scale and accepts only 1280×1024 resolution, the display is incompatible with the system. The system would output an error message such as an audible message to denote that the display is not compatible with the system or, alternatively, beep two or three times if voice audio is not available in the system.
Referring to
FIG. 18
, a computer system
199
is illustrated. The system
199
includes a central processing unit (CPU)
200
connected by a CPU-PCI bridge
202
to a Peripheral Component Interconnect (PCI) bus
206
. A main memory
204
is connected to the CPU
200
and CPU-PCI bridge
202
. A mass storage device
212
, in the form of hard disk drives, for example, is connected to a SCSI controller
210
which in turn connected to the PCI bus
206
. The CPU
200
also drives a video controller
213
, which in turn is connected to either a CRT display
214
or an optional LCD flat panel display
215
.
An expansion bus
228
, such as the Extended Industry Standard Architecture (EISA) or the Industry Standard Architecture (ISA) bus, is connected to the PCI bus
206
through a PCI-expansion bus bridge
216
. The expansion bus
228
is connected to an input/output (I/O) controller
218
, which provides interface ports to a keyboard
220
, a pointer device (such as a mouse), and a serial port
222
and a parallel port
224
. Expansion slots
226
are connected to the expansion bus
228
to provide further expansion capabilities.
The system automatically engages a video scaler circuit with the correct scaling factor based on automatic detection of a mode that is not equal to the native flat panel display resolution. The system also enables the manual selection of the highest quality scaler of two or more potential scaler modes when video scalers in the controller and in the monitor may have some overlapping capabilities. Modes include choosing between the two scalers or potentially using a combination of both scalers. Moreover, the system automatically selects the highest quality scaler (or combination of scalers) when a scaler device exists in both a system and a digital flat panel display device. Further, the system positions (typically by centering) a display resolution on a display device of higher resolution while minimizing the bandwidth required to do so. These capabilities allow different display resolutions to be supported and configured with the same computer. Additionally, different quality tradeoffs are available as options to the user.
The specific resolutions used herein are standard resolutions and their resolutions could be added or deleted as required for any specific implementation. Further, the control panel user interface examples shown above are only samples of possible ways to give the user access to the scaler resources in the system and the display. The specific implementation will depend on the expected capability of the target users. For unsophisticated user, a simplified version like the one above could be user possibly providing access to the more complete version via an “advanced” option area of the display control panel.
Other embodiments are also within the scope of the following claims.
Claims
- 1. A computer implemented method for selecting either a first scaler in a host computer or a second scaler in a display device, the first scaler having a predetermined output quality, comprising:causing the display device to render a pattern; determining an output quality of the second scaler from the pattern; and comparing the output quality of the second scaler with the predetermined output quality and selecting the scaler with the higher quality output.
- 2. The method of claim 1, wherein the display device has a native resolution and the system has an active mode resolution, further comprising determining a scaling mode acceptable to the user when the active mode resolution is not equal to the native resolution.
- 3. The method of claim 1, further comprising analyzing data associated with the pattern rendered by the display device.
- 4. The method of claim 1, wherein the selecting step further comprises enabling the first scaler if the first scaler provides higher quality output.
- 5. The method of claim 1, wherein the selecting step further comprises enabling the second scaler if the second scaler provides higher quality output.
- 6. The method of claim 1, wherein the selecting step further comprises enabling both the first and second scalers if a combination of the first and second scalers provides the best quality.
- 7. The method of claim 1, wherein the comparing step further comprises:receiving a user preference; and applying the user preference as a factor in selecting the scaler.
- 8. The method of claim 7, further comprising specifying a preference for sharpness.
- 9. The method of claim 1, further comprising specifying a preference for smoothness.
- 10. The method of claim 1, wherein the output quality determining step further comprises:collecting horizontal samples from the second scaler; and collecting vertical samples from the second scaler.
- 11. An apparatus for selecting either a first scaler in a host computer or a second scaler in a display device, the first scaler being associated with a predetermined display quality, comprising:a horizontal line sample buffer for capturing a horizontal line of image data being displayed on the display device; a vertical line sample buffer for capturing a vertical line of image data being displayed on the display device; and means coupled to the horizontal and vertical line sample buffers for retrieving data associated with the pattern rendered by the second scaler and for selecting the scaler with higher display quality.
- 12. The apparatus of claim 11, further comprising:means for determining the output quality associated with the second scaler based on the retrieved data; and means for determining the output quality associated with the first scaler.
- 13. The apparatus of claim 11, further comprising means for retrieving and analyzing data associated with the pattern rendered by the display device.
- 14. The apparatus of claim 11, wherein the selecting means further comprises enabling the first scaler if the first scaler provides higher quality.
- 15. The apparatus of claim 11, wherein the selecting means further comprises means for enabling the second scaler if the second scaler provides higher quality.
- 16. The apparatus of claim 11, wherein the selecting means further comprises means for enabling first and second scalers if a combination of the first and second scalers provide the best quality.
- 17. The apparatus of claim 11, wherein the comparing means further comprises:means for receiving a user preference; and means for applying the user preference as a factor in selecting the scaler.
- 18. The apparatus of claim 17, further comprising means for specifying a preference for sharpness.
- 19. The apparatus of claim 11, further comprising means for specifying a preference for smoothness.
- 20. The apparatus of claim 11, wherein the output quality determining means further comprises:means for collecting horizontal samples from the second scaler; and means for collecting vertical samples from the second scaler.
- 21. A computer system, comprising:a processor; a data storage device coupled to the processor; a display device coupled to the processor, the display device having a vertical display period with a first horizontal sync period, the display device rendering an image having one or more lines; a first scaler coupled to the processor, the first scaler being associated with a predetermined display quality; a second scaler coupled to the display device; and an apparatus for selecting either the first scaler or the second scaler, including: a horizontal line sample buffer for capturing a horizontal line of image data being displayed on the display device; a vertical line sample buffer for capturing a vertical line of image data being displayed on the display device; means coupled to the horizontal and vertical line sample buffers for retrieving data associated with the pattern rendered by the second scaler and for selecting the scaler with higher display quality.
- 22. The system of claim 21, further comprising:means for determining the output quality associated with the second scaler based on the retrieved data; and means for determining the output quality associated with the first scaler.
- 23. The system of claim 21, further comprising means for retrieving and analyzing data associated with the pattern rendered by the display device.
- 24. The system of claim 21, wherein the selecting means further comprises enabling the first scaler if the first scaler provides higher quality.
- 25. The system of claim 21, wherein the selecting means further comprises means for enabling the second scaler if the second scaler provides higher quality.
- 26. The system of claim 21, wherein the selecting means further comprises means for enabling first and second scalers if a combination of the first and second scalers provide the best quality.
- 27. The system of claim 21, wherein the comparing means further comprises:means for receiving a user preference; and means for applying the user preference as a factor in selecting the scaler.
- 28. The system of claim 27, further comprising means for specifying a preference for sharpness.
- 29. The system of claim 21, further comprising means for specifying a preference for smoothness.
- 30. The system of claim 21, wherein the output quality determining means further comprises:means for collecting horizontal samples from the second scaler; and means for collecting vertical samples from the second scaler.
- 31. A method for selecting a display mode in a system with a display controller driving a display device, the display controller capable of supporting scaling or centering, the display mode being associated with an active resolution, a system output resolution, and a centering option, comprising:determining whether the display device supports scaling; determining a potential scaler mode combination between a display controller scaler and a display device scaler; and allowing the user to select one scaler mode combination using a control panel.
- 32. The method of claim 31, further comprising enabling a control panel option for a system action mode resolution supportable by the display device.
- 33. The method of claim 31, further comprising enabling a control panel option for an active mode resolution supportable by the display controller.
- 34. The method of claim 31, further comprising generating an error message if the resolution of the display device is not supported by the display controller.
- 35. The method of claim 31, further comprising generating an audible message if the resolution of the display device is not supported by the display controller.
- 36. The method of claim 31, further comprising selecting the lowest resolution supported by either the display device or the display controller if a resolution configuration has not been set.
- 37. The method of claim 31, further comprising:storing user preferences for selected output resolutions in the control panel to select a scaling mode; and automatically engaging the user preferences when an application selects a new active mode.
- 38. The method of claim 37, further comprising acceptable display resolution options and displaying the options to the user.
- 39. The method of claim 37, further comprising allowing the user to select a scaler in the controller or in the display device.
- 40. The method of claim 37, further comprising allowing the user to select a center mode.
- 41. An apparatus for selecting a display mode in a system with a display controller driving a display device, the display controller capable of supporting scaling or centering, the display mode being associated with an active resolution, a system output resolution, and a centering option, comprising:means for determining whether the display device supports scaling; means for determining all potential scaler mode combinations between a display controller scaler and a display device scaler; and means for allowing the user to select one scaler mode combination using a control panel.
- 42. The apparatus of claim 41, further comprising means for enabling a control panel option for a system active mode resolution supportable by the display device.
- 43. The apparatus of claim 41, further comprising means for enabling a control panel option for an active mode resolution supportable by the display controller.
- 44. The apparatus of claim 41, further comprising means for generating an error message if the resolution of the display device is not supported by the display controller.
- 45. The apparatus of claim 41, further comprising means for generating an audible message if the resolution of the display device is not supported by the display controller.
- 46. The apparatus of claim 41, further comprising means for selecting the lowest resolution supported by either the display device or the display controller if a resolution configuration has not been set.
- 47. The apparatus of claim 41, further comprising:means for storing user preferences for selected output resolutions in the control panel to select a scaling mode; and means for automatically engaging the user preferences when an application selects a new active mode.
- 48. The apparatus of claim 47, further comprising means for determining acceptable display resolution option and displaying the options to the user.
- 49. The apparatus of claim 47, further comprising means for allowing the user to select a scale in the controller or in the display device.
- 50. The apparatus of claim 47, further comprising means for allowing the user to select a center mode.
- 51. A computer system, comprising:a processor; a display device coupled to the processor; a display controller driving a display device, the display controller capable of supporting scaling or centering; and a display mode selector for selecting a display mode associated with an active resolution, a system output resolution, and a centering option, including: means for determining whether the display device supports scaling; means for determining all potential scaler mode combinations between a display controller scaler and a display device scaler; and means for allowing the user to select one scaler mode combination using a control panel.
- 52. A computer system, comprising:a processor; a display device coupled to the processor; a display controller driving a display device, the display controller capable of supporting scaling and centering; and a display mode selector for selecting a display mode associated with an active resolution, a system output resolution, and a centering option, comprising: means for determining whether the display device supports scaling; means for determining all potential scaler mode combinations between a display controller scaler and a display device scaler; means for allowing the user to select one scaler mode combination using a control panel; and means for centering a lower resolution display mode on a higher resolution display.
- 53. The system of claim 52, wherein the means for centering the lower resolution display mode comprises varying line frequency.
US Referenced Citations (17)