Claims
- 1. A leak detection monitor for an on-board evaporative emission leak detection system that detects leakage from an evaporative emission space of a fuel system for an engine of an automotive vehicle, the leak detection monitor comprising:
a housing enclosing an interior space communicated to atmosphere; a port for communication with the evaporative emission space; a vent valve that is selectively operable to a first state for opening the port to the interior space and thereby venting the evaporative emission space to atmosphere and to a second state for closing the port to the interior space and thereby not venting the evaporative emission space to atmosphere; an electric device for sensing pressure differential between the port and the interior space indicative of pressure in the evaporative emission space relative to atmosphere within a range that includes a predetermined positive pressure useful in making a determination about leakage from the evaporative emission space and a predetermined negative pressure useful in making a determination about leakage from the evaporative emission space, and providing a corresponding signal; and an actuator for causing the vent valve to be open when the engine is running and to be closed when the engine is not running.
- 2. A leak detection monitor as set forth in claim 1 including a processor for monitoring the electric device's signal after the engine has ceased running and for determining leakage from the evaporative emission space to be a gross leak when the monitored signal indicates non-attainment of either the predetermined positive pressure or the predetermined negative pressure, to be a small leak that is less than a gross leak when the monitored signal indicates attainment of the predetermined positive pressure but non-attainment of the predetermined negative pressure, and to be less than a small leak when the monitored signal indicates attainment of both the predetermined positive pressure and the predetermined negative pressure.
- 3. A leak detection monitor as set forth in claim 1 in which the electric device comprises an electric pressure sensor that can sense pressures over a range of positive and negative pressures spanning the predetermined positive pressure and the predetermined negative pressure.
- 4. A leak detection monitor as set forth in claim 1 in which the electric device comprises an electric pressure sensing switch that provides one switch signal upon sensing the predetermined positive pressure and another switch signal upon sensing the predetermined negative pressure.
- 5. A leak detection monitor as set forth in claim 1 in which the actuator comprises an electromagnet that is energized when the engine is running and de-energized when the engine is not running.
- 6. A leak detection monitor as set forth in claim 1 in which the actuator comprises a spring-biased, vacuum-actuated device communicated to an intake system of the engine within which vacuum is developed when the engine is running and within which vacuum is not developed when the engine is not running, and the application of vacuum to the actuator opens the vent valve against the spring bias.
- 7. A leak detection monitor for an on-board evaporative emission leak detection system that detects leakage from an evaporative emission space of a fuel system for an engine of an automotive vehicle, the leak detection monitor comprising:
a housing enclosing an interior space; a movable wall dividing the interior space into a first chamber space and a second chamber space; a first port for communication to atmosphere and terminating within the second chamber space in a seat; a valve carried by the movable wall for selectively seating on and unseating from the seat to selectively open and close the second chamber space to the first port; a second port for communicating the second chamber space to the evaporative emission space; a third port for communicating the first chamber space to an intake system of the engine to selectively position the movable wall within the interior space to one position when the engine is running and to another position when the engine is not running; and an electric device for sensing pressure differential between the first port and the second port indicative of pressure in the evaporative emission space relative to atmosphere within a range that includes a predetermined positive pressure useful in making a determination about leakage from the evaporative emission space and a predetermined negative pressure useful in making a determination about leakage from the evaporative emission space, and providing a corresponding signal.
- 8. A leak detection monitor as set forth in claim 7 including a processor for monitoring the electric device'signal after the engine has ceased running and for determining leakage from the evaporative emission space to be a gross leak when the monitored signal indicates non-attainment of either the predetermined positive pressure or the predetermined negative pressure, to be a small leak that is less than a gross leak when the monitored signal indicates attainment of the predetermined positive pressure but non-attainment of the predetermined negative pressure, and to be less than a small leak when the monitored signal indicates attainment of both the predetermined positive pressure and the predetermined negative pressure.
- 9. A leak detection monitor as set forth in claim 7 in which the electric device comprises an electric pressure sensor that provides an electric signal spanning a range that includes a value corresponding to the predetermined positive pressure and a value corresponding to the predetermined negative pressure.
- 10. A leak detection monitor as set forth in claim 7 including a spring acting on the movable wall to resiliently urge the movable wall toward seating the valve on the seat.
- 11. A leak detection monitor as set forth in claim 10 in which the movable wall comprises an imperforate cup that is open toward the second chamber space and that comprises a rim that faces the second chamber space, an annular retainer has an outer margin disposed on and sealed to the cup rim and an inner margin comprising another seat disposed about the seat of the first port, the valve can retract in a direction into the cup, and a further spring acts between the cup and the valve to resiliently urge the valve in a direction out of the cup toward seating on both seats, but compresses as the valve retracts into the cup.
- 12. A leak detection monitor as set forth in claim 11 in which the valve comprises a passage that communicates the first port to the interior of the cup.
- 13. A leak detection monitor as set forth in claim 12 in which the valve comprises a tubular stem containing the passage and an annular flange that is disposed around the stem for seating on the seats.
- 14. A leak detection monitor as set forth in claim 13 in which the flange comprises a groove containing an annular seal through which the valve seats on the seats.
- 15. A leak detection monitor as set forth in claim 11 in which the valve, when seated on the seat of the first port with the engine not running, unseats from the seat of the first port by motion imparted to the retainer by movement of the movable wall in response to excess positive pressure at the second port, thereby opening the second chamber space to the first port to relieve the excess positive pressure.
- 16. A leak detection monitor as set forth in claim 11 including a passage through the valve communicating the first port to the interior of the cup, and in which the valve, when seated on both seats with the engine not running, unseats from the seat on the inner margin of the retainer by motion imparted to the retainer by movement of the movable wall in response to excess negative pressure at the second port, thereby opening the second chamber space through the interior of the cup and the passage through the valve to the first port to relieve the excess negative pressure.
- 17. A leak detection monitor as set forth in claim 7 in which the electric device comprises an electric pressure sensing switch having a body that is disposed within the second chamber space and that has two pressure sensing ports, one pressure sensing port accesses the second chamber space, and the other pressure sensing port accesses the first port through a hole in an internal wall of the housing between the second chamber space and the first port.
- 18. A leak detection monitor for an on-board evaporative emission leak detection system that detects leakage from an evaporative emission space of a fuel system for an engine of an automotive vehicle, the leak detection monitor comprising:
a housing enclosing an interior space; a first port for communicating the interior space to atmosphere; a second port for communicating the interior space to the evaporative emission space; an electric operated valve within the interior space for opening one of the ports to the interior space when the engine is running and for closing the one port to the interior space when the engine is not running; an electric device for sensing pressure differential between the first port and the second port indicative of pressure in the evaporative emission space relative to atmosphere within a range that includes a predetermined positive pressure useful in making a determination about leakage from the evaporative emission space and a predetermined negative pressure useful in making a determination about leakage from the evaporative emission space, and providing a corresponding signal.
- 19. A leak detection monitor as set forth in claim 18 including a processor for monitoring the electric device's signal when the engine is not running and the electric operated valve is closing the one port to the interior space for determining leakage from the evaporative emission space to be a gross leak when the monitored signal indicates non-attainment of either the predetermined positive pressure or the predetermined negative pressure, to be a small leak that is less than a gross leak when the monitored signal indicates attainment of the predetermined positive pressure but non-attainment of the predetermined negative pressure, and to be less than a small leak when the monitored signal indicates attainment of both the predetermined positive pressure and the predetermined negative pressure.
- 20. A leak detection monitor as set forth in claim 18 in which the electric device comprises an electric pressure sensing switch that provides one switch signal upon sensing the predetermined positive pressure and another switch signal upon sensing the predetermined negative pressure.
- 21. A leak detection monitor as set forth in claim 18 in which the electric operated valve comprises an electromagnet actuator that operates to selectively seat and unseat a closure on and from the margin of an opening in a wall of the housing to close and open the one port to the interior space.
- 22. A leak detection monitor as set forth in claim 21 including a spring that resiliently biases the closure toward seating on the margin of the opening, and in which energizing the electromagnet actuator causes the closure to unseat from the margin of the opening thereby opening the one port to the interior space.
- 23. A leak detection monitor as set forth in claim 22 in which the closure, when closing the opening, closes the second port to the interior space.
- 24. A leak detection monitor as set forth in claim 23 including a one-way valve that is in parallel with the opening between the second port and the interior space and that allows flow in a direction from the interior space to the second port, but not in an opposite direction.
- 25. A leak detection monitor as set forth in claim 24 in which the one-way valve comprises an umbrella valve element mounted in the wall of the housing adjacent the opening.
- 26. A leak detection monitor as set forth in claim 21 in which the electromagnet actuator comprises an armature that is pivotally mounted on the housing, and the closure is disposed on a distal end of the armature.
- 27. A leak detection monitor as set forth in claim 18 in which the housing comprises a wall, the second port comprises a nipple that circumscribes a portion of the wall, the portion of the wall circumscribed by the nipple comprises a through-hole that is opened and closed by the electric operated valve, and a tubular post extends into the interior space from the portion of the wall circumscribed by the nipple to communicate the second port to a sensing port of the electric device.
- 28. A leak detection monitor as set forth in claim 27 including a one-way valve that is in parallel with the through-hole to allow flow in a direction from the interior space to the second port, but not in an opposite direction, and in which the one-way valve comprises an umbrella valve element mounted in the portion of the wall circumscribed by the nipple adjacent the through-hole.
REFERENCE TO RELATED APPLICATION AND PRIORITY CLAIM
[0001] This application expressly claims the benefit of earlier filing date and right of priority from the following patent application: U.S. Provisional Application Ser. No. 60/079,718 filed on 27 Mar. 1998 in the names of Cook and Perry and bearing the same title. The entirety of that earlier-filed, co-pending patent application is hereby expressly incorporated herein by reference.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60079718 |
Mar 1998 |
US |
Divisions (1)
|
Number |
Date |
Country |
Parent |
09275250 |
Mar 1999 |
US |
Child |
10024285 |
Dec 2001 |
US |