1. Field of Invention
The invention relates to an auxiliary locking drive for a motor vehicle lock having its own drive housing and being located separately from the vehicle lock in the installed state, being coupled to the vehicle lock by way of a transmission, having a drive motor, and in the mounted state, the drive motor producing a linear driving motion that is transmitted to the vehicle lock by way of the transmission so that the vehicle lock can be transferred from a half-locked state into a main locked state by the driving motion.
2. Description of Related Art
Here, the expression motor vehicle lock is defined as all types of door/hood/trunk or hatch locks.
The vehicle lock is equipped with conventional latching elements, a latch and a ratchet, the ratchet keeping the latch in the main locked position and in the half-locked position. The ratchet is then in the engaged state. The latch can be moved into retaining engagement with a striker or the like which is located on the body. Here, the striker or the like can be assigned to the vehicle lock.
In the course of enhancing the ease of operation, current vehicle locks are provide with various automatic functions. They include, for example, a striker function in which the vehicle lock is transferred by motor from the half-locked state into the main locked state. It is advantageous that the user need move the motor vehicle door only to the half-locked state for locking and that this is possible with comparatively little effort. The counter-pressures of the door seal are not yet acting here. Only moving from the half-locked state into the main locked state is associated with the compression of the door seal, and thus, with a considerable expenditure of force; this takes place by means of an auxiliary locking drive.
Different versions for implementation of the auxiliary locking function are known. One version (German Patent DE 39 35 804 C2 and corresponding U.S. Pat. No. 5,158,330) calls for the striker which interacts with the latch to be moved by a motor for pulling the vehicle door tight. In another version (German Patent Application DE 102 39 734 A1 and corresponding U.S. Patent Application Publication 2004/0135378 A2), the latch can be moved by means of the locking aid by a motor from the half-locked position into the main locked position, and thus, the vehicle lock can be moved altogether from the half-locked state into the main locked state.
In the latter implementation of the auxiliary locking function, the auxiliary locking drive is activated when the latch reaches the half-locked position. For this purpose, there is a control unit in the form of an auxiliary locking control.
In the aforementioned arrangements, it has been found to be disadvantageous that the amount of installation space required in the region of the vehicle lock is undesirably high due to the integration of the auxiliary locking drive; this leads to major structural limitations. Furthermore, the modularity of the arrangement with respect to the implementation of the additional function “locking aid” is low.
In the known auxiliary locking drive which underlies the present invention (German Patent Application DE 10 2006 048 026 A1), the auxiliary locking drive is located separately from the vehicle lock and is coupled to the vehicle lock via a Bowden cable by drive engineering. This solves the problem of installation space in the region of the vehicle lock in a satisfactory manner and corresponds to a modular execution.
In any case, the problem of installation space in the known auxiliary locking drive has simply been shifted. Known auxiliary locking drives which are made in this way are of considerable size; this leads to corresponding installation space problems at the respective site away from the vehicle lock. Furthermore, the known auxiliary locking drives are of considerable weight.
Therefore, a primary object of the present invention is to embody and develop the known auxiliary locking drive such that the amount of installation space required and the weight of the auxiliary locking drive are reduced.
The aforementioned problem is solved in an auxiliary locking drive of the initially mentioned type in that the auxiliary locking drive for producing the linear driving motion has a feed gear mechanism which is connected downstream of the drive motor and that the feed gear mechanism is a spindle-nut gearing with a spindle and a spindle nut.
First of all, it is important that, by providing the auxiliary locking drive with a feed gear mechanism which is made as spindle-nut gearing to produce a linear driving motion, this leads to a minimum installation space requirement. Furthermore, this arrangement can be implemented with a minimum number of components, and additionally, leads to a low weight.
In accordance with a preferred configuration, the spindle is assigned to the drive side and the spindle nut is assigned to the driven side of the feed gear mechanism. This means that the spindle is driven by the drive motor, while the spindle nut runs along the spindle; this corresponds to the linear driving motion here.
An especially compact arrangement can be achieved by the spindle nut being assigned to the drive side and the spindle being assigned to the driven side of the feed gear mechanism. This means that, at this point, the spindle nut and not the spindle is driven by the drive motor. In an especially preferred embodiment, the drive shaft of the drive motor is made as a hollow shaft which, at the same time, forms the spindle nut of the feed gear mechanism. In this especially preferred embodiment, it is provided that the drive motor, with respect to driving the hollow shaft, is a direct electrical drive. In this case, the amount of installation space required can be minimized by the inter-nested arrangement of the drive motor and the feed gear mechanism.
In especially preferred configurations, the auxiliary locking drive in accordance with the invention can be easily designed or parameterized for the respective application. Different applications can require specifically different forces, speeds and feeds; this leads accordingly to different drive motors, intermediate gearing or feed gear mechanisms. Depending on the configuration, the drive housing and optionally the end piece of the Bowden cable must be adapted. This is especially easily possible by a telescoping configuration of the parts of the drive housing.
In accordance with further preferred embodiments, there is a lengthwise guide which is located parallel to the spindle and on which the spindle nut runs and there is a second spindle which is coupled to the drive shaft of the drive motor and which has a second spindle nut thread. These measures serve to prevent jamming of the spindle nut relative to the spindle even when the coupling of the core of the Bowden cable relative to the axis of the spindle is coupled off-center to the feed nut.
The invention is explained in detail below with reference to the accompanying drawings.
The structure of an auxiliary locking drive in accordance with the invention which is shown in
In all the illustrated embodiments, the auxiliary locking drive has its own drive housing 2 and is located separately from the vehicle lock 1 in the installed state. As can be seen in
As can be seen in detail in
The vehicle lock 1 can be largely assigned to any locking elements in a vehicle lock. Preferably, the vehicle lock 1 is assigned to a vehicle door or hatch. The vehicle door can also be a sliding door.
The transmission means 3 preferably is a Bowden cable which, generally, has a cable core 8 and a cable sheath 9. Depending on the available installation space, the use of other types of transmission means 3 are possible. One example of the implementation of the transmission means 3 is a simple cable pull. Another example of the implementation of the transmission means 3 is a rack with teeth in the vehicle lock 1 which can be caused to engage the latch 1. Another example of the implementation of the transmission means 3 is a linkage which can also contain a universal coupling. It is fundamentally also possible to provide the transmission means 3 with a hydraulic connection.
Here, the driving motion is a linear driving motion. Accordingly, the use of spindle-spindle nut gearing for the feed gear mechanism 5 is especially advantageous. Depending on the configuration of the vehicle lock 1, an adapted design of the auxiliary locking drive with respect to the scope of the driving motion and to the level of the driving force is necessary.
In all cases, first of all, the vehicle lock 1 has latching elements, the latch 10 and ratchet 11 as well as a striker 12 which is assigned to the latch 10. The fundamental interaction of these components was explained in the Background part of this specification.
In the preferred embodiment shown in
However, fundamentally, it is also possible for the auxiliary locking drive to act on the striker 12 instead of on the latch 10. In this embodiment (not shown), it is provided that the striker 12, for its part, can be moved into the half-locked position and into the main locked position, that the auxiliary locking drive, in the installed state, is coupled by drive engineering to the striker 12 and that the striker 12, by the driving motion produced by the auxiliary locking drive, can be moved from the half-locked position into the main locked position so that the vehicle lock 1 altogether can be moved from the half-locked state into the main locked state.
Both versions of the vehicle locks 1 require transmission of a driving motion via the transmission means 3, here via the Bowden cable 3. In any case, the range of motion and the force required are different depending on the version; this has corresponding effects on the layout of the auxiliary locking drive.
The concept of “spindle-spindle nut gearing” and the terms “spindle” and “spindle nut” can be broadly understood in conjunction with the feed gear mechanism 5. Fundamentally, it is provided here that the spindle 6 has a spindle thread and that the spindle nut 7 has a spindle nut thread. However, it can also be provided that either the spindle 6 or the spindle nut 7 have a corresponding thread.
In particular, it can be provided that the spindle 6 has a driver which engages the thread of the spindle nut 7. Alternatively, it can also be provided that the spindle nut 7 has a driver which engages the thread of the spindle 6. A “driver” is defined here as any shape which is suited to engaging a thread and as a result for advancing the spindle nut 7 or the spindle 6. For example, the driver can be a simple projection or the like.
In conjunction with the threads of the spindle 6 and the spindle nut 7, it is also pointed out that the pitch of the thread of the spindle 6 and/or the spindle nut 7 can change over its lengthwise extension. This can result in a mechanical advantage of the spindle-spindle nut drive, therefore of the feed gear mechanism 5, changing over an auxiliary locking process. This can be advantageous depending on available installation space conditions.
In the preferred embodiment shown in
In the embodiment shown in
For the locking element, there is a lengthwise guide 17 which is engaged by a projection 18 or the like of the spindle nut 7. Accordingly, when the spindle 6 turns the spindle nut 7 moves up or down the length of the spindle.
Here, the spindle nut 7 is preferably made as a bushing which is sealed on the end face, which is at the bottom in
In order to simplify the installation of the auxiliary locking drive, especially of the Bowden cable 3, it is preferably provided that the spindle nut 7. together with the transmission means 3, here with the core 8 of the Bowden cable 3, form a pre-mountable unit. In particular, it is provided that the spindle nut 7, in the installed state, is inseparably connected to the transmission means 3, here, to the core 8 of the Bowden cable 3. It is possible for the spindle nut 7 to be produced by a plastic injection molding process and that the Bowden cable core 8 is embedded in the spindle nut 7 during that process. Other means of connection can be advantageously used as well.
In the preferred embodiment shown in
Another arrangement is shown in
Here, the spindle nut 7 is preferably assigned to the drive side and the spindle 6 is assigned to the driven side of the feed gear mechanism 5. Different from the embodiment shown in
In this connection, it is also preferable that the spindle 6 of the feed gear mechanism 5 is arranged to be rotationally fixed, but able to move lengthwise. As a result, the rotary motion of the spindle 6 is converted into longitudinal motion of the spindle nut 7.
The aforementioned inter-nesting of the individual components is achieved in the embodiment which is shown in
It is apparent in
It can be further taken from
In the preferred embodiment shown in
In order to ensure installation as simple as possible, in one preferred configuration, the spindle 6 together with the transmission means 3, here with the core 8 of the Bowden cable 3, form a pre-mountable unit. The same applies here as was stated above regarding the spindle nut 7.
It was already pointed out above that intermediate gearing 16 can be connected between the drive motor 4 and the feed gear mechanism 5. This is shown schematically in
In an especially preferred configuration, one of the components comprised of the sun wheel 20, planet gear carrier 21 and internal gear 21 are assigned to the drive motor 4, especially the drive shaft of the drive motor 4. Another of these components is accordingly assigned to the drive side of the feed gear mechanism 5. The third of these components is finally braked or completely fixed, at least for auxiliary locking operation.
In this case, the sun wheel 20 is preferably assigned to the drive motor 4, especially the drive shaft of the drive motor 4. The internal gear 22 is formed by the drive housing 2 and is fixed accordingly. The planet gear carrier 21 is provided with an internal thread and thus forms the spindle nut 7. The internal thread in the planet gear carrier 21 is located, in particular, on the web plate of the planet gear carrier 21. However, fundamentally, it can also be provided that the spindle nut 7 is coupled directly to the planet gear carrier 21.
In the embodiment shown in
In all of the illustrated embodiments, the drive housing 2 has a single, continuous section. However, fundamentally, it is also possible for the drive housing 2 to be composed of several housing components. For example, it can be advantageous to provide the internal gear 22 of the planetary gearing system 5 in a separate drive housing, especially to be able to provide a correspondingly wear-proof material for this purpose.
In all of the illustrated embodiments, it is also such that the end piece 23 of the Bowden cable is supported on the drive housing 2. Here, support on a separate drive housing is also possible. It has been found to be especially advantageous if, as shown in
Finally, in all of the illustrated embodiments, it is such that the drive motor 4 is made as an electric drive motor. However, fundamentally, it is also possible for it to be a pneumatic or a hydraulic drive motor.
Quick mounting of the Bowden cable 3 acquires special importance here. This was already pointed out above. In addition to the proposed pre-mounting of the spindle 6 and the Bowden cable core 8 or the spindle nut 7 and Bowden cable core 8, it is conceivable that a type of quick acting closure of the Bowden cable be implemented. The Bowden cable core 8 would be inserted into an opening in the spindle 6 and spindle nut 7 and clamped fast in a self-locking manner when pulled back.
Electrical control of the auxiliary locking process, in the illustrated embodiments, is especially simple. To start an auxiliary locking process, the electrical drive motor 4 is energized in the first direction until the latch 10 has been transferred into its main locked position, especially into its overtravel position. After turning off the drive motor 4, the drive motor 4 is energized in the opposite direction until the spindle nut 7 or the spindle 6 reaches the initial position. It is fundamentally possible for there to be spring pretensioning, for example of the drive shaft of the drive motor 4, which provides for the drive motor 4 returning automatically into the initial position without repeated energizing.
In one especially preferred configuration, the auxiliary locking drive, especially the drive motor 4 with the intermediate gearing 16 which is optionally connected downstream and the feed gear mechanism 5 which is connected further downstream, is not made to be self-locking. This especially has the advantage that the arrangement can automatically drop back from the overtravel position into the main locked position after the drive motor 4 is turned off, by the high counterpressure of the door seal which is then acting.
In another preferred configuration, it is provided that at least the inside of the drive housing 2 is made essentially rotationally symmetrical relative to the lengthwise extension of the auxiliary locking drive. Optimum use of the available installation space can also be achieved with it.
It can be summarized that extraordinarily small installation space requirements are associated with all the illustrated embodiments. Furthermore, the small number of parts allows an especially low weight. As a result, production, especially installation, is possible with especially low cost.
It was explained in the Background part of this specification that, depending on the application, a different layout of the auxiliary locking drive in accordance with the invention is necessary. In order to implement this layout with minimum effort, in the preferred embodiment shown in
The aforementioned configuration capacity is preferably implemented by the drive housing 2 being made in two parts for adaptation to the respective drive motor 4 and/or the respective intermediate gearing 16. It can also be advantageous for the drive housing 2 to be composed of more than two parts.
For purposes of ease of configuration, at this point, it is preferable that the two parts 2a, 2b of the drive housing 2 are telescopic. In particular, this means that the first part 2a of the drive housing 2 can be slid over the second part 2b of the drive housing 2. The overlapping of the two parts 2a, 2b of the drive housing 2 makes it possible to adapt the length of the drive housing 2 to the respectively chosen components. There can be interlocking for attachment of the two parts 2a, 2b of the drive housing 2 to one another.
The configuration illustrated in
In certain applications, it can be advantageous for the core 8 of the Bowden cable 3 to be coupled to the spindle nut 7 off-center relative to the axle of the spindle 6. Then, it is also preferable that the spindle 6 likewise arranged to off-center relative to the drive shaft of the drive motor 4.
It is obvious that, for the aforementioned off-center arrangement, there is the danger of jamming of the spindle nut 7 relative to the spindle 6. As a result, for this case, it is preferable that there is a lengthwise guide 17 which is located parallel to the spindle 6 to support the spindle nut 7, on which guide the spindle nut 7 runs. The lengthwise guide 17 can be a guide rod which runs through the corresponding guide hole in the spindle nut 7. However, a guide groove is also possible which is engaged by the spindle nut 7 with a correspondingly web shape.
In an especially preferred embodiment, in any case, it is provided that there is a second spindle 6a which is coupled to the drive shaft of the drive motor 4 and that the spindle nut 7 has a second spindle nut thread which is assigned to this second spindle 6a. This can be seen in
The embodiment shown in
Here, the two spindles 6, 6a are preferably arranged symmetrically relative to the drive shaft of the drive motor 4. With this symmetrical arrangement, the danger of jamming of the spindle nut 7 on one of the two spindles 6, 6a is extremely low. This increases the operating reliability of the auxiliary locking drive in accordance with the invention altogether.
Number | Date | Country | Kind |
---|---|---|---|
20 2007 016 888.8 | Dec 2007 | DE | national |
20 2008 007 719.2 | Jun 2008 | DE | national |