As used herein, the term “molten metal” means any metal or combination of metals in liquid form, such as aluminum, copper, iron, zinc, and alloys thereof. The term “gas” means any gas or combination of gases, including argon, nitrogen, chlorine, fluorine, Freon, and helium, which are released into molten metal.
Known molten-metal pumps include a pump base (also called a housing or casing), one or more inlets (an inlet being an opening in the housing to allow molten metal to enter a pump chamber), a pump chamber of any suitable configuration, which is an open area formed within the housing, and a discharge, which is a channel or conduit of any structure or type communicating with the pump chamber (in an axial pump the chamber and discharge may be the same structure or different areas of the same structure) leading from the pump chamber to an outlet, which is an opening formed in the exterior of the housing through which molten metal exits the casing. An impeller, also called a rotor, is mounted in the pump chamber, and is connected to a drive device. The drive shaft is typically an impeller shaft connected to one end of a motor shaft; the other end of the drive shaft being connected to an impeller. Often, the impeller (or rotor) shaft is comprised of graphite and/or ceramic, the motor shaft is comprised of steel, and the two are connected by a coupling. As the motor turns the drive shaft, the drive shaft turns the impeller and the impeller pushes molten metal out of the pump chamber, through the discharge, out of the outlet and into the molten metal bath. Most molten metal pumps are gravity fed, wherein gravity forces molten metal through the inlet and into the pump chamber as the impeller pushes molten metal out of the pump chamber. Other molten metal pumps do not include a base or support posts and are sized to fit into a structure by which molten metal is pumped. Most pumps have a metal platform, or super structure, that is either supported by a plurality of support posts attached to the pump base, or unsupported if there is no base. The motor is positioned on the superstructure if a superstructure is used.
This application incorporates by reference the portions of the following documents that are not inconsistent with this disclosure: U.S. Pat. No. 4,598,899, issued Jul. 8, 1986, to Paul V. Cooper, U.S. Pat. No. 5,203,681, issued Apr. 20, 1993, to Paul V. Cooper, U.S. Pat. No. 5,308,045, issued May 3, 1994, by Paul V. Cooper, U.S. Pat. No. 5,662,725, issued Sep. 2, 1997, by Paul V. Cooper, U.S. Pat. No. 5,678,807, issued Oct. 21, 1997, by Paul V. Cooper, U.S. Pat. No. 6,027,685, issued Feb. 22, 2000, by Paul V. Cooper, U.S. Pat. No. 6,124,523, issued Sep. 26, 2000, by Paul V. Cooper, U.S. Pat. No. 6,303,074, issued Oct. 16, 2001, by Paul V. Cooper, U.S. Pat. No. 6,689,310, issued Feb. 10, 2004, by Paul V. Cooper, U.S. Pat. No. 6,723,276, issued Apr. 20, 2004, by Paul V. Cooper, U.S. Pat. No. 7,402,276, issued Jul. 22, 2008, by Paul V. Cooper, U.S. Pat. No. 7,507,367, issued Mar. 24, 2009, by Paul V. Cooper, U.S. Pat. No. 7,906,068, issued Mar. 15, 2011, by Paul V. Cooper, U.S. Pat. No. 8,075,837, issued Dec. 13, 2011, by Paul V. Cooper, U.S. Pat. No. 8,110,141, issued Feb. 7, 2012, by Paul V. Cooper, U.S. Pat. No. 8,178,037, issued May 15, 2012, by Paul V. Cooper, U.S. Pat. No. 8,361,379, issued Jan. 29, 2013, by Paul V. Cooper, U.S. Pat. No. 8,366,993, issued Feb. 5, 2013, by Paul V. Cooper, U.S. Pat. No. 8,409,495, issued Apr. 2, 2013, by Paul V. Cooper, U.S. Pat. No. 8,440,135, issued May 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,444,911, issued May 21, 2013, by Paul V. Cooper, U.S. Pat. No. 8,475,708, issued Jul. 2, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 12/895,796, filed Sep. 30, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/877,988, filed Sep. 8, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/853,238, filed Aug. 9, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 12/880,027, filed Sep. 10, 2010, by Paul V. Cooper, U.S. patent application Ser. No. 13/752,312, filed Jan. 28, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/756,468, filed Jan. 31, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,889, filed Mar. 8, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/791,952, filed Mar. 9, 2013, by Paul V. Cooper, U.S. patent application Ser. No. 13/841,594, filed Mar. 15, 2013, by Paul V. Cooper, and U.S. patent application Ser. No. 14/027,237, filed Sep. 15, 2013, by Paul V. Cooper, U.S. Pat. No. 8,535,603 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 8,613,884 entitled LAUNDER TRANSFER METAL-TRANSFER CONDUIT AND DEVICE, U.S. Pat. No. 8,714,914 entitled MOLTEN METAL PUMP FILTER, U.S. Pat. No. 8,753,563 entitled DEVICE AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,011,761 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,017,597 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 9,034,244 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,080,577 entitled SHAFT AND POST TENSIONING DEVICE, U.S. Pat. No. 9,108,244 entitled IMMERSION HEATHER FOR MOLTEN METAL, U.S. Pat. No. 9,156,087 entitled MOLTEN METAL TRANSFER DEVICE AND ROTOR, U.S. Pat. No. 9,205,490 entitled TRANSFER WELL DEVICE AND METHOD FOR MAKING SAME, U.S. Pat. No. 9,328,615 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,377,028 entitled TENSIONING DEVICE EXTENDING BEYOND COMPONENT, U.S. Pat. No. 9,382,599 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,383,140 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 9,409,232 entitled MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 9,410,744 entitled VESSEL TRANSFER METAL-TRANSFER CONDUIT AND DEVICE, U.S. Pat. No. 9,422,942 entitled TENSION DEVICE WITH INTERNAL PASSAGE, U.S. Pat. No. 9,435,343 entitled GAS-TRANSFER FOOT, U.S. Pat. No. 9,464,636 entitled TENSION DEVICE GRAPHITE COMPONENT USED IN MOLTEN METAL, U.S. Pat. No. 9,470,239 THREADED TENSIONING DEVICE, U.S. Pat. No. 9,481,035 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 9,482,469 entitled VESSEL TRANSFER METAL-TRANSFER CONDUIT AND DEVICE, U.S. Pat. No. 9,506,129 entitled ROTARY DEGASSER AND ROTOR THEREFOR, U.S. Pat. No. 9,566,645 entitled MOLTEN METAL TRANSFER DEVICE AND ROTOR, U.S. Pat. No. 9,581,388 entitled VESSEL TRANSFER METAL-TRANSFER CONDUIT AND DEVICE, U.S. Pat. No. 9,587,883 entitled LADLE WITH TRANSFER CONDUIT, U.S. Pat. No. 9,643,247 entitled MOLTEN METAL TRANSFER AND DEGASSING DEVICE, U.S. Pat. No. 9,657,578 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 9,855,600 entitled MOLTEN METAL TRANSFER DEVICE AND ROTOR, U.S. Pat. No. 9,862,026 entitled METHOD OF FORMING TRANSFER WELL, U.S. Pat. No. 9,903,383 entitled MOLTEN METAL ROTOR WITH HARDENED TOP, U.S. Pat. No. 9,909,808 entitled DEVICE AND METHOD FOR DEGASSING MOLTEN METAL, U.S. Pat. No. 9,925,587 entitled METHOD OF TRANSFERRING MOLTEN METAL FROM A VESSEL, entitled U.S. Pat. No. 9,982,945 MOLTEN METAL TRANSFER VESSEL AND METHOD OF CONSTRUCTION, U.S. Pat. No. 10,052,688 entitled TRANSFER PUMP LAUNDER DEVICE, U.S. Pat. No. 10,072,891 entitled TRANSFERRING MOLTEN METAL USING NON-GRAVITY ASSIST LAUNDER, U.S. Pat. No. 10,126,058 entitled MOLTEN METAL TRANSFERRING VESSEL, U.S. Pat. No. 10,126,059 entitled CONTROLLED MOLTEN METAL FLOW FROM TRANSFER VESSEL, U.S. Pat. No. 10,138,892 entitled ROTOR AND ROTOR SHAFT FOR MOLTEN METAL, U.S. Pat. No. 10,195,664 entitled MULTI-STAGE IMPELLER FOR MOLTEN METAL, U.S. Pat. No. 10,267,314 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, U.S. Pat. No. 10,274,256 entitled VESSEL TRANSFER DEVICES AND DEVICES, U.S. Pat. No. 10,302,361 entitled TRANSFER VESSEL FOR MOLTEN METAL PUMPING DEVICE, U.S. Pat. No. 10,309,725 entitled IMMERSION HEATER FOR MOLTEN METAL, U.S. Pat. No. 10,307,821 entitled TRANSFER PUMP LAUNDER DEVICE, U.S. Pat. No. 10,322,451 entitled TRANSFER PUMP LAUNDER DEVICE, U.S. Pat. No. 10,345,045 entitled VESSEL TRANSFER METAL-TRANSFER CONDUIT AND DEVICE, U.S. Pat. No. 10,352,620 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,428,821 entitled QUICK SUBMERGENCE MOLTEN METAL PUMP, U.S. Pat. No. 10,458,708 entitled TRANSFERRING MOLTEN METAL FROM ONE STRUCTURE TO ANOTHER, U.S. Pat. No. 10,465,688 entitled COUPLING AND ROTOR SHAFT FOR MOLTEN METAL DEVICES, U.S. Pat. No. 10,562,097 entitled MOLTEN METAL TRANSFER DEVICE AND ROTOR, U.S. Pat. No. 10,570,745 entitled ROTARY DEGASSERS AND COMPONENTS THEREFOR, U.S. Pat. No. 10,641,279 entitled MOLTEN METAL ROTOR WITH HARDENED TIP, U.S. Pat. No. 10,641,270 entitled TENSIONED SUPPORT SHAFT AND OTHER MOLTEN METAL DEVICES, U.S. patent application Ser. No. 16/877,267 entitled MOLTEN METAL CONTROLLED FLOW LAUNDER, which was filed on May 18, 2020, U.S. application Ser. No. 16/877,296 entitled SYSTEM AND METHOD TO FEED MOLD WITH MOLTEN METAL, which was filed on May 18, 2020, U.S. application Ser. No. 16/877,332 entitled SMART MOLTEN METAL PUMP, which was filed on May 18, 2020, U.S. application Ser. No. 16/877,182 entitled SYSTEM FOR MELTING SOLID METAL, which was filed on May 18, 2020, U.S. application Ser. No. 16/877,219 entitled METHOD FOR MELTING SOLID METAL, which was filed on May 18, 2020, U.S. Provisional Patent Application Ser. No. 62/849,787 filed on May 17, 2019 and entitled MOLTEN METAL PUMPS, COMPONENTS, DEVICES AND METHODS, and U.S. Provisional Patent Application Ser. No. 62/852,846 filed on May 24, 2019 and entitled SMART MOLTEN METAL PUMP.
Three basic types of pumps for pumping molten metal, such as molten aluminum, are utilized: circulation pumps, transfer pumps and gas-release pumps. Circulation pumps are used to circulate the molten metal within a bath, thereby generally equalizing the temperature of the molten metal. Circulation pumps may be used in any vessel, such as in a reverbatory furnace having an external well. The well is usually an extension of the charging well, in which scrap metal is charged (i.e., added).
Standard transfer pumps are generally used to transfer molten metal from one structure to another structure such as a ladle or another furnace. A standard transfer pump has a riser tube connected to a pump discharge and supported by the superstructure. As molten metal is pumped it is pushed up the riser tube (sometimes called a riser) and out of the riser tube, which generally has an elbow at its upper end, so molten metal is released into a different vessel from which the pump is positioned.
Gas-release pumps, such as gas-injection pumps, circulate molten metal while introducing a gas into the molten metal. In the purification of molten metals, particularly aluminum, it is frequently desired to remove dissolved gases such as hydrogen, or dissolved metals, such as magnesium. As is known by those skilled in the art, the removing of dissolved gas is known as “degassing” while the removal of magnesium is known as “demagging.” Gas-release pumps may be used for either of both of these purposes or for any other application for which it is desirable to introduce gas into molten metal.
Gas-release pumps generally include a gas-transfer conduit having a first end that is connected to a gas source and a second end submerged in the molten metal bath. Gas is introduced into the first end and is released from the second end into the molten metal. The gas may be released downstream of the pump chamber into either the pump discharge or a riser extending from the discharge, or into a stream of molten metal exiting either the discharge or the riser. Alternatively, gas may be released into the pump chamber or upstream of the pump chamber at a position where molten metal enters the pump chamber. The gas may also be released into any suitable location in a molten metal bath.
Molten metal pump casings and rotors often employ a bearing device comprising ceramic rings wherein there are one or more rings on the rotor that align with rings in the pump chamber (such as rings at the inlet and outlet) when the rotor is placed in the pump chamber. The purpose of the bearing device is to reduce damage to the soft, graphite components, particularly the rotor and pump base, during pump operation.
Generally, a degasser (also called a rotary degasser) for molten metal, such as molten aluminum, includes (1) an impeller shaft having a first end, a second end and a passage for transferring gas, (2) an impeller, and (3) a drive source for rotating the impeller shaft and the impeller. The first end of the impeller shaft is connected to the drive source and to a gas source and the second end is connected to the impeller.
Generally, a scrap melter for molten metal (particularly molten aluminum) includes an impeller affixed to an end of a drive shaft, and a drive source attached to the other end of the drive shaft for rotating the shaft and the impeller. The movement of the impeller draws molten metal and scrap metal downward into the molten metal bath in order to melt the scrap. A circulation pump is often used in conjunction with the scrap melter to circulate the molten metal in order to maintain a relatively constant temperature within the molten metal.
The materials forming the components that contact the molten metal bath should remain relatively stable in the bath. Structural refractory materials, such as graphite or ceramics, that are resistant to disintegration by corrosive attack from the molten metal may be used. As used herein “ceramics” or “ceramic” refers to any oxidized metal (including silicon, such as silicon dioxide) or carbon-based material, excluding graphite, or other ceramic material capable of being used in a molten metal. “Graphite” means any type of graphite, whether or not chemically treated. Graphite is suitable for being formed into pump components because it is (a) soft and relatively easy to machine, (b) not as brittle as ceramics and less prone to breakage, and (c) less expensive than ceramics. Ceramic, however, is more resistant to corrosion by molten aluminum than graphite.
Some devices or systems used to transfer molten metal include a molten metal pump and a molten riser (or riser). The molten metal pump may have a pump base with a pump chamber in which a rotor is positioned, and a discharge that extends from the pump chamber to a pump outlet formed in a side of the pump base. The riser has a metal-transfer inlet (or transfer inlet) in fluid communication with the pump outlet. In prior devices there was often a gap between the pump outlet and the transfer inlet so more pump speed was required to raise the level of molten metal in the riser. Alignment of the pump outlet with the transfer inlet of the riser would be an advantage. The better the alignment, the less pressure required from the pump to push molten metal from the outlet of the pump base into the riser, up the passage of the riser, and out of the transfer outlet.
Disclosed is a device that includes (1) a pump having a rotor configured to push molten metal upwards, and (2) a riser in which the rotor and a rotor shaft are at least partially positioned. The riser has an inner conduit (or “conduit” or “passage”), an inlet at or near the bottom of the riser, and an outlet above the inlet and below the pump motor. The pump rotates the rotor shaft and the rotor, and as molten metal enters the inlet the rotor pushes the molten metal upwards in the conduit until the molten metal exits the outlet. A launder or other structure is preferably connected to the riser outlet so molten metal exiting the outlet enters such a structure and is transferred.
The conduit is two-stage with a lower stage having a first width and that is generally cylindrical. An upper stage is above the lower stage and has a second width that may be the same as the first width or different from the first width. In one embodiment, the upper stage has a cross-section with a substantially circular center and one or more lobes extending from and in communication with the center, wherein the purpose of the one or more lobes is to help prevent the formation of a vortex. If vortex forms it could create turbulence that disrupts the flow of molten metal and draws in air, which can create dross as oxygen mixes with the molten metal.
Turning now to the drawings, where the purpose is to describe a preferred embodiment of the invention and not to limit same, a device 10 generally includes a pump 100 and a riser 500.
As seen, for example, in
Drive shaft 128 preferably includes a motor drive shaft 128A that extends downward from the motor 124, a rotor shaft 128B, and a coupling 128C. Motor drive shaft 128A is preferably comprised of steel. Rotor drive shaft (or rotor shaft) 128B is preferably comprised of graphite, or graphite coated with a ceramic, but can be comprised of any suitable material. Coupling 128C is preferably comprised of steel and connects the motor drive shaft 128A to the first end 128B1 of the rotor drive shaft 128B.
A rotor 200, best seen in
The components of pump 100 that are immersed in molten metal, such as the rotor 200 and rotor shaft 128, are preferably comprised of graphite and/or ceramic.
Pump 100 as shown has no support posts or pump base.
Riser 500 is configured to have pump 100 positioned thereon with rotor shaft 128B and rotor 200 positioned at least partially in the conduit 300. Riser 500 as shown is a generally rectangular structure, but can be of any suitable shape or size, wherein the size depends at least in part on the size of the pump with which the riser 500 is used. Outlet 510 is of any suitable size and shape to permit molten metal to pass through it, and is above inlet 506 and below motor 124.
Riser 500 is preferably comprised of material capable of withstanding the heat and corrosive environment of molten metal (particularly molten aluminum). Most preferably the heat resistant material is a high temperature, castable cement, with a high silicon carbide content, such as ones manufactured by AP Green or Harbison Walker, each of which are part of ANH Refractory, based at 400 Fairway Drive, Moon Township, PA 15108, or Allied Materials, and riser 500 is cast or otherwise formed in any suitable manner. Cement (if used) to connect riser 500 to another structure is of a type known by those skilled in the art.
The riser 500 may have a bottom portion B and a top portion T. The bottom portion is preferably comprised of or consists of graphite because graphite is relatively inexpensive and simple to machine. The top portion may be comprised of ceramic such as silicon carbide, which is harder than graphite and also more resistant to corrosion. Alternatively, riser 500 may be comprised entirely of graphite or entirely of ceramic.
Riser 500 as shown has four sides 502A, 502B, 502C and 502D, a bottom 502E a top 502F, an inlet 506, a conduit 300, and an outlet 510.
Inlet 506 functions to allow molten metal to pass through it and into conduit 300. As shown, inlet 506 is formed in bottom 502E, and riser 500 can be raised from the bottom surface of a vessel into which it is positioned in any suitable manner to allow molten metal to enter inlet 506. For example, riser 500 may be suspended or have gaps formed in one or more sides 502A, 502B, 502C, 502D to permit molten metal to enter inlet 506. Alternatively, riser 500 may have support legs or it may rest on a support in order to position bottom 502E above the bottom surface of a vessel in which device 10 is positioned.
Alternatively, inlet 506 may be formed in any of sides 502A, 502B, 502C, or 502D, preferably starting about 0″-2″, 2″-6″, or 1.5″-3″, from bottom surface 502E. If formed in a side surface of riser 500, inlet 506 could have a height of about 2″-4″ (or about 3.25″) and a width of about 4″-6″ (or about 5″). If the inlet 506 is in bottom 502E as shown, it may have a cross-sectional area that is 5%-10%, 10%-20%, 20%-30%, 30%-40%, 40%-50%, or any amount from 5%-50% larger (or smaller) than the cross-sectional area of lower stage 302 of conduit 300. The cross-sectional area of inlet 506 is measured at the outer surface on which it is located, such as the outer surface of bottom 502E. Inlet 506 can be of any suitable size and shape, and as shown flares outward from bottom stage 302 of conduit 300 and is about 3% to 10% wider at bottom 502E than the width of lower stage 302. As shown, inlet 506 has a width at bottom 502E that is greater than 50% of the width, or about 75%-85% the width of bottom 502E as measured along side 502A, 502B, 502C, or 502D.
Insulation 530 is positioned between the pump motor support and the surface 502F of riser 500.
Conduit 300 has two stages, lower stage 302 and upper stage 310, and a transition 350 that connects lower stage 302 and upper stage 310. Lower stage 302 is preferably cylindrical and has a circular cross section (as shown, for example, in
Upper stage 310 has a clover-leaf cross-sectional shape (as shown, for example, in
Although four lobes are shown, one or more lobes, or a plurality of lobes, may be utilized, as long as they are of sufficient number, size and shape to prevent a vortex from forming under normal pump operating parameters.
As shown, the cross-sectional area of lower stage 302 is greater than the cross-sectional area of upper stage 310, although any suitable cross-sectional area for lower stage 302 and upper stage 310 may be utilized. The cross-sectional width W1 of upper stage 310 as measured across lobe 314A and lobe 314C is the same as the cross-sectional width of lower stage 302, although W1 could be any suitable width. The cross-sectional width as measured across lobe 314B and lobe 314D is also W1 and is the same as the cross-sectional width of lower stage 302, although the width as measured across lobes 314B and 314D need not be the same as W1 and need not be the same as the cross-sectional width of lower stage 302.
Each lobe shares a connecting point with an adjacent lobe. Lobe 314A has a connecting point 316 with lobe 314B. Lobe 314B has a connecting point 318 with lobe 314C. Lobe 314C has a connecting point 320 with lobe 314D. Lobe 314D has a connecting point 322 with lobe 314A. As shown, the cross-sectional width from connecting point 316 to connecting point 320 and from connecting point 318 to connecting point 322 are the same, although they need not be the same. Additionally, the cross-sectional width between the connecting points is less than the cross-section width of lower stage 302 and is about 10%, 20%, 30%, 10%-20%, 15%-25%, or 15%-30% less than the cross-sectional width W1, although any suitable width may be used.
Clamp 600 is preferably comprised of steel and has a plate 602 having an opening 603 that is configured to be positioned on top surface 502F of riser 500 and be connected thereto by suitable fasteners. Side portions 604 extend downward on side 502A along the sides of outlet 510 and are preferably fastened to side 502A. Cross bars 606 help maintain the stability of clamp 600.
In operation, when the motor 100 is activated it rotates the rotor shaft 128 and rotor 200. The rotor 200 pumps molten metal upwards through the lower stage 302 of the conduit 300, into the upper stage 310 of the conduit, and out of the outlet 510. The one or more lobes 314A, 314B, 314C, and 314D help to stop a vortex from forming. A vortex can lead to turbulent flow of the molten metal and the formation of dross because the molten metal contacts more air and hence more oxygen. The outlet 510 may be connected to a pipe, launder or other structure that further transfers the molten metal.
Some non-limiting examples of this disclosure are as follows:
Example 1: A device for pumping molten metal, the device comprising:
Example 2: The device of example 1, wherein the pump further includes a platform on which the motor is positioned, and the platform is attached to a clamp, and the clamp is further attached to the top portion of the riser.
Example 3: The device of example 1, wherein the bottom portion of the riser is comprised of graphite and the top portion of the riser is comprised of ceramic.
Example 4: The device of example 2, wherein the second cross-sectional area is 25% or more greater than the first cross-sectional area.
Example 5: The device of example 1 that further includes a transition between the upper stage and the lower stage.
Example 6: The device of example 6, wherein the transition expands from the first cross-sectional area where it connects to the upper stage to the second cross-sectional area where it connects to the lower stage.
Example 7: The device of example 6, wherein the transition has a height that is less than a height of the lower stage.
Example 8: The device of example 6, wherein the transition has a height that is less than a height of the upper stage.
Example 9: The device of example 1, wherein the upper stage has a clover-shaped cross section.
Example 10: The device of example 2, wherein the lower stage has a circular cross section.
Example 11: The device of example 2, wherein the upper stage has a cross-section comprising a circular center and a plurality of lobes extending from and connected to the circular center.
Example 12: The device of example 11 that has four lobes.
Example 13: The device of example 11 that has between one and four lobes.
Example 14: The device of example 1, wherein a distance between the outlet and the inlet is 2 feet or more.
Example 15: The device of example 3, wherein the clamp has a plate attached to a top surface of the metal transfer conduit and the clamp is also attached to the platform.
Example 16: The device of example 15, wherein the clamp further includes side arms connected to a side of the riser.
Example 17: The device of example 15, wherein the clamp further includes a step-up section that connects the first plate to the second plate, wherein the step-up section is connected to a side of the platform.
Example 18: The device of example 3, wherein the riser has grooves in two sides and the clamp has side plates with ridges that are received in the grooves.
Example 19: The device of example 11, wherein each of the plurality of lobes has the same size and shape as the other of the plurality of lobes.
Example 20: The device of example 11, wherein each of the plurality of lobes is formed at a 90° angle to the adjacent each of the other plurality of lobes.
Example 21: The device of any one of examples 1-21 that includes insulation between the motor support and the top of the riser.
Example 22: The device of any one of examples 11-13 or 19-20, wherein the center portion of the upper stage of the conduit has a width, and each of the one or more lobes has a width, and the width of the center portion is greater than the width of each of the one or more lobes.
Example 23: The device of any one of examples 11-13, 19-20, or 22, wherein each of the plurality of lobes is spaced equidistantly about the center portion.
Example 24: The device of any one of examples 1-23, wherein the lower stage has a cross-sectional width and the circular portion of the upper stage has a cross-sectional width and the cross-sectional width of the lower stage is greater than the cross-sectional width of the circular portion of the upper stage.
Example 25: The device of example 27, wherein the cross-sectional width of the lower stage is 50%-100% greater than the width of the center portion of the upper stage.
Example 26: The device of any one of examples 1-25, wherein the inlet is in the bottom surface.
Example 27: The device of any one of examples 1-11 or 12-27, wherein the upper stage has at least two lobes in either side of the center portion and a distance between measured between the ends of the lobes, wherein the distance is equal to the cross-sectional width of the lower stage of the conduit.
Having thus described some embodiments of the invention, other variations and embodiments that do not depart from the spirit of the invention will become apparent to those skilled in the art. The scope of the present invention is thus not limited to any particular embodiment, but is instead set forth in the appended claims and the legal equivalents thereof. Unless expressly stated in the written description or claims, the steps of any method recited in the claims may be performed in any order capable of yielding the desired result.
Number | Name | Date | Kind |
---|---|---|---|
35604 | Guild | Jun 1862 | A |
116797 | Barnhart | Jul 1871 | A |
209219 | Bookwalter | Oct 1878 | A |
251104 | Finch | Dec 1881 | A |
307845 | Curtis | Nov 1884 | A |
364804 | Cole | Jun 1887 | A |
390319 | Thomson | Oct 1888 | A |
495760 | Seitz | Apr 1893 | A |
506572 | Wagener | Oct 1893 | A |
585188 | Davis | Jun 1897 | A |
757932 | Jones | Apr 1904 | A |
882477 | Neumann | Mar 1908 | A |
882478 | Neumann | Mar 1908 | A |
890319 | Wells | Jun 1908 | A |
898499 | O'Donnell | Sep 1908 | A |
909774 | Flora | Jan 1909 | A |
919194 | Livingston | Apr 1909 | A |
1037659 | Rembert | Sep 1912 | A |
1100475 | Franckaerts | Jun 1914 | A |
1170512 | Chapman | Feb 1916 | A |
1196758 | Blair | Sep 1916 | A |
1304068 | Krogh | May 1919 | A |
1331997 | Neal | Feb 1920 | A |
1185314 | London | Mar 1920 | A |
1377101 | Sparling | May 1921 | A |
1380798 | Hansen et al. | Jun 1921 | A |
1439365 | Hazell | Dec 1922 | A |
1454967 | Gill | May 1923 | A |
1470607 | Hazell | Oct 1923 | A |
1513875 | Wilke | Nov 1924 | A |
1518501 | Gill | Dec 1924 | A |
1522765 | Wilke | Jan 1925 | A |
1526851 | Hall | Feb 1925 | A |
1669668 | Marshall | May 1928 | A |
1673594 | Schmidt | Jun 1928 | A |
1697202 | Nagle | Jan 1929 | A |
1717969 | Goodner | Jun 1929 | A |
1718396 | Wheeler | Jun 1929 | A |
1896201 | Sterner-Rainer | Feb 1933 | A |
1988875 | Saborio | Jan 1935 | A |
2013455 | Baxter | Sep 1935 | A |
2035282 | Schmeller, Sr. | Mar 1936 | A |
2038221 | Kagi | Apr 1936 | A |
2075633 | Anderegg | Mar 1937 | A |
2090162 | Tighe | Aug 1937 | A |
2091677 | Fredericks | Aug 1937 | A |
2138814 | Bressler | Dec 1938 | A |
2173377 | Schultz, Jr. et al. | Sep 1939 | A |
2264740 | Brown | Dec 1941 | A |
2280979 | Rocke | Apr 1942 | A |
2290961 | Heuer | Jul 1942 | A |
2300688 | Nagle | Nov 1942 | A |
2304849 | Ruthman | Dec 1942 | A |
2368962 | Blom | Feb 1945 | A |
2383424 | Stepanoff | Aug 1945 | A |
2423655 | Mars et al. | Jul 1947 | A |
2488447 | Tangen et al. | Nov 1949 | A |
2493467 | Sunnen | Jan 1950 | A |
2515097 | Schryber | Jul 1950 | A |
2515478 | Tooley et al. | Jul 1950 | A |
2528208 | Bonsack et al. | Oct 1950 | A |
2528210 | Stewart | Oct 1950 | A |
2543633 | Lamphere | Feb 1951 | A |
2566892 | Jacobs | Apr 1951 | A |
2625720 | Ross | Jan 1953 | A |
2626086 | Forrest | Jan 1953 | A |
2676279 | Wilson | Apr 1954 | A |
2677609 | Moore et al. | Apr 1954 | A |
2698583 | House et al. | Jan 1955 | A |
2714354 | Farrand | Aug 1955 | A |
2762095 | Pemetzrieder | Sep 1956 | A |
2768587 | Corneil | Oct 1956 | A |
2775348 | Williams | Dec 1956 | A |
2779574 | Schneider | Jan 1957 | A |
2787873 | Hadley | Apr 1957 | A |
2808782 | Thompson et al. | Oct 1957 | A |
2809107 | Russell | Oct 1957 | A |
2821472 | Peterson et al. | Jan 1958 | A |
2824520 | Bartels | Feb 1958 | A |
2832292 | Edwards | Apr 1958 | A |
2839006 | Mayo | Jun 1958 | A |
2853019 | Thornton | Sep 1958 | A |
2865295 | Nikolaus | Dec 1958 | A |
2865618 | Abell | Dec 1958 | A |
2868132 | Rittershofer | Jan 1959 | A |
2901006 | Andrews | Aug 1959 | A |
2901677 | Chessman et al. | Aug 1959 | A |
2906632 | Nickerson | Sep 1959 | A |
2918876 | Howe | Dec 1959 | A |
2948524 | Sweeney et al. | Aug 1960 | A |
2958293 | Pray, Jr. | Nov 1960 | A |
2966345 | Burgoon et al. | Dec 1960 | A |
2966381 | Menzel | Dec 1960 | A |
2978885 | Davison | Apr 1961 | A |
2984524 | Franzen | May 1961 | A |
2987885 | Hodge | Jun 1961 | A |
3010402 | King | Nov 1961 | A |
3015190 | Arbeit | Jan 1962 | A |
3039864 | Hess | Jun 1962 | A |
3044408 | Mellott | Jul 1962 | A |
3048384 | Sweeney et al. | Aug 1962 | A |
3070393 | Silverberg et al. | Dec 1962 | A |
3092030 | Wunder | Jun 1963 | A |
3099870 | Seeler | Aug 1963 | A |
3128327 | Upton | Apr 1964 | A |
3130678 | Chenault | Apr 1964 | A |
3130679 | Sence | Apr 1964 | A |
3151565 | Albertson et al. | Oct 1964 | A |
3171357 | Egger | Mar 1965 | A |
3172850 | Englesberg et al. | Mar 1965 | A |
3203182 | Pohl | Aug 1965 | A |
3227547 | Szekely | Jan 1966 | A |
3244109 | Barske | Apr 1966 | A |
3251676 | Johnson | May 1966 | A |
3255702 | Gehrm | Jun 1966 | A |
3258283 | Winberg et al. | Jun 1966 | A |
3272619 | Sweeney et al. | Sep 1966 | A |
3289473 | Louda | Dec 1966 | A |
3291473 | Sweeney et al. | Dec 1966 | A |
3368805 | Davey et al. | Feb 1968 | A |
3374943 | Cervenka | Mar 1968 | A |
3400923 | Howie et al. | Sep 1968 | A |
3417929 | Secrest et al. | Dec 1968 | A |
3432336 | Langrod et al. | Mar 1969 | A |
3459133 | Scheffler | Aug 1969 | A |
3459346 | Tinnes | Aug 1969 | A |
3477383 | Rawson et al. | Nov 1969 | A |
3487805 | Satterthwaite | Jan 1970 | A |
3512762 | Umbricht | May 1970 | A |
3512788 | Kilbane | May 1970 | A |
3532445 | Scheffler et al. | Oct 1970 | A |
3561885 | Lake | Feb 1971 | A |
3575525 | Fox et al. | Apr 1971 | A |
3581767 | Jackson | Jun 1971 | A |
3612715 | Yedidiah | Oct 1971 | A |
3618917 | Fredrikson et al. | Nov 1971 | A |
3620716 | Hess | Nov 1971 | A |
3650730 | Derham et al. | Mar 1972 | A |
3689048 | Foulard et al. | Sep 1972 | A |
3715112 | Carbonnel | Feb 1973 | A |
3732032 | Daneel | May 1973 | A |
3737304 | Blayden et al. | Jun 1973 | A |
3737305 | Blayden et al. | Jun 1973 | A |
3743263 | Szekely | Jul 1973 | A |
3743500 | Foulard et al. | Jul 1973 | A |
3753690 | Emley et al. | Aug 1973 | A |
3759628 | Kempf | Sep 1973 | A |
3759635 | Carter et al. | Sep 1973 | A |
3767382 | Bruno et al. | Oct 1973 | A |
3776660 | Anderson et al. | Dec 1973 | A |
3785632 | Kraemer et al. | Jan 1974 | A |
3787143 | Carbonnel et al. | Jan 1974 | A |
3799522 | Brant et al. | Mar 1974 | A |
3799523 | Seki | Mar 1974 | A |
3807708 | Jones | Apr 1974 | A |
3814400 | Seki | Jun 1974 | A |
3824028 | Zenkner et al. | Jul 1974 | A |
3824042 | Barnes et al. | Jul 1974 | A |
3836280 | Koch | Sep 1974 | A |
3839019 | Bruno et al. | Oct 1974 | A |
3844972 | Tully, Jr. et al. | Oct 1974 | A |
3871872 | Downing et al. | Mar 1975 | A |
3873073 | Baum et al. | Mar 1975 | A |
3873305 | Claxton et al. | Mar 1975 | A |
3881039 | Baldieri et al. | Apr 1975 | A |
3886992 | Maas et al. | Jun 1975 | A |
3915594 | Nesseth | Oct 1975 | A |
3915694 | Ando | Oct 1975 | A |
3935003 | Steinke et al. | Jan 1976 | A |
3941588 | Dremann | Mar 1976 | A |
3941589 | Norman et al. | Mar 1976 | A |
3942473 | Chodash | Mar 1976 | A |
3954134 | Maas et al. | May 1976 | A |
3958979 | Valdo | May 1976 | A |
3958981 | Forberg et al. | May 1976 | A |
3961778 | Carbonnel et al. | Jun 1976 | A |
3966456 | Ellenbaum et al. | Jun 1976 | A |
3967286 | Andersson et al. | Jun 1976 | A |
3972709 | Chin et al. | Aug 1976 | A |
3973871 | Hance | Aug 1976 | A |
3984234 | Claxton et al. | Oct 1976 | A |
3985000 | Hartz | Oct 1976 | A |
3997336 | van Linden et al. | Dec 1976 | A |
4003560 | Carbonnel | Jan 1977 | A |
4008884 | Fitzpatrick et al. | Feb 1977 | A |
4018598 | Markus | Apr 1977 | A |
4043146 | Stegherr et al. | Aug 1977 | A |
4052199 | Mangalick | Oct 1977 | A |
4055390 | Young | Oct 1977 | A |
4063849 | Modianos | Dec 1977 | A |
4068965 | Lichti | Jan 1978 | A |
4073606 | Eller | Feb 1978 | A |
4091970 | Komiyama et al. | May 1978 | A |
4119141 | Thut et al. | Oct 1978 | A |
4125146 | Muller | Nov 1978 | A |
4126360 | Miller et al. | Nov 1978 | A |
4128415 | van Linden et al. | Dec 1978 | A |
4147474 | Heimdal et al. | Apr 1979 | A |
4169584 | Mangalick | Oct 1979 | A |
4191486 | Pelton | Mar 1980 | A |
4213742 | Henshaw | Jul 1980 | A |
4242039 | Villard et al. | Dec 1980 | A |
4244423 | Thut et al. | Jan 1981 | A |
4286985 | van Linden et al. | Sep 1981 | A |
4305214 | Hurst | Dec 1981 | A |
4322245 | Claxton | Mar 1982 | A |
4338062 | Neal | Jul 1982 | A |
4347041 | Cooper | Aug 1982 | A |
4351514 | Koch | Sep 1982 | A |
4355789 | Dolzhenkov et al. | Oct 1982 | A |
4356940 | Ansorge | Nov 1982 | A |
4360314 | Pennell | Nov 1982 | A |
4370096 | Church | Jan 1983 | A |
4372541 | Bocourt et al. | Feb 1983 | A |
4375937 | Cooper | Mar 1983 | A |
4389159 | Sarvanne | Jun 1983 | A |
4392888 | Eckert et al. | Jul 1983 | A |
4410299 | Shimoyama | Oct 1983 | A |
4419049 | Gerboth et al. | Dec 1983 | A |
4456424 | Araoka | Jun 1984 | A |
4470846 | Dube | Sep 1984 | A |
4474315 | Gilbert et al. | Oct 1984 | A |
4496393 | Lustenberger | Jan 1985 | A |
4504392 | Groteke | Mar 1985 | A |
4509979 | Bauer | Apr 1985 | A |
4530641 | Gschwender | Jul 1985 | A |
4537624 | Tenhover et al. | Aug 1985 | A |
4537625 | Tenhover et al. | Aug 1985 | A |
4545887 | Amesen | Oct 1985 | A |
4556419 | Otsuka et al. | Dec 1985 | A |
4557766 | Tenhover et al. | Dec 1985 | A |
4586845 | Morris | May 1986 | A |
4592700 | Toguchi et al. | Jun 1986 | A |
4594052 | Niskanen | Jun 1986 | A |
4596510 | Arneth et al. | Jun 1986 | A |
4598899 | Cooper | Jul 1986 | A |
4600222 | Appling | Jul 1986 | A |
4607825 | Briolle et al. | Aug 1986 | A |
4609442 | Tenhover et al. | Sep 1986 | A |
4611790 | Otsuka et al. | Sep 1986 | A |
4617232 | Chandler et al. | Oct 1986 | A |
4634105 | Withers et al. | Jan 1987 | A |
4640666 | Sodergard | Feb 1987 | A |
4655610 | Al-Jaroudi | Apr 1987 | A |
4668166 | Lutz | May 1987 | A |
4669953 | Gschwender | Jun 1987 | A |
4673434 | Withers et al. | Jun 1987 | A |
4682585 | Hiltebrandt | Jul 1987 | A |
4684281 | Patterson | Aug 1987 | A |
4685822 | Pelton | Aug 1987 | A |
4696703 | Henderson et al. | Sep 1987 | A |
4701226 | Henderson et al. | Oct 1987 | A |
4702768 | Areauz et al. | Oct 1987 | A |
4714371 | Cuse | Dec 1987 | A |
4717540 | McRae et al. | Jan 1988 | A |
4739974 | Mordue | Apr 1988 | A |
4741664 | Olmstead | May 1988 | A |
4743428 | McRae et al. | May 1988 | A |
4747583 | Gordon et al. | May 1988 | A |
4767230 | Leas, Jr. | Aug 1988 | A |
4770701 | Henderson et al. | Sep 1988 | A |
4786230 | Thut | Nov 1988 | A |
4802656 | Hudault et al. | Feb 1989 | A |
4804168 | Otsuka et al. | Feb 1989 | A |
4810314 | Henderson et al. | Mar 1989 | A |
4822473 | Arnesen | Apr 1989 | A |
4834573 | Asano et al. | May 1989 | A |
4842227 | Harrington et al. | Jun 1989 | A |
4844425 | Piras et al. | Jul 1989 | A |
4851296 | Tenhover et al. | Jul 1989 | A |
4854834 | Gschwender et al. | Aug 1989 | A |
4859413 | Harris et al. | Aug 1989 | A |
4860819 | Moscoe et al. | Aug 1989 | A |
4867638 | Handtmann et al. | Sep 1989 | A |
4884786 | Gillespie | Dec 1989 | A |
4898367 | Cooper | Feb 1990 | A |
4908060 | Duenkelmann | Mar 1990 | A |
4909704 | Lutz | Mar 1990 | A |
4911726 | Warkentin | Mar 1990 | A |
4923770 | Grasselli et al. | May 1990 | A |
4930986 | Cooper | Jun 1990 | A |
4931091 | Waite et al. | Jun 1990 | A |
4940214 | Gillespie | Jul 1990 | A |
4940384 | Amra et al. | Jul 1990 | A |
4954167 | Cooper | Sep 1990 | A |
4967827 | Campbell | Nov 1990 | A |
4973433 | Gilbert et al. | Nov 1990 | A |
4986736 | Kajiwara et al. | Jan 1991 | A |
4989736 | Andersson et al. | Feb 1991 | A |
5000025 | Beekel | Mar 1991 | A |
5015518 | Sasaki et al. | May 1991 | A |
5025198 | Mordue et al. | Jun 1991 | A |
5028211 | Mordue et al. | Jul 1991 | A |
5029821 | Bar-on et al. | Jul 1991 | A |
5058654 | Simmons | Oct 1991 | A |
5078572 | Amra et al. | Jan 1992 | A |
5080715 | Provencher et al. | Jan 1992 | A |
5083753 | Soofi | Jan 1992 | A |
5088893 | Gilbert et al. | Feb 1992 | A |
5092821 | Gilbert et al. | Mar 1992 | A |
5098134 | Monckton | Mar 1992 | A |
5099554 | Cooper | Mar 1992 | A |
5114312 | Stanislao | May 1992 | A |
5126047 | Martin et al. | Jun 1992 | A |
5131632 | Olson | Jul 1992 | A |
5135202 | Yamashita et al. | Aug 1992 | A |
5143357 | Gilbert et al. | Sep 1992 | A |
5145322 | Senior, Jr. et al. | Sep 1992 | A |
5152631 | Bauer | Oct 1992 | A |
5154652 | Ecklesdafer | Oct 1992 | A |
5158440 | Cooper et al. | Oct 1992 | A |
5162858 | Shoji et al. | Nov 1992 | A |
5165858 | Gilbert et al. | Nov 1992 | A |
5177304 | Nagel | Jan 1993 | A |
5191154 | Nagel | Mar 1993 | A |
5192193 | Cooper et al. | Mar 1993 | A |
5202100 | Nagel et al. | Apr 1993 | A |
5203681 | Cooper | Apr 1993 | A |
5209641 | Hoglund et al. | May 1993 | A |
5215448 | Cooper | Jun 1993 | A |
5268020 | Claxton | Dec 1993 | A |
5286163 | Amra et al. | Feb 1994 | A |
5298233 | Nagel | Mar 1994 | A |
5301620 | Nagel et al. | Apr 1994 | A |
5303903 | Butler et al. | Apr 1994 | A |
5308045 | Cooper | May 1994 | A |
5310412 | Gilbert et al. | May 1994 | A |
5318360 | Langer et al. | Jun 1994 | A |
5322547 | Nagel et al. | Jun 1994 | A |
5324341 | Nagel et al. | Jun 1994 | A |
5330328 | Cooper | Jul 1994 | A |
5354940 | Nagel | Oct 1994 | A |
5358549 | Nagel et al. | Oct 1994 | A |
5358697 | Nagel | Oct 1994 | A |
5364078 | Pelton | Nov 1994 | A |
5369063 | Gee et al. | Nov 1994 | A |
5383651 | Blasen et al. | Jan 1995 | A |
5388633 | Mercer, II et al. | Feb 1995 | A |
5395405 | Nagel et al. | Mar 1995 | A |
5399074 | Nose et al. | Mar 1995 | A |
5407294 | Giannini | Apr 1995 | A |
5411240 | Rapp et al. | May 1995 | A |
5425410 | Reynolds | Jun 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5435982 | Wilkinson | Jul 1995 | A |
5436210 | Wilkinson et al. | Jul 1995 | A |
5443572 | Wilkinson et al. | Aug 1995 | A |
5454423 | Tsuchida et al. | Oct 1995 | A |
5468280 | Areaux | Nov 1995 | A |
5470201 | Gilbert et al. | Nov 1995 | A |
5484265 | Horvath et al. | Jan 1996 | A |
5489734 | Nagel et al. | Feb 1996 | A |
5491279 | Robert et al. | Feb 1996 | A |
5494382 | Kloppers | Feb 1996 | A |
5495746 | Sigworth | Mar 1996 | A |
5505143 | Nagel | Apr 1996 | A |
5505435 | Laszlo | Apr 1996 | A |
5509791 | Turner | Apr 1996 | A |
5511766 | Vassilicos | Apr 1996 | A |
5520422 | Friedrich | May 1996 | A |
5537940 | Nagel et al. | Jul 1996 | A |
5543558 | Nagel et al. | Aug 1996 | A |
5555822 | Loewen et al. | Sep 1996 | A |
5558501 | Wang et al. | Sep 1996 | A |
5558505 | Mordue et al. | Sep 1996 | A |
5571486 | Robert et al. | Nov 1996 | A |
5585532 | Nagel | Dec 1996 | A |
5586863 | Gilbert et al. | Dec 1996 | A |
5591243 | Colussi et al. | Jan 1997 | A |
5597289 | Thut | Jan 1997 | A |
5613245 | Robert | Mar 1997 | A |
5616167 | Eckert | Apr 1997 | A |
5622481 | Thut | Apr 1997 | A |
5629464 | Bach et al. | May 1997 | A |
5634770 | Gilbert et al. | Jun 1997 | A |
5640706 | Nagel et al. | Jun 1997 | A |
5640707 | Nagel et al. | Jun 1997 | A |
5640709 | Nagel et al. | Jun 1997 | A |
5655849 | McEwen et al. | Aug 1997 | A |
5660614 | Waite et al. | Aug 1997 | A |
5662725 | Cooper | Sep 1997 | A |
5676520 | Thut | Oct 1997 | A |
5678244 | Shaw et al. | Oct 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5679132 | Rauenzahn et al. | Oct 1997 | A |
5685701 | Chandler et al. | Nov 1997 | A |
5690888 | Robert | Nov 1997 | A |
5695732 | Sparks et al. | Dec 1997 | A |
5716195 | Thut | Feb 1998 | A |
5717149 | Nagel et al. | Feb 1998 | A |
5718416 | Flisakowski et al. | Feb 1998 | A |
5735668 | Klein | Apr 1998 | A |
5735935 | Areaux | Apr 1998 | A |
5741422 | Eichenmiller et al. | Apr 1998 | A |
5744093 | Davis | Apr 1998 | A |
5744117 | Wilkinson et al. | Apr 1998 | A |
5745861 | Bell et al. | Apr 1998 | A |
5755847 | Quayle | May 1998 | A |
5758712 | Pederson | Jun 1998 | A |
5772324 | Falk | Jun 1998 | A |
5776420 | Nagel | Jul 1998 | A |
5785494 | Vild et al. | Jul 1998 | A |
5842832 | Thut | Dec 1998 | A |
5846481 | Tilak | Dec 1998 | A |
5858059 | Abramovich et al. | Jan 1999 | A |
5863314 | Morando | Jan 1999 | A |
5866095 | McGeever et al. | Feb 1999 | A |
5875385 | Stephenson et al. | Feb 1999 | A |
5935528 | Stephenson et al. | Aug 1999 | A |
5944496 | Cooper | Aug 1999 | A |
5947705 | Mordue et al. | Sep 1999 | A |
5948352 | Jagt et al. | Sep 1999 | A |
5951243 | Cooper | Sep 1999 | A |
5961285 | Meneice et al. | Oct 1999 | A |
5963580 | Eckert | Oct 1999 | A |
5992230 | Scarpa et al. | Nov 1999 | A |
5993726 | Huang | Nov 1999 | A |
5993728 | Vild | Nov 1999 | A |
6007313 | Sigel | Dec 1999 | A |
6019576 | Thut | Feb 2000 | A |
6027685 | Cooper | Feb 2000 | A |
6036745 | Gilbert et al. | Mar 2000 | A |
6074455 | van Linden et al. | Jun 2000 | A |
6082965 | Morando | Jul 2000 | A |
6093000 | Cooper | Jul 2000 | A |
6096109 | Nagel et al. | Aug 2000 | A |
6113154 | Thut | Sep 2000 | A |
6123523 | Cooper | Sep 2000 | A |
6152691 | Thut | Nov 2000 | A |
6168753 | Morando | Jan 2001 | B1 |
6187096 | Thut | Feb 2001 | B1 |
6199836 | Rexford et al. | Mar 2001 | B1 |
6217823 | Vild et al. | Apr 2001 | B1 |
6231639 | Eichenmiller | May 2001 | B1 |
6250881 | Mordue et al. | Jun 2001 | B1 |
6254340 | Vild et al. | Jul 2001 | B1 |
6270717 | Tremblay et al. | Aug 2001 | B1 |
6280157 | Cooper | Aug 2001 | B1 |
6293759 | Thut | Sep 2001 | B1 |
6303074 | Cooper | Oct 2001 | B1 |
6345964 | Cooper | Feb 2002 | B1 |
6354796 | Morando | Mar 2002 | B1 |
6358467 | Mordue | Mar 2002 | B1 |
6364930 | Kos | Apr 2002 | B1 |
6371723 | Grant et al. | Apr 2002 | B1 |
6398525 | Cooper | Jun 2002 | B1 |
6439860 | Greer | Aug 2002 | B1 |
6451247 | Mordue et al. | Sep 2002 | B1 |
6457940 | Lehman | Oct 2002 | B1 |
6457950 | Cooper et al. | Oct 2002 | B1 |
6464458 | Vild et al. | Oct 2002 | B2 |
6474962 | Allen et al. | Nov 2002 | B1 |
6495948 | Garrett, III | Dec 2002 | B1 |
6497559 | Grant | Dec 2002 | B1 |
6500228 | Klingensmith et al. | Dec 2002 | B1 |
6503292 | Klingensmith et al. | Jan 2003 | B2 |
6524066 | Thut | Feb 2003 | B2 |
6533535 | Thut | Mar 2003 | B2 |
6551060 | Mordue et al. | Apr 2003 | B2 |
6562286 | Lehman | May 2003 | B1 |
6656415 | Kos | Dec 2003 | B2 |
6679936 | Quackenbush | Jan 2004 | B2 |
6689310 | Cooper | Feb 2004 | B1 |
6709234 | Gilbert et al. | Mar 2004 | B2 |
6716147 | Hinkle et al. | Apr 2004 | B1 |
6723276 | Cooper | Apr 2004 | B1 |
6805834 | Thut | Oct 2004 | B2 |
6843640 | Mordue et al. | Jan 2005 | B2 |
6848497 | Sale et al. | Feb 2005 | B2 |
6869271 | Gilbert et al. | Mar 2005 | B2 |
6869564 | Gilbert et al. | Mar 2005 | B2 |
6881030 | Thut | Apr 2005 | B2 |
6887424 | Ohno et al. | May 2005 | B2 |
6887425 | Mordue et al. | May 2005 | B2 |
6902696 | Klingensmith et al. | Jun 2005 | B2 |
7037462 | Klingensmith et al. | May 2006 | B2 |
7074361 | Carolla et al. | Jul 2006 | B2 |
7083758 | Tremblay | Aug 2006 | B2 |
7131482 | Vincent et al. | Nov 2006 | B2 |
7157043 | Neff | Jan 2007 | B2 |
7204954 | Mizuno | Apr 2007 | B2 |
7273582 | Mordue | Sep 2007 | B2 |
7279128 | Kennedy et al. | Oct 2007 | B2 |
7326028 | Morando | Feb 2008 | B2 |
7402276 | Cooper | Jul 2008 | B2 |
7470392 | Cooper | Dec 2008 | B2 |
7476357 | Thut | Jan 2009 | B2 |
7481966 | Mizuno | Jan 2009 | B2 |
7497988 | Thut | Mar 2009 | B2 |
7507365 | Thut | Mar 2009 | B2 |
7507367 | Cooper | Mar 2009 | B2 |
7543605 | Morando | Jun 2009 | B1 |
7731891 | Cooper | Jun 2010 | B2 |
7771171 | Mohr | Aug 2010 | B2 |
7784999 | Lott | Aug 2010 | B1 |
7841379 | Evans | Nov 2010 | B1 |
7896617 | Morando | Mar 2011 | B1 |
7906068 | Cooper | Mar 2011 | B2 |
8075837 | Cooper | Dec 2011 | B2 |
8110141 | Cooper | Feb 2012 | B2 |
8137023 | Greer | Mar 2012 | B2 |
8142145 | Thut | Mar 2012 | B2 |
8178037 | Cooper | May 2012 | B2 |
8328540 | Wang | Dec 2012 | B2 |
8333921 | Thut | Dec 2012 | B2 |
8337746 | Cooper | Dec 2012 | B2 |
8361379 | Cooper | Jan 2013 | B2 |
8366993 | Cooper | Feb 2013 | B2 |
8409495 | Cooper | Apr 2013 | B2 |
8440135 | Cooper | May 2013 | B2 |
8444911 | Cooper | May 2013 | B2 |
8449814 | Cooper | May 2013 | B2 |
8475594 | Bright et al. | Jul 2013 | B2 |
8475708 | Cooper | Jul 2013 | B2 |
8480950 | Jetten et al. | Jul 2013 | B2 |
8501084 | Cooper | Aug 2013 | B2 |
8524146 | Cooper | Sep 2013 | B2 |
8529828 | Cooper | Sep 2013 | B2 |
8535603 | Cooper | Sep 2013 | B2 |
8580218 | Turenne et al. | Nov 2013 | B2 |
8613884 | Cooper | Dec 2013 | B2 |
8714914 | Cooper | May 2014 | B2 |
8753563 | Cooper | Jun 2014 | B2 |
8840359 | Vick et al. | Sep 2014 | B2 |
8899932 | Tetkoskie et al. | Dec 2014 | B2 |
8915830 | March et al. | Dec 2014 | B2 |
8920680 | Mao | Dec 2014 | B2 |
9011761 | Cooper | Apr 2015 | B2 |
9017597 | Cooper | Apr 2015 | B2 |
9034244 | Cooper | May 2015 | B2 |
9057376 | Thut | Jun 2015 | B2 |
9057377 | Thut | Jun 2015 | B1 |
9074601 | Thut | Jul 2015 | B1 |
9080577 | Cooper | Jul 2015 | B2 |
9108224 | Schererz et al. | Aug 2015 | B2 |
9108244 | Cooper | Aug 2015 | B2 |
9156087 | Cooper | Oct 2015 | B2 |
9193532 | March et al. | Nov 2015 | B2 |
9205490 | Cooper | Dec 2015 | B2 |
9234520 | Morando | Jan 2016 | B2 |
9273376 | Lutes et al. | Mar 2016 | B2 |
9328615 | Cooper | May 2016 | B2 |
9377028 | Cooper | Jun 2016 | B2 |
9382599 | Cooper | Jul 2016 | B2 |
9383140 | Cooper | Jul 2016 | B2 |
9388925 | Juarez | Jul 2016 | B2 |
9409232 | Cooper | Aug 2016 | B2 |
9410744 | Cooper | Aug 2016 | B2 |
9422942 | Cooper | Aug 2016 | B2 |
9435343 | Cooper | Sep 2016 | B2 |
9464636 | Cooper | Oct 2016 | B2 |
9470239 | Cooper | Oct 2016 | B2 |
9476644 | Howitt et al. | Oct 2016 | B2 |
9481035 | Cooper | Nov 2016 | B2 |
9481918 | Vild et al. | Nov 2016 | B2 |
9482469 | Cooper | Nov 2016 | B2 |
9494366 | Thut | Nov 2016 | B1 |
9506129 | Cooper | Nov 2016 | B2 |
9506346 | Bright et al. | Nov 2016 | B2 |
9532670 | Vaessen | Jan 2017 | B2 |
9566645 | Cooper | Feb 2017 | B2 |
9581388 | Cooper | Feb 2017 | B2 |
9587883 | Cooper | Mar 2017 | B2 |
9632670 | Wu | Apr 2017 | B2 |
9643247 | Cooper | May 2017 | B2 |
9657578 | Cooper | May 2017 | B2 |
9855600 | Cooper | Jan 2018 | B2 |
9862026 | Cooper | Jan 2018 | B2 |
9903383 | Cooper | Feb 2018 | B2 |
9909808 | Cooper | Mar 2018 | B2 |
9920767 | Klain et al. | Mar 2018 | B2 |
9925587 | Cooper | Mar 2018 | B2 |
9951777 | Morando et al. | Apr 2018 | B2 |
9970442 | Tipton | May 2018 | B2 |
9982945 | Cooper | May 2018 | B2 |
10052688 | Cooper | Aug 2018 | B2 |
10072897 | Cooper | Sep 2018 | B2 |
10126058 | Cooper | Nov 2018 | B2 |
10126059 | Cooper | Nov 2018 | B2 |
10138892 | Cooper | Nov 2018 | B2 |
10195664 | Cooper et al. | Feb 2019 | B2 |
10267314 | Cooper | Apr 2019 | B2 |
10274256 | Cooper | Apr 2019 | B2 |
10302361 | Cooper | May 2019 | B2 |
10307821 | Cooper | Jun 2019 | B2 |
10309725 | Cooper | Jun 2019 | B2 |
10322451 | Cooper | Jun 2019 | B2 |
10345045 | Cooper | Jul 2019 | B2 |
10352620 | Cooper | Jul 2019 | B2 |
10428821 | Cooper | Oct 2019 | B2 |
10458708 | Cooper | Oct 2019 | B2 |
10465688 | Cooper | Nov 2019 | B2 |
10562097 | Cooper | Feb 2020 | B2 |
10570745 | Cooper | Feb 2020 | B2 |
10641270 | Cooper | May 2020 | B2 |
10641279 | Cooper | May 2020 | B2 |
10675679 | Cooper | Jun 2020 | B2 |
11020798 | Cooper | Jun 2021 | B2 |
11098719 | Cooper | Aug 2021 | B2 |
11098720 | Cooper | Aug 2021 | B2 |
11103920 | Cooper | Aug 2021 | B2 |
11130173 | Cooper | Sep 2021 | B2 |
11149747 | Cooper | Oct 2021 | B2 |
11167345 | Cooper | Nov 2021 | B2 |
11185916 | Cooper | Nov 2021 | B2 |
11286939 | Cooper | Mar 2022 | B2 |
11358216 | Cooper | Jun 2022 | B2 |
11358217 | Cooper | Jun 2022 | B2 |
11391293 | Cooper | Jul 2022 | B2 |
11471938 | Fontana | Oct 2022 | B2 |
11519414 | Cooper | Dec 2022 | B2 |
20010000465 | Thut | Apr 2001 | A1 |
20020089099 | Denning | Jul 2002 | A1 |
20020102159 | Thut | Aug 2002 | A1 |
20020146313 | Thut | Oct 2002 | A1 |
20020185789 | Klingensmith et al. | Dec 2002 | A1 |
20020185790 | Kilgensmith | Dec 2002 | A1 |
20020185794 | Vincent | Dec 2002 | A1 |
20030047850 | Areaux | Mar 2003 | A1 |
20030075844 | Mordue et al. | Apr 2003 | A1 |
20030082052 | Gilbert et al. | May 2003 | A1 |
20030151176 | Ohno | Aug 2003 | A1 |
20030201583 | Klingensmith | Oct 2003 | A1 |
20040050525 | Kennedy et al. | Mar 2004 | A1 |
20040076533 | Cooper | Apr 2004 | A1 |
20040096330 | Gilbert | May 2004 | A1 |
20040115079 | Cooper | Jun 2004 | A1 |
20040245684 | Kojo | Dec 2004 | A1 |
20040262825 | Cooper | Dec 2004 | A1 |
20050013713 | Cooper | Jan 2005 | A1 |
20050013714 | Cooper | Jan 2005 | A1 |
20050013715 | Cooper | Jan 2005 | A1 |
20050053499 | Cooper | Mar 2005 | A1 |
20050077730 | Thut | Apr 2005 | A1 |
20050081607 | Patel et al. | Apr 2005 | A1 |
20050116398 | Tremblay | Jun 2005 | A1 |
20060180963 | Thut | Aug 2006 | A1 |
20060198725 | Thut | Sep 2006 | A1 |
20070253807 | Cooper | Nov 2007 | A1 |
20080163999 | Hymas et al. | Jul 2008 | A1 |
20080202644 | Grassi | Aug 2008 | A1 |
20080211147 | Cooper | Sep 2008 | A1 |
20080213111 | Cooper | Sep 2008 | A1 |
20080230966 | Cooper | Sep 2008 | A1 |
20080253905 | Morando et al. | Oct 2008 | A1 |
20080304970 | Cooper | Dec 2008 | A1 |
20080314548 | Cooper | Dec 2008 | A1 |
20090054167 | Cooper | Feb 2009 | A1 |
20090140013 | Cooper | Jun 2009 | A1 |
20090269191 | Cooper | Oct 2009 | A1 |
20100104415 | Morando | Apr 2010 | A1 |
20100200354 | Yagi et al. | Aug 2010 | A1 |
20110133374 | Cooper | Jun 2011 | A1 |
20110135457 | Cooper | Jun 2011 | A1 |
20110140318 | Reeves et al. | Jun 2011 | A1 |
20110140319 | Cooper | Jun 2011 | A1 |
20110140619 | Lin | Jun 2011 | A1 |
20110142603 | Cooper | Jun 2011 | A1 |
20110142606 | Cooper | Jun 2011 | A1 |
20110148012 | Cooper | Jun 2011 | A1 |
20110163486 | Cooper | Jul 2011 | A1 |
20110210232 | Cooper | Sep 2011 | A1 |
20110220771 | Cooper | Sep 2011 | A1 |
20110227338 | Pollack | Sep 2011 | A1 |
20110303706 | Cooper | Dec 2011 | A1 |
20120003099 | Tetkoskie | Jan 2012 | A1 |
20120163959 | Morando | Jun 2012 | A1 |
20130105102 | Cooper | May 2013 | A1 |
20130142625 | Cooper | Jun 2013 | A1 |
20130214014 | Cooper | Aug 2013 | A1 |
20130224038 | Tetkoskie et al. | Aug 2013 | A1 |
20130292426 | Cooper | Nov 2013 | A1 |
20130292427 | Cooper | Nov 2013 | A1 |
20130299524 | Cooper | Nov 2013 | A1 |
20130299525 | Cooper | Nov 2013 | A1 |
20130306687 | Cooper | Nov 2013 | A1 |
20130334744 | Tremblay | Dec 2013 | A1 |
20130343904 | Cooper | Dec 2013 | A1 |
20140008849 | Cooper | Jan 2014 | A1 |
20140041252 | Vild et al. | Feb 2014 | A1 |
20140044520 | Tipton | Feb 2014 | A1 |
20140083253 | Lutes et al. | Mar 2014 | A1 |
20140210144 | Torres et al. | Jul 2014 | A1 |
20140232048 | Howitt et al. | Aug 2014 | A1 |
20140252697 | Rauch | Sep 2014 | A1 |
20140252701 | Cooper | Sep 2014 | A1 |
20140261800 | Cooper | Sep 2014 | A1 |
20140263482 | Cooper | Sep 2014 | A1 |
20140265068 | Cooper | Sep 2014 | A1 |
20140271219 | Cooper | Sep 2014 | A1 |
20140363309 | Henderson et al. | Dec 2014 | A1 |
20150069679 | Henderson et al. | Mar 2015 | A1 |
20150184311 | Turenne | Jul 2015 | A1 |
20150192364 | Cooper | Jul 2015 | A1 |
20150217369 | Cooper | Aug 2015 | A1 |
20150219111 | Cooper | Aug 2015 | A1 |
20150219112 | Cooper | Aug 2015 | A1 |
20150219113 | Cooper | Aug 2015 | A1 |
20150219114 | Cooper | Aug 2015 | A1 |
20150224574 | Cooper | Aug 2015 | A1 |
20150252807 | Cooper | Sep 2015 | A1 |
20150285557 | Cooper | Oct 2015 | A1 |
20150285558 | Cooper | Oct 2015 | A1 |
20150323256 | Cooper | Nov 2015 | A1 |
20150328682 | Cooper | Nov 2015 | A1 |
20150328683 | Cooper | Nov 2015 | A1 |
20160031007 | Cooper | Feb 2016 | A1 |
20160040265 | Cooper | Feb 2016 | A1 |
20160047602 | Cooper | Feb 2016 | A1 |
20160053762 | Cooper | Feb 2016 | A1 |
20160053814 | Cooper | Feb 2016 | A1 |
20160082507 | Cooper | Mar 2016 | A1 |
20160089718 | Cooper | Mar 2016 | A1 |
20160091251 | Cooper | Mar 2016 | A1 |
20160116216 | Schlicht et al. | Apr 2016 | A1 |
20160221855 | Retorick et al. | Aug 2016 | A1 |
20160250686 | Cooper | Sep 2016 | A1 |
20160265535 | Cooper | Sep 2016 | A1 |
20160305711 | Cooper | Oct 2016 | A1 |
20160320129 | Cooper | Nov 2016 | A1 |
20160320130 | Cooper | Nov 2016 | A1 |
20160320131 | Cooper | Nov 2016 | A1 |
20160346836 | Henderson et al. | Dec 2016 | A1 |
20160348973 | Cooper | Dec 2016 | A1 |
20160348974 | Cooper | Dec 2016 | A1 |
20160348975 | Cooper | Dec 2016 | A1 |
20170037852 | Bright et al. | Feb 2017 | A1 |
20170038146 | Cooper | Feb 2017 | A1 |
20170045298 | Cooper | Feb 2017 | A1 |
20170056973 | Tremblay et al. | Mar 2017 | A1 |
20170082368 | Cooper | Mar 2017 | A1 |
20170106435 | Vincent | Apr 2017 | A1 |
20170106441 | Vincent | Apr 2017 | A1 |
20170130298 | Teranishi et al. | May 2017 | A1 |
20170167793 | Cooper et al. | Jun 2017 | A1 |
20170198721 | Cooper | Jul 2017 | A1 |
20170219289 | Williams et al. | Aug 2017 | A1 |
20170241713 | Henderson et al. | Aug 2017 | A1 |
20170246681 | Tipton et al. | Aug 2017 | A1 |
20170274446 | Wagstaff | Sep 2017 | A1 |
20170276430 | Cooper | Sep 2017 | A1 |
20180058465 | Cooper | Mar 2018 | A1 |
20180111189 | Cooper | Apr 2018 | A1 |
20180178281 | Cooper | Jun 2018 | A1 |
20180195513 | Cooper | Jul 2018 | A1 |
20180311726 | Cooper | Nov 2018 | A1 |
20190032675 | Cooper | Jan 2019 | A1 |
20190160642 | Joo et al. | May 2019 | A1 |
20190270134 | Cooper | Sep 2019 | A1 |
20190293089 | Cooper | Sep 2019 | A1 |
20190351481 | Tetkoskie | Nov 2019 | A1 |
20190360491 | Cooper | Nov 2019 | A1 |
20190360492 | Cooper | Nov 2019 | A1 |
20190368494 | Cooper | Dec 2019 | A1 |
20200130050 | Cooper | Apr 2020 | A1 |
20200130051 | Cooper | Apr 2020 | A1 |
20200130052 | Cooper | Apr 2020 | A1 |
20200130053 | Cooper | Apr 2020 | A1 |
20200130054 | Cooper | Apr 2020 | A1 |
20200182247 | Cooper | Jun 2020 | A1 |
20200182248 | Cooper | Jun 2020 | A1 |
20200256350 | Cooper | Aug 2020 | A1 |
20200360987 | Cooper | Nov 2020 | A1 |
20200360988 | Fontana | Nov 2020 | A1 |
20200360989 | Cooper | Nov 2020 | A1 |
20200360990 | Cooper | Nov 2020 | A1 |
20200362865 | Cooper | Nov 2020 | A1 |
20200363128 | Cooper | Nov 2020 | A1 |
20210199115 | Cooper | Jul 2021 | A1 |
20210254622 | Cooper | Aug 2021 | A1 |
20220025905 | Cooper | Jan 2022 | A1 |
20220080498 | Cooper | Mar 2022 | A1 |
20220193764 | Cooper | Jun 2022 | A1 |
20220213895 | Cooper | Jul 2022 | A1 |
20220234099 | Cooper | Jul 2022 | A1 |
20220381246 | Cooper | Dec 2022 | A1 |
20230001474 | Cooper | Jan 2023 | A1 |
20230219132 | Cooper | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
683469 | Mar 1964 | CA |
2115929 | Aug 1992 | CA |
2244251 | Jun 1998 | CA |
2305865 | Feb 2000 | CA |
2176475 | Jul 2005 | CA |
2924572 | Apr 2015 | CA |
392268 | Sep 1965 | CH |
102943761 | Feb 2013 | CN |
103511331 | Jan 2014 | CN |
1800446 | Dec 1969 | DE |
19541093 | May 1997 | DE |
19614350 | Oct 1997 | DE |
102006051814 | Jul 2008 | DE |
168250 | Jan 1986 | EP |
665378 | Aug 1995 | EP |
1019635 | Jun 2006 | EP |
161707 | Apr 1921 | GB |
543607 | Mar 1942 | GB |
942648 | Nov 1963 | GB |
1185314 | Mar 1970 | GB |
1565911 | Apr 1980 | GB |
1575991 | Oct 1980 | GB |
212260 | Jan 1984 | GB |
2193257 | Feb 1988 | GB |
2217784 | Mar 1989 | GB |
2289919 | Dec 1995 | GB |
58048796 | Mar 1983 | JP |
63104773 | May 1988 | JP |
11-270799 | Oct 1999 | JP |
5112837 | Jan 2013 | JP |
227385 | Apr 2005 | MX |
90756 | Jan 1959 | NO |
416401 | Feb 1974 | RU |
773312 | Oct 1980 | RU |
199808990 | Mar 1998 | WO |
199825031 | Jun 1998 | WO |
200091159 | Feb 2000 | WO |
2002012147 | Feb 2002 | WO |
2004029307 | Apr 2004 | WO |
2010147932 | Dec 2010 | WO |
2014031484 | Feb 2014 | WO |
2014055082 | Apr 2014 | WO |
2014150503 | Sep 2014 | WO |
2014185971 | Nov 2014 | WO |
Entry |
---|
“Response to Final Office Action and Request for Continued Examination for U.S. Appl. No. 09/275,627,” including Declarations of Haynes and Johnson, Apr. 16, 2001. |
Document No. 504217: Excerpts from “Pyrotek Inc.'s Motion for Summary Judgment of Invalidity and Unenforceability of U.S. Pat. No. 7,402,276,” Oct. 2, 2009. |
Document No. 505026: Excerpts from “MMEI's Response to Pyrotek's Motion for Summary Judgment of Invalidity or Enforceability of U.S. Pat. No. 7,402,276,” Oct. 9, 2009. |
Document No. 507689: Excerpts from “MMEI's Pre-Hearing Brief and Supplemental Motion for Summary Judgment of Infringement of Claims 3, 4, 15, 17-20, 26, 28 and 29 of the '074 Patent and Motion for Reconsideration of the Validity of Claims 7-9 of the '276 Patent,” Nov. 4, 2009. |
Document No. 517158: Excerpts from “Reasoned Award,” Feb. 19, 2010. |
Document No. 525055: Excerpts from “Molten Metal Equipment Innovations, Inc.'s Reply Brief in Support of Application to Confirm Arbitration Award and Opposition to Motion to Vacate,” May 12, 2010. |
USPTO; Notice of Reissue Examination Certificate dated Aug. 27, 2001 in U.S. Appl. No. 90/005,910. |
Number | Date | Country | |
---|---|---|---|
20230383753 A1 | Nov 2023 | US |