External displays are utilized to present content from various computing systems. The display is connected to the computing system with an appropriate interface, such as display port (DP), high definition multimedia interface (HDMI) or video graphics array (VGA). The content to be displayed may be the output of one or more applications running on the computing system, video stored on or received by the computing system, or other forms of media. The computing system may perform any necessary processing on the content in order to present the content on the display.
The display may be a liquid crystal display (LCD). The display typically includes an optical stack, panel electronics, and a backlight. The optical stack is where the content will be presented. The panel electronics receive instructions from the computing system (e.g., a graphics processor, a central processor) regarding the content to be presented and controls the writing of the content on the optical stack and may control the timing associated therewith. The backlight illuminates the optical stack so that the images written thereon can be seen by the user.
The display may include a backlight driver to control the operation of the backlight. In some displays the backlight is on all the time. In other displays, the backlight driver turns the backlight off when the panel electronics are generating an image on the optical stack (image refresh) to mitigate motion artifacts and/or conserve power. When the backlight is on, the brightness of the backlight is typically constant regardless of the content being presented. The backlight is a major source of power consumption in displays where the backlight is always on as well as those where it is throttled off during image refresh.
The features and advantages of the various embodiments will become apparent from the following detailed description in which:
The CPU 120 or graphics processor 130 of the computing device 110 may process data related to content (e.g., a video) to be presented on the external display 150. The processed data related to the content may be stored in the memory 140. The memory 140 may include a frame buffer (not separately illustrated) for storing the processed data to be displayed. The processed data from the frame buffer may be transmitted to the display via the I/O 145, the display interface 190, and the I/O 180. The panel electronics 160 may generate images on the optical stack (not illustrated) of the display 150 based on the processed data. The backlight driver 170 may control operation of the backlight (not illustrated) which illuminates the optical stack so that the user can see the images generated on the display 150.
The backlight for some displays may be on all the time, while the backlight for other displays may be turned off when the panel electronics are writing the image to the optical stack (image refresh). The backlight may be turned off during image refresh to mitigate motion artifacts and/or to conserve energy. For displays turning the backlight off during image refresh, the panel electronics and the backlight driver may communicate in some fashion so that the backlight driver is aware when image refresh is occurring. The image generated on the optical stack is visible during the VBI when the backlight is illuminated and the optical stack is not being written to.
The backlight need not simply be turned on or off. Rather, the backlight may be capable of providing light over a brightness spectrum. The brightness may be controlled by pulsing the backlight on and off at a fast rate, pulse width modulation (PWM). The pulsing on/off of the backlight can not be detected by the human eye.
The higher percentage of time the backlight is off for a defined cycle (lower PWM frequency), the dimmer the backlight illumination is. The brightness of the backlight may also be controlled by the voltage level applied thereto. The lower the voltage level applied to the backlight, the dimmer the backlight illumination is. A combination of PWM and voltage level may be utilized to control the brightness of the backlight.
The brightness of the backlight 330 may be controlled by setting parameters (e.g., brightness) for the display 300 via a user interface for the display 300. The backlight driver 320 may receive the parameter settings and provide the appropriate controls to the backlight 330 based thereon. Typically, the brightness of the backlight 330 is constant based on the parameter settings. Power savings could be achieved by adjusting the backlight brightness (e.g., adjusting PWM, voltage level, or some combination of both) based on content being presented. The backlight driver 320 may receive commands regarding adjusting the backlight level (e.g., dimming to save power) based on the content and provide the appropriate controls to the backlight 330 based thereon.
The statistics are provided to the statistics processing function 420 to determine if and how much the backlight brightness can be reduced with corresponding changes to the pixels to maintain or approximate the overall quality (color, contrast, brightness) of the original image and the current backlight setting. That is, can the color, contrast and/or brightness of the pixels be modified so that for less backlight brightness the overall image quality is substantially maintained. The statistics processing function 420 provides instructions related to pixel modifications to the pixel enhancement function 430. The pixel enhancement function 430 modifies the identified pixels of the image as instructed and outputs the modified pixels 435 to the display. The statistics processing function 420 also provides instructions related to backlight modification 425 to the display.
Implementing display power savings functionality in an external display increases the complexity and cost thereof. Furthermore, the modifications to backlight and/or pixels made by the external display are made without any consideration for system and/or user preferences that may be made if implemented at the system level.
As needed, the image data may be transported from the frame buffer 620 via the display pipe 630. If activated, the image data may be processed by the display power savings functionality 400. The enhanced pixels 435 and the backlight commands 425 are output from therefrom to the display output 630. The display output 630 may provide the interface processing and the connection for one or more display interfaces 660 supporting backlight control. The display interface 660 may be a wireless interface or a wired (e.g., cabled) interface. The wired interface may be, for example, a display port (DP), high definition multimedia interface (HDMI) or video graphics array (VGA) interface and may include an appropriate interface cable. The display interface 660 may include unidirectional data channels 662 and bidirectional control channels 664. The bidirectional control channels 664 in HDMI and VGA cables is provided by certain pins that act as display data channel (DDC). DP cables have an auxiliary channel, called the AUX channel, which is utilized as the bidirectional control channels 664.
The enhanced pixels 435 are transmitted to the external display 670 via the unidirectional channels 662 within the display interface 660. For HDMI and VGA interfaces the backlight commands 425 may be transmitted as monitor control command set (MCCS) commands over the DDC control lines 664. For DP interfaces the backlight commands 425 may be transmitted directly over the unidirectional data channels 662 as data packets or as MCCS commands or display port control data (DPCD) via the AUX channel 664. The display output 630 may configure the backlight commands 425 as data packets, DPCD or MCCS commands.
The computing system 610 may receive information about the external display 670 via the bidirectional control channels 664. The display information received may include display size, refresh rate, default backlight level and whether the backlight setting can be modified by external commands. The information may be provided to a controller 640. The controller 640 may utilize the display information to provide instructions/settings to a processor or a graphics function (not illustrated) in order to aid in the generation of the images to be presented on the display. The controller 640 may also utilize the display information to determine whether the display power savings functionality 400 should be active. If active, the controller 640 may provide operational instructions/settings to the display power savings functionality 400 (the statistics processing function 420). The instructions may be related to the default backlight brightness, the range of brightness that can be provided, how often the backlight may be modified and the like. The controller 640 may also receive computing device policies and user policies regarding image quality parameters for different content being presented and may generate and provide operational instructions/settings to the display power savings functionality 400 based thereon.
Substantially modifying the backlight brightness at one time may result in changes in the displayed image that a viewer may notice. The amount of backlight modification that may be noticed may vary based on display, content, user, system or the like. Accordingly, there may be a limit regarding how much the backlight brightness and the corresponding pixel enhancements can change at one time. According to one embodiment, if the backlight brightness modification exceeds some threshold the backlight modification and associated pixel enhancements may be made in incremental steps. According to one embodiment, all backlight modification and associated pixel enhancements are made in incremental steps.
If the threshold is not exceeded (835 No), a determination is made with regard to whether the phase-in is complete 860. If the phase-in is not complete (860 No), then a determination is made as to whether there has been a phase in time-out 865. If there was a phase-in time out (865 Yes), then a determination about a next phase-in of the backlight level and corresponding pixel modifications is made 845. If there was no phase-in time out (865 No), then the backlight and pixel modifications are kept at the current values 870 and then the process starts again for a next frame 830. If the phase-in is complete (860 Yes), then the backlight and pixel modifications are set to their final values 880 and then the process starts again for a next frame 830.
According to one embodiment, the display may be capable of separately controlling different sections of the backlight. For example, the sections may be columns (e.g., four 160×480 columns for a 640×480 display), rows (e.g., four 640×120 rows for a 640×480 display) or quadrants (e.g., upper left, upper right, lower left, lower right). The display may include a plurality of backlight drivers or the backlight driver may be capable of controlling various separately controllable backlight sections. The display power savings functionality 400 may gather statistics and analyze the statistics for sections of images associated with the separately controllable backlight sections. The analysis may determine that some sections have backlight modifications and pixel enhancements while others don't. The analysis may determine that different sections have different backlight modifications and corresponding pixel enhancements. For each image, the appropriate backlight and pixel modifications will be made for each section.
The display power savings functionality described in
The various embodiments described above may be implemented in various systems that display content (content display systems) and the content display systems may be incorporated in various devices.
In embodiments, the system 900 comprises a platform 902 coupled to an external display 920. The platform 902 may receive content from a content device such as content services device(s) 930, content delivery device(s) 940 or other similar content sources. A navigation controller 950 comprising one or more navigation features may be used to interact with, for example, the platform 902 and/or the display 920.
In embodiments, the platform 902 may comprise any combination of a chipset 905, a processor 910, memory 912, storage 914, a graphics subsystem 915, applications 916 and/or a radio 918. The chipset 905 may provide intercommunication among the processor 910, the memory 912, the storage 914, the graphics subsystem 915, the applications 916 and/or the radio 918. The chipset 905 may, for example, include a storage adapter (not depicted) capable of providing intercommunication with the storage 914.
The processor 910 may be implemented as Complex Instruction Set Computer (CISC) or Reduced Instruction Set Computer (RISC) processors, x86 instruction set compatible processors, multi-core, or any other microprocessor or central processing unit (CPU). In embodiments, the processor 910 may comprise dual-core processor(s), dual-core mobile processor(s), and so forth.
The memory 912 may be implemented as a volatile memory device such as, but not limited to, a Random Access Memory (RAM), Dynamic Random Access Memory (DRAM), or Static RAM (SRAM).
The storage 914 may be implemented as a non-volatile storage device such as, but not limited to, a magnetic disk drive, optical disk drive, tape drive, an internal storage device, an attached storage device, flash memory, battery backed-up SDRAM (synchronous DRAM), and/or a network accessible storage device. In embodiments, the storage 914 may comprise technology to increase the storage performance and/or enhance protection for valuable digital media when multiple hard drives are included, for example.
The graphics subsystem 915 may perform processing of images such as still or video for display. The graphics subsystem 915 may be a graphics processing unit (GPU) or a visual processing unit (VPU), for example. An analog or digital interface may be used to communicatively couple the graphics subsystem 915 and the display 920. For example, the interface may be any of a High-Definition Multimedia Interface, DisplayPort, wireless HDMI, and/or wireless HD compliant techniques. The graphics subsystem 915 could be integrated into the processor 910 or the chipset 905. The graphics subsystem 915 could be a stand-alone card communicatively coupled to the chipset 905.
The graphics and/or video processing techniques described herein may be implemented in various hardware architectures. For example, graphics and/or video functionality may be integrated within a chipset. Alternatively, a discrete graphics and/or video processor may be used. As still another embodiment, the graphics and/or video functions may be implemented by a general purpose processor, including a multi-core processor. In a further embodiment, the functions may be implemented in a consumer electronics device.
The radio 918 may include one or more radios capable of transmitting and receiving signals using various suitable wireless communications techniques. Such techniques may involve communications across one or more wireless networks. Exemplary wireless networks include (but are not limited to) wireless local area networks (WLANs), wireless personal area networks (WPANs), wireless metropolitan area network (WMANs), cellular networks, and satellite networks. In communicating across such networks, the radio 918 may operate in accordance with one or more applicable standards in any version.
In embodiments, the display 920 may comprise any television type monitor or display. The display 920 may comprise, for example, a computer display screen, touch screen display, video monitor, television-like device, and/or a television. The display 920 may be digital and/or analog. In embodiments, the display 920 may be a holographic display. Also, the display 920 may be a transparent surface that may receive a visual projection. Such projections may convey various forms of information, images, and/or objects. For example, such projections may be a visual overlay for a mobile augmented reality (MAR) application. Under the control of one or more software applications 916, the platform 902 may display the user interface 922 on the display 920.
In embodiments, the content services device(s) 930 may be hosted by any national, international and/or independent service and thus accessible to the platform 902 via the Internet, for example. The content services device(s) 930 may be coupled to the platform 902 and/or to the display 920. The platform 902 and/or the content services device(s) 930 may be coupled to a network 960 to communicate (e.g., send and/or receive) media information to and from the network 960. The content delivery device(s) 940 also may be coupled to the platform 902 and/or to the display 920.
In embodiments, the content services device(s) 930 may comprise a cable television box, personal computer, network, telephone, Internet enabled devices or appliance capable of delivering digital information and/or content, and any other similar device capable of unidirectionally or bidirectionally communicating content between content providers and the platform 902 and/or the display 920, via the network 960 or directly. It will be appreciated that the content may be communicated unidirectionally and/or bidirectionally to and from any one of the components in the system 900 and a content provider via the network 960. Examples of content may include any media information including, for example, video, music, medical, gaming information, and so forth.
The content services device(s) 930 receives content such as cable television programming including media information, digital information, and/or other content. Examples of content providers may include any cable or satellite television or radio or Internet content providers. The provided examples are not meant to limit embodiments of the invention.
In embodiments, the platform 902 may receive control signals from navigation controller 950 having one or more navigation features. The navigation features of the controller 950 may be used to interact with the user interface 922, for example. In embodiments, the navigation controller 950 may be a pointing device that may be a computer hardware component (specifically human interface device) that allows a user to input spatial (e.g., continuous and multi-dimensional) data into a computer. Many systems such as graphical user interfaces (GUI), televisions and monitors allow the user to control and provide data to the computer or television using physical gestures.
Movements of the navigation features of the controller 950 may be echoed on a display (e.g., display 920) by movements of a pointer, cursor, focus ring, or other visual indicators displayed on the display. For example, under the control of software applications 916, the navigation features located on the navigation controller 950 may be mapped to virtual navigation features displayed on the user interface 922, for example. In embodiments, the controller 950 may not be a separate component but integrated into the platform 902 and/or the display 920. Embodiments, however, are not limited to the elements or in the context shown or described herein.
In embodiments, drivers (not shown) may comprise technology to enable users to instantly turn on and off the platform 902 like a television with the touch of a button after initial boot-up, when enabled, for example. Program logic may allow the platform 902 to stream content to media adaptors or other content services device(s) 930 or content delivery device(s) 940 when the platform is turned “off” In addition, the chipset 905 may comprise hardware and/or software support for 5.1 surround sound audio and/or high definition 7.1 surround sound audio, for example. Drivers may include a graphics driver for integrated graphics platforms. In embodiments, the graphics driver may comprise a peripheral component interconnect (PCI) Express graphics card.
In various embodiments, any one or more of the components shown in the system 900 may be integrated. For example, the platform 902 and the content services device(s) 930 may be integrated, or the platform 902 and the content delivery device(s) 940 may be integrated, or the platform 902, the content services device(s) 930, and the content delivery device(s) 940 may be integrated, for example. In various embodiments, the display 920 and the content service device(s) 930 may be integrated, or the display 920 and the content delivery device(s) 940 may be integrated, for example. These examples are not meant to limit the invention.
In various embodiments, the system 900 may be implemented as a wireless system, a wired system, or a combination of both. When implemented as a wireless system, the system 900 may include components and interfaces suitable for communicating over a wireless shared media, such as one or more antennas, transmitters, receivers, transceivers, amplifiers, filters, control logic, and so forth. An example of wireless shared media may include portions of a wireless spectrum, such as the RF spectrum and so forth. When implemented as a wired system, the system 900 may include components and interfaces suitable for communicating over wired communications media, such as input/output (I/O) adapters, physical connectors to connect the I/O adapter with a corresponding wired communications medium, a network interface card (MC), disc controller, video controller, audio controller, and so forth. Examples of wired communications media may include a wire, cable, metal leads, printed circuit board (PCB), backplane, switch fabric, semiconductor material, twisted-pair wire, co-axial cable, fiber optics, and so forth.
The platform 902 may establish one or more logical or physical channels to communicate information. The information may include media information and control information. Media information may refer to any data representing content meant for a user. Examples of content may include, for example, data from a voice conversation, videoconference, streaming video, electronic mail (“email”) message, voice mail message, alphanumeric symbols, graphics, image, video, text and so forth. Data from a voice conversation may be, for example, speech information, silence periods, background noise, comfort noise, tones and so forth. Control information may refer to any data representing commands, instructions or control words meant for an automated system. For example, control information may be used to route media information through a system, or instruct a node to process the media information in a predetermined manner. The embodiments, however, are not limited to the elements or in the context shown or described in
Various embodiments may be implemented using hardware elements, software elements, or a combination of both. Examples of hardware elements may include processors, microprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and so forth), integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic gates, registers, semiconductor device, chips, microchips, chipsets, and so forth. Examples of software may include software components, programs, applications, computer programs, application programs, system programs, machine programs, operating system software, middleware, firmware, software modules, routines, subroutines, functions, methods, procedures, software interfaces, application program interfaces (API), instruction sets, computing code, computer code, code segments, computer code segments, words, values, symbols, or any combination thereof. Determining whether an embodiment is implemented using hardware elements and/or software elements may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other design or performance constraints.
One or more aspects of at least one embodiment may be implemented by representative instructions stored on a machine-readable medium which represents various logic within the processor, which when read by a machine causes the machine to fabricate logic to perform the techniques described herein. Such representations, known as “IP cores” may be stored on a tangible, machine readable medium and supplied to various customers or manufacturing facilities to load into the fabrication machines that actually make the logic or processor.
Although the disclosure has been illustrated by reference to specific embodiments, it will be apparent that the disclosure is not limited thereto as various changes and modifications may be made thereto without departing from the scope. Reference to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described therein is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment” appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
The various embodiments are intended to be protected broadly within the spirit and scope of the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/065742 | 12/19/2011 | WO | 00 | 6/16/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/095324 | 6/27/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4695883 | Chandler | Sep 1987 | A |
7119786 | Cui | Oct 2006 | B2 |
7259769 | Difenbaugh et al. | Aug 2007 | B2 |
7348957 | Cui et al. | Mar 2008 | B2 |
7382364 | Sasaki | Jun 2008 | B2 |
7742032 | Difenbaugh et al. | Jun 2010 | B2 |
8847998 | Maciesowicz et al. | Sep 2014 | B2 |
20040155854 | Ma | Aug 2004 | A1 |
20050057484 | Difenbaugh et al. | Mar 2005 | A1 |
20060001641 | Degwekar et al. | Jan 2006 | A1 |
20060092182 | Difenbaugh et al. | May 2006 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070216636 | Lo | Sep 2007 | A1 |
20080129679 | Yamamoto | Jun 2008 | A1 |
20080205519 | Goodart et al. | Aug 2008 | A1 |
20090189537 | Hong | Jul 2009 | A1 |
20100079364 | Feng | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2006-308632 | Nov 2006 | JP |
2013095324 | Jun 2013 | WO |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion received for PCT Patent Application No. PCT/US2011/065742, mailed on Jul. 3, 2014, 9 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/065742, mailed on Sep. 14, 2012, 12 pages. |
English Translation of Search Report for counterpart TW (ROC) application 101148058 dated Jun. 21, 2016. |
Number | Date | Country | |
---|---|---|---|
20140292631 A1 | Oct 2014 | US |