BACKSIDE ILLUMINATOR IMAGE SENSOR DEVICE WITH SHIELDING LAYER

Information

  • Patent Application
  • 20150123225
  • Publication Number
    20150123225
  • Date Filed
    November 06, 2013
    11 years ago
  • Date Published
    May 07, 2015
    9 years ago
Abstract
A backside illuminated image sensor device with a shielding layer and a manufacturing method thereof are provided. In the backside illuminated image senor device, a patterned conductive shielding layer is formed on a dielectric layer on a backside surface of a semiconductor substrate and surrounding a pixel array on a front side surface of the semiconductor substrate.
Description
BACKGROUND

1. Technical Field


The disclosure generally relates to image sensors, especially CMOS image sensors.


2. Description of Related Art


An image sensor provides an array of pixels for recording an intensity or brightness of light. The pixel responds to the light by accumulating a charge. The more light is received, the higher the charge is accumulated. The charge can then be used by another circuit so that information of color and brightness can be used for a suitable application, such as a digital camera. Common types of pixels include a charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) image sensor.


Comparing with conventional front-side illuminated (FSI) sensor, backside illuminated (BSI) sensor has been applied on CMOS image sensor to improve the sensitivity of each pixel in the CMOS image sensor. For CMOS image sensor using backside illumination technology, pixels are located on a front side of a substrate, and the substrate is thinned enough to allow light projected on the backside of the substrate to reach the pixels.


However, during the manufacturing process of the BSI sensor, electrostatic charges are often accumulated, and the wafer used can be easily damaged by the accumulated electrostatic charges in a form of arcing to decrease the yield of the BSI sensor.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C are plane diagrams of a backside illuminated image sensor device with a conductive shielding layer according to embodiments of this disclosure.



FIGS. 2A-2C are cross-sectional diagrams showing a manufacturing process of a backside illuminated image sensor device with a conductive shielding layer in FIG. 1A.



FIG. 3 is a flow chart showing the manufacturing process of a backside illuminated image sensor device with a conductive shielding layer in FIGS. 2A-2C.





DETAILED DESCRIPTION

In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.


In the process of manufacturing a backside illuminated image sensor device, it is found that a step of developing a photoresist layer on a dielectric layer can generate electrostatic charge accumulated on the dielectric layer. The accumulated electrostatic charge can induce discharging later in any time to damage the pixel array under the dielectric layer. Accordingly, it is designed to form a conductive shielding layer on the dielectric layer to shielding the structures under the conductive shielding layer from outer applied electric field, which may present in a plasma-assisted deposition step or in a plasma-assisted etching step. Then, the discharging behavior of the accumulated electrostatic charges can be reduced or even be prevented.


In various embodiments, this disclosure provides a backside illuminated image sensor device with a conductive shielding layer for shielding the structures under the conductive shielding layer from outer applied electric field.



FIGS. 1A-1C are plane diagrams of a backside illuminated image sensor device with a conductive shielding layer according to some embodiments of this disclosure. A cross-sectional diagram of the cutting line AA′ is shown in FIG. 2B.


In FIGS. 1A and 2B, a pixel array 110 is disposed on a front surface of a wafer 100. The pixel array 110 includes photodiodes (not shown) in the semiconductor substrate 100 and metal lines 104 in the interconnect layer 102. A dielectric layer 120 is disposed on a back surface of the wafer 100 to cover the backside of the pixel array 110. A plurality of scribe lines 130 are formed in the dielectric layer 120.


A conductive shielding line 140a is disposed on the dielectric layer 120. The conductive shielding line 140a is located on an area between the pixel array 110 and scribe lines 130 and fills the area. Therefore, the conductive shielding line 140a does not stop light irradiating on the pixel array 110 to maximize the light intensity received by the pixel array 110.


In FIG. 1B, the conductive shielding line 140a in FIG. 1A is thinned to the conductive shielding line 140b. However, for maintaining the shielding effect, the line width of the conductive shielding line 140b is at least 300 μm.


The conductive shielding line 140a in FIG. 1A can be further patterned to any patterns as long as the distributed conductive shielding lines is surrounding the pixel array 110 to give protection to the pixel array 110. The shape of the each individual conductive shielding lines viewed from a top direction can be circle, square, polygon, or strip. Still, the narrowest width of the each individual conductive shielding lines is at least 300 μm. For example, the conductive shielding line 140a in FIG. 1A can be patterned to conductive shielding lines 140c in a shape of strip and conductive shielding lines 140d in a shape of square in FIG. 10.


According to an embodiment of this disclosure, the conductive shielding lines 140a to 140d can be made from a conductive material, such as a metal, a conductive oxide, a conductive polymer, or graphene. The metal can be Al, Cu, Ti, Mo, or a MoCr alloy. The conductive oxide can be AZO (ZnO: Al), GZO (ZnO: Ga), GAZO (ZnO: Ga, Al), ATO (SnO2: Sb), FTO (SnO2: F), or ITO (In2O3: Sn). The conductive polymer can be poly(3,4-ethylenedioxythiophene) (PEDOT), polyanilines (PANI), or corresponding intrinsically conducting polymers (ICPs).


According to another embodiment of this disclosure, the dielectric layer is made from a dielectric material having a dielectric constant higher than or equal to the dielectric constant of silicon oxide. For example, the dielectric layer can be made from silicon oxide or silicon nitride.


According to another embodiment of this disclosure, the dielectric buffer layer is made from a dielectric material, such as silicon oxide.


In other embodiments, this disclosure provides a method of manufacturing a backside illuminated image sensor device. The backside illuminated image sensor device with a conductive shielding layer in FIG. 1A is taken as an example. Therefore, FIGS. 2A-2C are cross-sectional diagrams showing a manufacturing process of a backside illuminated image sensor device with a conductive shielding layer in FIG. 1A. In addition, FIG. 3 is a flow chart showing the manufacturing process of a backside illuminated image sensor device with a conductive shielding layer in FIGS. 2A-2C. FIGS. 2A-2C and FIG. 3 are referred hereinafter at the same time.


In FIG. 2A and step 310, the pixel array 110 is formed on the front surface of the semiconductor substrate 100. The pixel array 110 includes photodiodes (not shown) in the semiconductor substrate 100 and metal lines 104 in the interconnect layer 102.


In FIG. 2A and step 320, the backside of the substrate 100 is then thinned to reduce the thickness of the substrate 100 to allow light strike the photodiodes in the substrate 100. Next in step 330, a dielectric layer 120 is formed on the back surface of the substrate 100.


In FIG. 2A and step 340, scribe lines 130 are formed in the dielectric layer 120 by patterning the dielectric layer 120. The method of patterning the dielectric layer 120 can be photolithography and etching. In the step of developing photoresist in the photolithography process, since photoresist and the dielectric layer both are electrically insulating material, friction between two insulating materials often produces electrostatic charges to be accumulated. The accumulated electrostatic charges may damage the pixel array 110 if no prevention or protection treatment is made.


In FIG. 2B and step 350, a conductive shielding line 140a is formed on the dielectric layer 120 to protect the structures under the conductive shielding line 140a from discharging damage. The conductive shielding line 140a can be formed by depositing a conductive shielding layer, and then patterning the conductive shielding layer by a method such as photolithography and etching processes. Since the light received intensity by the photodiodes is better to be maximized, the conductive shielding layer 120 is better not cover the backside of the pixel array 110. However, if the conductive shielding line 140a is transparent to light, the conductive shielding line 140a may cover the backside of the pixel array 110 according to various embodiments of this disclosure.


In FIG. 2C and step 360, a dielectric buffer layer 150 is formed on the conductive shielding line 140a and dielectric layer 120. Next in step 370 and step 380, a color filter layer 160 and a microlens layer 170 are sequentially formed on the dielectric buffer layer 150. Finally, the each individual backside illuminated image sensor is separated from each other by cutting along the scribe lines 130.


According to another embodiment of this disclosure, the conductive shielding lines 140b in FIG. 1B or 140c-140d in FIGS. 10 can be formed through different photomask used in the above step of patterning the conductive shielding layer. The other steps are the same as the above-described process, and hence are omitted here.


Accordingly, since at least a conductive shielding line is located on the dielectric layer, any outer applied electric field cannot induce the charging effect of the electrostatic charges accumulated under the conductive shielding layer.


All the features disclosed in this specification (including any accompanying claims, abstract, and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, each feature disclosed is one example only of a generic series of equivalent or similar features.

Claims
  • 1. A backside illuminated image sensor device, comprising: a semiconductor substrate having a pixel array on a front surface of the semiconductor substrate;a dielectric layer disposed on a back surface of the semiconductor substrate to cover a backside of the pixel array;a conductive shielding line disposed on the dielectric layer;a dielectric buffer layer disposed on the conductive shielding line and the dielectric layer;a color filter layer disposed on the dielectric buffer layer; anda microlens layer disposed on the color filter layer.
  • 2. The image sensor device of claim 1, wherein the conductive shielding line surrounding the pixel array.
  • 3. The image sensor device of claim 1, wherein the conductive shielding line is made from a metal, a conductive oxide, a conductive polymer, or graphene.
  • 4. The image sensor device of claim 1, wherein a width of the conductive shielding line is at least 300 μm.
  • 5. The image sensor device of claim 1, wherein the dielectric layer is made from a dielectric material having a dielectric constant higher than or equal to the dielectric constant of silicon oxide.
  • 6. The image sensor device of claim 1, wherein the dielectric buffer layer is made from silicon oxide.
  • 7. A backside illuminated image sensor device, comprising: a semiconductor substrate having an pixel array on a front surface of the semiconductor substrate;a dielectric layer disposed on a back surface of the semiconductor substrate to cover a backside of the pixel array;a plurality of patterned conductive shielding lines disposed on the dielectric layer and surrounding the backside of the pixel array;a dielectric buffer layer disposed on the patterned conductive shielding lines and the dielectric layer;a color filter layer disposed on the dielectric buffer layer; anda microlens layer disposed on the color filter layer.
  • 8. The image sensor device of claim 7, wherein the patterned conductive shielding lines are made from a metal, a conductive oxide, a conductive polymer, or graphene.
  • 9. The image sensor device of claim 7, wherein a width of the patterned conductive shielding lines is at least 300 μm.
  • 10. The image sensor device of claim 7, wherein a shape of the each individual patterned conductive shielding line viewed from a top direction is circle, square, polygon, or strip.
  • 11. The image sensor device of claim 7, wherein the dielectric layer is made from a dielectric material having a dielectric constant higher than or equal to the dielectric constant of silicon oxide.
  • 12. The image sensor device of claim 7, wherein the dielectric layer is made from silicon oxide or silicon nitride.
  • 13. The image sensor device of claim 7, wherein the dielectric buffer layer is made from silicon oxide.
  • 14-20. (canceled)
  • 21. The image sensor device of claim 1, the pixel array further comprises photodiodes in the semiconductor substrate.
  • 22. The image sensor device of claim 1, wherein the pixel array further comprises metal lines.
  • 23. The image sensor device of claim 1, wherein the dielectric layer is made from silicon oxide or silicon nitride.
  • 24. The image sensor device of claim 1, further comprising a plurality of scribe lines in the dielectric layer.
  • 25. The image sensor device of claim 24, wherein the conductive shielding line is located on an area between the pixel array and the scribe lines and fills the area.
  • 26. The image sensor device of claim 7, further comprising a plurality of scribe lines in the dielectric layer.
  • 27. The image sensor device of claim 10, wherein the shape of the each individual patterned conductive shielding line viewed from a top direction is square or strip.