The present invention relates generally to a non-volatile memory system, and more particularly to bandwidth optimization in the non-volatile memory when using for instance error correction.
Recently, there has been a growing demand for memory storage devices using NAND Flash memory due to their attractive features such as low power consumption, high data throughput, and small size. The original NAND flash architecture was referred to as single level cell (SLC) since it would only store one bit per in each memory cell (a floating gate transistor). More recent devices can store multiple bits per cell and are referred to as multi-level cell (MLC) flash.
In a solid state drive (SSD), a common requirement is that the drive maintains constant performance throughout its life. Some measures of performance are the operating power, the read throughput, and the average latency. In practice, reliability of the information stored in the flash decreases due to several factors such as cell to cell interference, charge leakage, over programming and read/write disturbance. These effects will become more severe with the age of the flash and the number of stored bits per cell. To resolve these issues, error correction codes (ECC) have been used to ensure data integrity and reliable data storage throughout the life of flash memory cells. By applying ECC, additional error correction bits are sent along with the original data bits to protect the user data from errors caused by the weak or failing flash memory cells. Unfortunately the addition of the error correction bits can reduce usable capacity and increase the bandwidth used on the memory interface. The fixed structure of the error correction codes can unnecessarily burden the bandwidth of the transfer from the memory device when no correction is necessary but can be insufficient to correct the user data as the flash memory cells wear.
Thus, a need still remains for a non-volatile memory system with bandwidth optimization that can provide enhanced performance and longevity of a non-volatile storage system, such as a solid state drive, without unnecessarily reducing capacity. In view of the ever-increasing commercial competitive pressures, along with growing consumer expectations and the diminishing opportunities for meaningful product differentiation in the marketplace, it is critical that answers be found for these problems. Additionally, the need to reduce costs, improve efficiencies and performance, and meet competitive pressures adds an even greater urgency to the critical necessity for finding answers to these problems.
Solutions to these problems have been long sought but prior developments have not taught or suggested any solutions and, thus, solutions to these problems have long eluded those skilled in the art.
The present disclosure provides a method of operation of a non-volatile memory system including: retrieving hard data bits representing the user data. The non-volatile memory system generates soft information from the hard data bits without adding a capacity burden to the solid state drive. The non-volatile memory system applies a lossless compression to the soft information for calculating syndrome bits for optimizing the bandwidth of error correction when it is needed. The non-volatile memory system also executes a low density parity check (LDPC) iterative decode on the hard data bits and the syndrome bits for increasing the reliability of the user data without unnecessarily impacting capacity or performance.
Certain embodiments of the invention have other steps or elements in addition to or in place of those mentioned above. The steps or elements will become apparent to those skilled in the art from a reading of the following detailed description when taken with reference to the accompanying drawings.
The following embodiments are described in sufficient detail to enable those skilled in the art to make and use the claimed invention. It is to be understood that other embodiments would be evident based on the present disclosure, and that system, process, or mechanical changes may be made without departing from the scope of the claimed invention.
In the following description, numerous specific details are given to provide a thorough understanding of the invention. However, it will be apparent that the invention may be practiced without these specific details. In order to avoid obscuring the present invention, some well-known circuits, system configurations, and process steps are not disclosed in detail.
The drawings showing embodiments of the system are semi-diagrammatic and not to scale and, particularly, some of the dimensions are for the clarity of presentation and are shown exaggerated in the drawing figures. Similarly, although the views in the drawings for ease of description generally show similar orientations, this depiction in the figures is arbitrary for the most part. Generally, the invention can be operated in any orientation.
The same numbers are used in all the drawing figures to relate to the same elements. The embodiments have been numbered first embodiment, second embodiment, etc. as a matter of descriptive convenience and are not intended to have any other significance or provide limitations for the present invention.
The present invention provides a method of operation of a non-volatile memory system including: retrieving hard data bits; generating soft information from the hard data bits; applying a lossless compression to the soft information for calculating syndrome bits; and executing a low density parity check (LDPC) iterative decode on the hard data bits and the syndrome bits.
The present invention provides a non-volatile memory system, including: a destination register for retrieving hard data bits; a soft information module, coupled to the destination register, for capturing a reliability of the hard data bits; a lossless compression module, coupled to the soft information module, for calculating syndrome bits; and an error correction module, coupled to the lossless compression module, for executing a low density parity check (LDPC) iterative decode on the hard data bits and the syndrome bits.
Referring now to
The storage power manager 112 can provide operational power and alerts to a controller module 114 and an array 116 of a non-volatile memory device 118. The non-volatile memory device 118 can be NAND flash memory, single-level cell (SLC) flash memory, or multi-level cell (MLC) flash memory. The array 116 of the non-volatile memory device 118 can be coupled through a flash data bus 115 to the controller module 114. The controller module 114 can be a hardware module having a processor module 120, a processor memory module 122, a flash interface controller 124, a non-volatile memory controller 126, and an error correction module 128, such as a low density parity check (LDPC) iterative decoder module.
The processor module 120 can perform maintenance and support tasks for the non-volatile memory system 100. The processor memory module 122 can be coupled to the processor module 120 to operate as data cache, temporary storage, instruction storage, and interface state memory.
The flash interface controller 124 is a hardware structure coupled between the flash data bus 115, and the error correction module 128. The flash interface controller 124 can manage the transfer of hard data bits read from the non-volatile memory device 118. The hardware for the flash interface controller 124 can be a multiplexed structure that uses the flash data bus 115 to transfer either the hard data bits read from the non-volatile memory device 118 or syndrome bits, representing the reliability of the hard data bits, which are processed for the error correction module 128.
The non-volatile memory controller 126 can be a dedicated processor or hardware module used to manage data written to the non-volatile memory device 118 as well as monitoring use patterns of the non-volatile memory device 118. The use leveling and configuration management of erase blocks within the non-volatile memory device 118 are managed by the non-volatile memory controller 126.
Data written to the non-volatile memory device 118 can be randomized for either security reasons or for endurance and retention requirements. The resulting data is known to have high entropy, such as 50% 1's and 50% 0's. The number of data bits written at a value of 1 or 0 can be predicted. As the non-volatile memory device 118 ages a ratio of the number of 1's to 0's will change due to charge depletion in the non-volatile memory device 118. The charge depletion can occur due to the age of the data or an excessive number of reads of the data in the non-volatile memory device 118.
In normal operation, spurious data errors can be corrected by the error correction module 128 without re-reading the erroneous data blocks. As the charge is depleted with a given threshold voltage (Vth), the ratio of the number of 1's to 0's can change. As the number of bit errors increases, soft correction bits can be needed by the error correction module 128 to provide corrected data to the host data bus 104.
The processor module 120 can detect the increasing use of the error correction module 128. The processor module 120 can configure the flash interface controller 124 in order to invoke changes in the processing of the syndrome bits to the error correction module 128. The output of the flash interface controller 124 can steer the hard data bits to the error correction module 128 and the syndrome bits to additional logic to aid in the correction process.
It is understood that the activation of the flash interface controller 124 can be part of an error recovery process or as part of a continuous monitoring of the condition of the data within the non-volatile memory device 118. It is further understood that the adjustments of the threshold voltage (Vth) can be implemented by the non-volatile memory controller 126 to automatically apply to the non-volatile memory device 118 without intervention of the processor module 120.
It has been discovered that the flash interface controller 124 can aid in the correction of the hard data read from the non-volatile memory device 118 while minimizing the use of additional power and latency. It has further been discovered that the flash interface controller 124 can quickly assist in the identification of suspect bits in the hard data read from the non-volatile memory device 118 while minimizing the utilization of additional power and latency.
Referring now to
The non-volatile memory device 118 can include a number of non-volatile memory cells 202 coupled through a read bus 204 to a destination register 206. The destination register 206 can include a first read register 208 and a second read register 210. The first read register 208 and the second read register 210 can each receive the hard data bits from the read bus 204 at a different threshold voltage (VTH) (not shown). The subsequent reads of the same data location using different levels of the threshold voltage can load the same data in the first read register 208 and the second read register 210 or it can cause some of the bits to change value. In the event none of the bits change, the reliability of all of the bits is known with high confidence.
An output of the destination register 206 can be hard data bits 212. If the confidence in all of the hard data bits 212 is high, the code word represented by the hard data bits 212 can be correctly decoded by the error correction module 128 and presented on the host data bus 104. It is understood that while the hard data bits 212 is shown as a single line, the number of the hard data bits 212 represented in a code word decoded by the error correction module 128 can be 8 bits, 16 bits, 32 bits, 64 bits or some other number of bits limited only by the design of the controller module 114 and the non-volatile memory device 118.
In the event the bit values in the first read register 208 and the second read register 210 are different, the individual bits that change value are suspect and can be flagged as having a probability of being the incorrect value as transferred in the hard data bits 212. A reliability logic module 214 can compare changes of the data bits from the first read register 208, loaded at a first threshold voltage (VTH) and the second read register 210, loaded at a second threshold voltage (VTH), based on the change in threshold voltage (VTH) applied to the non-volatile memory cell 202. The reliability logic module 214 can be coupled to a soft information module 216 for generation of soft information 218 indicating the probability of the correctness of the hard data bits 212. The soft information module 216 can provide access to the soft information 218.
It is understood that the destination register 206 can have additional registers beyond the first read register 208 and the second read register 210 in order to capture additional information about the number of bits that change due to changes in the threshold voltage (VTH). It is also understood that the reliability logic module 214 can be integrated into the destination register 206. The reliability logic module 214 is shown separately to clarify the function.
A lossless compression module 220 can perform a lossless compression, such as Huffman coding, adaptive Huffman coding, Lempel Ziv, Lempel Ziv Welch, or the like, of the soft information 218. The lossless compression module 220 can reduce the size of the soft information 218 by supplying a code indicating which of the hard data bits 212 appear to be unreliable for transfer to the controller module 114. The lossless compression module 220 can reduce the transfer time and power required to convey the soft information 218 to the controller module 114. By way of an example, the lossless compression module 220 can be structured to provide the Huffman Coding of the soft information 218, which divides the soft information 218 into clusters of size “N”.
The lossless compression module 220 can provide syndrome bits 222 that reflects the lossless compression of the soft information 218. The syndrome bits 222 can be coupled to a multiplexer 224 for transferring the syndrome bits 222 across the flash data bus 115. A selection controller 226 can control the data select line 228 in order to switch the multiplexer between the hard data bits 212 and the syndrome bits 222. The output of the multiplexer 224 is the flash data bus 115, which is coupled to a demultiplexer 230 for steering the hard data bits 212 to the error correction module 128 and the syndrome bits 222 to a decompression module 232.
The selection controller 226 can maintain the selection of the hard data bits 212 until a code word is not correctly decoded. Upon detecting a decode error from the error correction module 128, the selection controller 226 can select the syndrome bits 222. The syndrome bits 222 are generated during the decode process of the error correction module 128 and are waiting for transmission when the selection controller 226 switches the data select line 228.
The decompression module 232 can perform a decompression of the syndrome bits 222. The decompression module 232 can decompose the sequence of the syndrome bits 222 into cluster syndrome bits 233 without any knowledge of the hard data bits 212. A compute log likelihood ratio (LLR) module 234 can calculate the probability of an individual bit being in error from the cluster syndrome bits 233. The compute LLR module 234 can be coupled to the error correction module 128 for aiding in the LDPC iterative decode of the code word.
The compute LLR module 234 can calculate the probability that bits addressed by the decompression module 232 contain an incorrectly read bit. The compute LLR module 234 can be a hardware accelerator, combinational logic, a micro-programmed hardware sequencer, or other fast calculating combination. Probability bits 236, calculated by the compute LLR module 234, can be applied to the error correction module 128 for executing an LDPC iterative decode process of the code word represented by the hard data bits 212. Since the syndrome bits 222 represent all of the soft information 218, generation of the probability bits 236 can increase the bit correction capability to the error correction module 128 and reduce the time required to produce the corrected data for the host data bus 104 of
It has been discovered that the non-volatile memory system 100 of
Referring now to
A first compression characteristic 306 can represent that a probability of a bit being unreliable is 0.01. The first compression characteristic 306 can represent a newly written location of the non-volatile memory cells 202 of
A second compression characteristic 308 can represent that the probability of the bit being unreliable has progressed to 0.02. The second compression characteristic 308 can represent the non-volatile memory cells 202 that have been repeatedly read, written, erased, or a combination thereof. In this configuration the majority of the bits in the non-volatile memory cells 202 will be reliable and only the weaker bit locations will be unreliable. When an error is detected, most of the clusters will be error free or rarely have a single bit error in the hard data bits 212. The syndrome bits 222 indicating a single bit error located in the cluster still allows very efficient compression of the soft information 218 having a range of 71 to 83 percent for the compression ratio percent 304.
A third compression characteristic 310 can represent that the probability of the bit being unreliable has progressed to 0.04. The third compression characteristic 310 can represent the non-volatile memory cells 202 that have been repeatedly read, written, erased, or a combination thereof. In this configuration the majority of the bits in the non-volatile memory cells 202 will remain reliable and only the weaker bit locations, those having been weakly written or charge depleted from reads, will be unreliable. The probability of a single bit error within a cluster is about 3.5% and the probability of a double bit error within a cluster is 0.1%. The syndrome bits 222 indicating an occasional single bit error and a rare double bit error located in the cluster still allows very efficient compression of the soft information 218 having a range of 66 to 75 percent for the compression ratio percent 304.
A fourth compression characteristic 312 can represent that the probability of the bit being unreliable has progressed to 0.06. The fourth compression characteristic 312 can represent the non-volatile memory cells 202 that have been repeatedly read, written, erased, or a combination thereof. In this configuration the most of the bits in the non-volatile memory cells 202 will remain reliable and only the weaker bit locations or locations that have been repeatedly read will be unreliable. The syndrome bits 222 indicating a single bit error, an occasional double bit error, and a rare triple bit error located in the cluster still allows very efficient compression of the soft information 218 having a range of 61 to 68 percent for the compression ratio percent 304.
A fifth compression characteristic 314 can represent that the probability of the bit being unreliable has progressed to 0.1. The fifth compression characteristic 314 can represent the non-volatile memory cells 202 that have been repeatedly read, written, erased, or a combination thereof. In this configuration the some of the bits in the non-volatile memory cells 202 will remain reliable but could be charge depleted moving the data closer to the threshold voltage (VTH) and thereby susceptible to noise or other errors. There can be an increased number of the single bit errors, the occasional double bit error, and the rare triple bit error in the hard data bits 212. The syndrome bits 222 indicating the single bit errors, the occasional double bit error, and the rare triple bit error located in the cluster still allows very efficient compression of the soft information 218 having a range of 51 to 53 percent compression ratio. In the maintenance of the non-volatile memory system 100, the fifth compression characteristic 314 would likely indicate that the contents of the non-volatile memory cells 202 should be copied to a new location.
The transfer of the syndrome bits 222 will indicate the bit location of the suspected unreliable bits within the cluster 302 in order to facilitate correction of the unreliable bits. The syndrome bits 222 for each of the cluster 302 will be concatenated for transfer. It is understood that the increase in the size of the cluster 302 can increase the amount of the compression ration percent 304 due to the fewer number of the cluster 302 required to address all of the bits in the hard data bits 212. Since most of the bit locations in the non-volatile memory cells 202 remain reliable, the number of the syndrome bits 222 transferred remains low.
It has been discovered that transfer of the syndrome bits 222 from the lossless compression module 220 can correct the vast majority of the unsuccessful decode of the hard data bits 212 by the error correction module 118 of
A variable rate code for sharing the soft information 218 between the non-volatile memory device 118 and the error correction module 128 of
Assuming that the lossless compression module 220 of
As seen from the Table 1, the unreliable bit sequences having the lowest probability of occurrence are encoded with longer versions of the syndrome bits 222. For instance, the lossless compression module 220 assigns a single “0” to the case where none of the bits are unreliable because this is the most frequent occurrence. On the other hand, the worst case scenario where all the four bits are erroneous is encoded with 10 bits. This is due to the fact that while the no error case occurs about 84% of the time, the worst case scenario happens less than 3 times per 105 transfers. Therefore, it makes sense to transmit less soft information bits for cases that occur frequently. Without the lossless compression module 220, 1 soft information bit must be transferred per data bit to utilize all the information about erroneous bit locations. On the other hand, it can be seen that by using the lossless compression module 220, the same information can be transmitted using only 0.34 soft information bits per data bit. In the example, using the Huffman coding below, transmission of the syndrome bits 222 takes approximately ⅓rd of the time required to send the soft information 218 uncompressed, and ⅓rd of the total energy.
It is understood that the configuration of the lossless compression module 220 can be programmatically changed in order to alter the number of bits of the soft information 218 operated on for the generation of the syndrome bits 222. As demonstrated in
By way of an example, with the size of the cluster 302 having a value of N=4, every 4th bit of the soft information 218 can mark a boundary of the cluster 302 of the soft information 218. The syndrome bits 222 represented by every cluster 302 of the soft information 218.
The LLR values show the value of the probability bits 236 of
It is understood that the above example using the Huffman coding is used to demonstrate the operation of the non-volatile memory system 100 without limiting the invention. Any of the lossless compression algorithms can be implemented to optimize the throughput and power utilization of the non-volatile memory system 100. More efficient codes requiring more complex decoding and more complex encoding can be constructed. The compression ratio percent 304 of the syndrome bits 222 can generally be increased by an increase in the size, N, of the cluster 302.
It has been discovered that the lossless compression module 220 can provide the error correction module 128 with a high quality of the soft information 218 by transferring the minimum amount of the syndrome bits 222 needed to complete a successful decode of the hard data bits 212. Once a decode of the hard data bits 212 fails, all of the soft information 218 is transferred through the lossless compression module 220 and transferred as the syndrome bits 222 utilizing only ⅓rd of the bandwidth and the power that would be needed to transfer all of the soft information 218. Since all of the detail of the soft information 218 is utilized by the error correction module 128 to perform the LDPC iterative decode, the correction can take less time and further reduce any bandwidth penalty caused by the errors in the hard data bits 212.
Referring now to
By utilizing the variable length of the syndrome bits 222, of the non-volatile memory system 100, a syndrome bits transfer 406 required for the LDPC iterative decode process can be between 6 and 15 micro-seconds. This can be favorably compared to the transfer of the total content of the soft information 218 which would take the same 45 microseconds of time and energy as the data transfer 404 of the hard bits 212. An energy saving duration 408 can be between 30 and 39 microseconds. The efficiencies provided by the non-volatile memory system 100 can improve bandwidth and energy utilization while maintaining a robust error correction capability.
Referring now to
The resulting method, process, apparatus, device, product, and/or system is straightforward, cost-effective, uncomplicated, highly versatile, accurate, sensitive, and effective, and can be implemented by adapting known components for ready, efficient, and economical manufacturing, application, and utilization.
Another important aspect of the present invention is that it valuably supports and services the historical trend of reducing costs, simplifying systems, and increasing performance.
These and other valuable aspects of the present invention consequently further the state of the technology to at least the next level.
While the invention has been described in conjunction with a specific best mode, it is to be understood that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the aforegoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations that fall within the scope of the included claims. All matters hithertofore set forth herein or shown in the accompanying drawings are to be interpreted in an illustrative and non-limiting sense.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/767,236 filed Feb. 20, 2013, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4048481 | Bailey, Jr. et al. | Sep 1977 | A |
4839587 | Flatley et al. | Jun 1989 | A |
4916652 | Schwarz et al. | Apr 1990 | A |
5034744 | Obinata | Jul 1991 | A |
5210854 | Beaverton et al. | May 1993 | A |
5311395 | McGaha et al. | May 1994 | A |
5450354 | Sawada et al. | Sep 1995 | A |
5479638 | Assar et al. | Dec 1995 | A |
5519847 | Fandrich et al. | May 1996 | A |
5530705 | Malone | Jun 1996 | A |
5537555 | Landry | Jul 1996 | A |
5551003 | Mattson et al. | Aug 1996 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5666114 | Brodie et al. | Sep 1997 | A |
5708849 | Coke et al. | Jan 1998 | A |
5784174 | Fujino et al. | Jul 1998 | A |
5790828 | Jost | Aug 1998 | A |
5930504 | Gabel | Jul 1999 | A |
5943692 | Marberg et al. | Aug 1999 | A |
5949785 | Beasley | Sep 1999 | A |
5963983 | Sakakura et al. | Oct 1999 | A |
5982664 | Watanabe | Nov 1999 | A |
6000006 | Bruce et al. | Dec 1999 | A |
6016560 | Wada et al. | Jan 2000 | A |
6018304 | Bessios | Jan 2000 | A |
6034897 | Estakhri et al. | Mar 2000 | A |
6069827 | Sinclair | May 2000 | A |
6070074 | Perahia et al. | May 2000 | A |
6091652 | Haehn et al. | Jul 2000 | A |
6138261 | Wilcoxson et al. | Oct 2000 | A |
6182264 | Ott | Jan 2001 | B1 |
6192092 | Dizon et al. | Feb 2001 | B1 |
6275436 | Tobita et al. | Aug 2001 | B1 |
6295592 | Jeddeloh et al. | Sep 2001 | B1 |
6311263 | Barlow et al. | Oct 2001 | B1 |
6345367 | Sinclair | Feb 2002 | B1 |
6356447 | Scafidi | Mar 2002 | B2 |
6381176 | Kim et al. | Apr 2002 | B1 |
6381670 | Lee et al. | Apr 2002 | B1 |
6412080 | Fleming et al. | Jun 2002 | B1 |
6442076 | Roohparvar | Aug 2002 | B1 |
6449625 | Wang | Sep 2002 | B1 |
6484224 | Robins et al. | Nov 2002 | B1 |
6516437 | Van Stralen et al. | Feb 2003 | B1 |
6529997 | Debiez et al. | Mar 2003 | B1 |
6552581 | Gabara | Apr 2003 | B1 |
6587915 | Kim | Jul 2003 | B1 |
6618249 | Fairchild | Sep 2003 | B2 |
6661503 | Yamaguchi et al. | Dec 2003 | B1 |
6678788 | O'Connell | Jan 2004 | B1 |
6728913 | Parker | Apr 2004 | B1 |
6757768 | Potter et al. | Jun 2004 | B1 |
6763424 | Conley | Jul 2004 | B2 |
6775792 | Ulrich et al. | Aug 2004 | B2 |
6778387 | Fairchild | Aug 2004 | B2 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6836815 | Purcell et al. | Dec 2004 | B1 |
6842436 | Moeller | Jan 2005 | B2 |
6850443 | Lofgren et al. | Feb 2005 | B2 |
6854070 | Johnson et al. | Feb 2005 | B2 |
6871257 | Conley et al. | Mar 2005 | B2 |
6871304 | Hadjihassan et al. | Mar 2005 | B2 |
6895464 | Chow et al. | May 2005 | B2 |
6903972 | Lasser et al. | Jun 2005 | B2 |
6906961 | Eggleston et al. | Jun 2005 | B2 |
6975028 | Wayburn et al. | Dec 2005 | B1 |
6978343 | Ichiriu | Dec 2005 | B1 |
6980985 | Amer-Yahia et al. | Dec 2005 | B1 |
6981205 | Fukushima et al. | Dec 2005 | B2 |
6988171 | Beardsley et al. | Jan 2006 | B2 |
7020017 | Chen et al. | Mar 2006 | B2 |
7032123 | Kane et al. | Apr 2006 | B2 |
7043505 | Teague et al. | May 2006 | B1 |
7082495 | DeWhitt et al. | Jul 2006 | B2 |
7100002 | Shrader et al. | Aug 2006 | B2 |
7107389 | Inagaki et al. | Sep 2006 | B2 |
7111293 | Hersh et al. | Sep 2006 | B1 |
7139864 | Bennett et al. | Nov 2006 | B2 |
7162678 | Saliba | Jan 2007 | B2 |
7173852 | Gorobets et al. | Feb 2007 | B2 |
7184446 | Rashid et al. | Feb 2007 | B2 |
7233497 | Simon et al. | Jun 2007 | B2 |
7243186 | Liang et al. | Jul 2007 | B2 |
7298888 | Hamar | Nov 2007 | B2 |
7328377 | Lewis et al. | Feb 2008 | B1 |
7330927 | Reeve et al. | Feb 2008 | B1 |
7333364 | Yu et al. | Feb 2008 | B2 |
7350101 | Nguyen et al. | Mar 2008 | B1 |
7355896 | Li et al. | Apr 2008 | B2 |
7434122 | Jo | Oct 2008 | B2 |
7441067 | Gorobets et al. | Oct 2008 | B2 |
7516267 | Coulson et al. | Apr 2009 | B2 |
7516292 | Kimura et al. | Apr 2009 | B2 |
7523157 | Aguilar, Jr. et al. | Apr 2009 | B2 |
7527466 | Simmons | May 2009 | B2 |
7529466 | Takahashi | May 2009 | B2 |
7571277 | Mizushima | Aug 2009 | B2 |
7574554 | Tanaka et al. | Aug 2009 | B2 |
7596643 | Merry et al. | Sep 2009 | B2 |
7613871 | Tanaka et al. | Nov 2009 | B2 |
7620710 | Kottomtharayil et al. | Nov 2009 | B2 |
7620769 | Lee et al. | Nov 2009 | B2 |
7639532 | Roohparvar et al. | Dec 2009 | B2 |
7661054 | Huffman et al. | Feb 2010 | B2 |
7679948 | Park et al. | Mar 2010 | B2 |
7681106 | Jarrar et al. | Mar 2010 | B2 |
7685494 | Varnica et al. | Mar 2010 | B1 |
7693422 | Alicherry et al. | Apr 2010 | B2 |
7707481 | Kirschner et al. | Apr 2010 | B2 |
7738502 | Chang et al. | Jun 2010 | B2 |
7743216 | Lubbers et al. | Jun 2010 | B2 |
7761655 | Mizushima et al. | Jul 2010 | B2 |
7774390 | Shin | Aug 2010 | B2 |
7818525 | Frost et al. | Oct 2010 | B1 |
7827348 | Lee et al. | Nov 2010 | B2 |
7830164 | Earle et al. | Nov 2010 | B2 |
7840762 | Oh et al. | Nov 2010 | B2 |
7853749 | Kolokowsky | Dec 2010 | B2 |
7870326 | Shin et al. | Jan 2011 | B2 |
7890818 | Kong et al. | Feb 2011 | B2 |
7913022 | Baxter | Mar 2011 | B1 |
7925960 | Ho et al. | Apr 2011 | B2 |
7934052 | Prins et al. | Apr 2011 | B2 |
7954041 | Hong et al. | May 2011 | B2 |
7971112 | Murata | Jun 2011 | B2 |
7974368 | Shieh et al. | Jul 2011 | B2 |
7978516 | Olbrich | Jul 2011 | B2 |
7979614 | Yang | Jul 2011 | B1 |
7996642 | Smith | Aug 2011 | B1 |
8000161 | Stan et al. | Aug 2011 | B2 |
8001135 | Fume et al. | Aug 2011 | B2 |
8006161 | Lestable et al. | Aug 2011 | B2 |
8010738 | Chilton et al. | Aug 2011 | B1 |
8028123 | Kilzer et al. | Sep 2011 | B2 |
8032724 | Smith | Oct 2011 | B1 |
8046645 | Hsu et al. | Oct 2011 | B2 |
8051241 | Feldman et al. | Nov 2011 | B2 |
8069390 | Lin | Nov 2011 | B2 |
8072805 | Chou et al. | Dec 2011 | B2 |
8095724 | Ji et al. | Jan 2012 | B2 |
8095765 | Asnaashari et al. | Jan 2012 | B2 |
8117396 | Fair et al. | Feb 2012 | B1 |
8127202 | Cornwell et al. | Feb 2012 | B2 |
8145984 | Sommer et al. | Mar 2012 | B2 |
8154921 | Mokhlesi et al. | Apr 2012 | B2 |
8169825 | Shalvi et al. | May 2012 | B1 |
8190967 | Hong et al. | May 2012 | B2 |
8205028 | Sakarda | Jun 2012 | B1 |
8209677 | Shintani et al. | Jun 2012 | B2 |
8219724 | Caruso et al. | Jul 2012 | B1 |
8219776 | Forhan et al. | Jul 2012 | B2 |
8228701 | Sokolov et al. | Jul 2012 | B2 |
8245101 | Olbrich et al. | Aug 2012 | B2 |
8250621 | Cha | Aug 2012 | B2 |
8254172 | Kan | Aug 2012 | B1 |
8254181 | Hwang et al. | Aug 2012 | B2 |
8259506 | Sommer et al. | Sep 2012 | B1 |
8289801 | Smith et al. | Oct 2012 | B2 |
8296534 | Gupta et al. | Oct 2012 | B1 |
8312349 | Reche et al. | Nov 2012 | B2 |
8332578 | Frickey, III et al. | Dec 2012 | B2 |
8363413 | Paquette et al. | Jan 2013 | B2 |
8369141 | Sommer et al. | Feb 2013 | B2 |
8385117 | Sakurada et al. | Feb 2013 | B2 |
8386700 | Olbrich et al. | Feb 2013 | B2 |
8386860 | Tseng et al. | Feb 2013 | B2 |
8397101 | Goss et al. | Mar 2013 | B2 |
8407409 | Kawaguchi | Mar 2013 | B2 |
8412985 | Bowers et al. | Apr 2013 | B1 |
8451664 | Radke et al. | May 2013 | B2 |
8464106 | Filor et al. | Jun 2013 | B2 |
8503238 | Wu et al. | Aug 2013 | B1 |
8504890 | Sharon et al. | Aug 2013 | B2 |
8521981 | Strauss et al. | Aug 2013 | B2 |
8533550 | Khan | Sep 2013 | B2 |
8560770 | Haines et al. | Oct 2013 | B2 |
8601203 | Holbrook et al. | Dec 2013 | B2 |
8612669 | Syu et al. | Dec 2013 | B1 |
8612804 | Kang et al. | Dec 2013 | B1 |
8661184 | Wood et al. | Feb 2014 | B2 |
8694811 | Raju et al. | Apr 2014 | B2 |
8725931 | Kang | May 2014 | B1 |
8750052 | Aoki et al. | Jun 2014 | B2 |
8793556 | Northcott et al. | Jul 2014 | B1 |
8799747 | Goss et al. | Aug 2014 | B2 |
8832506 | Griffin et al. | Sep 2014 | B2 |
8862818 | Ozdemir | Oct 2014 | B1 |
8880838 | Kaiser et al. | Nov 2014 | B2 |
8984216 | Fillingim | Mar 2015 | B2 |
9043668 | Goss et al. | May 2015 | B2 |
9063844 | Higgins et al. | Jun 2015 | B2 |
9069468 | Mehra et al. | Jun 2015 | B2 |
9116401 | Kim et al. | Aug 2015 | B2 |
20020024846 | Kawahara et al. | Feb 2002 | A1 |
20020056025 | Qiu et al. | May 2002 | A1 |
20020083299 | Van Huben et al. | Jun 2002 | A1 |
20020152305 | Jackson et al. | Oct 2002 | A1 |
20020156891 | Ulrich et al. | Oct 2002 | A1 |
20020159285 | Morley et al. | Oct 2002 | A1 |
20020162075 | Talagala et al. | Oct 2002 | A1 |
20020165896 | Kim | Nov 2002 | A1 |
20030033308 | Patel et al. | Feb 2003 | A1 |
20030041299 | Kanazawa et al. | Feb 2003 | A1 |
20030043829 | Rashid | Mar 2003 | A1 |
20030046603 | Harari et al. | Mar 2003 | A1 |
20030074592 | Hasegawa | Apr 2003 | A1 |
20030088805 | Majni et al. | May 2003 | A1 |
20030093628 | Matter et al. | May 2003 | A1 |
20030163633 | Aasheim et al. | Aug 2003 | A1 |
20030188045 | Jacobson | Oct 2003 | A1 |
20030189856 | Cho et al. | Oct 2003 | A1 |
20030198100 | Matsushita et al. | Oct 2003 | A1 |
20030212719 | Yasuda et al. | Nov 2003 | A1 |
20040024957 | Lin et al. | Feb 2004 | A1 |
20040024963 | Talagala et al. | Feb 2004 | A1 |
20040073829 | Olarig | Apr 2004 | A1 |
20040080985 | Chang et al. | Apr 2004 | A1 |
20040088511 | Bacon et al. | May 2004 | A1 |
20040153902 | Machado et al. | Aug 2004 | A1 |
20040181734 | Saliba | Sep 2004 | A1 |
20040199714 | Estakhri et al. | Oct 2004 | A1 |
20040237018 | Riley | Nov 2004 | A1 |
20040252670 | Rong et al. | Dec 2004 | A1 |
20050021904 | Iaculo et al. | Jan 2005 | A1 |
20050038792 | Johnson | Feb 2005 | A1 |
20050060456 | Shrader et al. | Mar 2005 | A1 |
20050060501 | Shrader | Mar 2005 | A1 |
20050073884 | Gonzalez et al. | Apr 2005 | A1 |
20050076102 | Chen et al. | Apr 2005 | A1 |
20050114587 | Chou et al. | May 2005 | A1 |
20050144516 | Gonzalez et al. | Jun 2005 | A1 |
20050172065 | Keays | Aug 2005 | A1 |
20050172207 | Radke et al. | Aug 2005 | A1 |
20050193161 | Lee et al. | Sep 2005 | A1 |
20050201148 | Chen et al. | Sep 2005 | A1 |
20050231765 | So et al. | Oct 2005 | A1 |
20050257120 | Gorobets et al. | Nov 2005 | A1 |
20050273560 | Hulbert et al. | Dec 2005 | A1 |
20050289314 | Adusumilli et al. | Dec 2005 | A1 |
20060015683 | Ashmore et al. | Jan 2006 | A1 |
20060020745 | Conley et al. | Jan 2006 | A1 |
20060022054 | Elhamias et al. | Feb 2006 | A1 |
20060039196 | Gorobets et al. | Feb 2006 | A1 |
20060053246 | Lee | Mar 2006 | A1 |
20060080505 | Arai et al. | Apr 2006 | A1 |
20060085671 | Majni et al. | Apr 2006 | A1 |
20060136570 | Pandya | Jun 2006 | A1 |
20060136682 | Haridas et al. | Jun 2006 | A1 |
20060143365 | Kikuchi | Jun 2006 | A1 |
20060143475 | Herbert et al. | Jun 2006 | A1 |
20060156177 | Kottapalli et al. | Jul 2006 | A1 |
20060195650 | Su et al. | Aug 2006 | A1 |
20060253641 | Gatzemeier et al. | Nov 2006 | A1 |
20060256624 | Eggleston et al. | Nov 2006 | A1 |
20060259528 | Dussud et al. | Nov 2006 | A1 |
20060282644 | Wong | Dec 2006 | A1 |
20060294574 | Cha | Dec 2006 | A1 |
20070011413 | Nonaka et al. | Jan 2007 | A1 |
20070050536 | Kolokowsky | Mar 2007 | A1 |
20070058446 | Hwang et al. | Mar 2007 | A1 |
20070061511 | Faber | Mar 2007 | A1 |
20070061597 | Holtzman et al. | Mar 2007 | A1 |
20070067598 | Fujimoto | Mar 2007 | A1 |
20070076479 | Kim et al. | Apr 2007 | A1 |
20070079152 | Winick et al. | Apr 2007 | A1 |
20070081408 | Kwon et al. | Apr 2007 | A1 |
20070083697 | Birrell et al. | Apr 2007 | A1 |
20070083779 | Misaka et al. | Apr 2007 | A1 |
20070113019 | Beukema | May 2007 | A1 |
20070133312 | Roohparvar | Jun 2007 | A1 |
20070147113 | Mokhlesi et al. | Jun 2007 | A1 |
20070150790 | Gross et al. | Jun 2007 | A1 |
20070157064 | Falik et al. | Jul 2007 | A1 |
20070174579 | Shin | Jul 2007 | A1 |
20070180188 | Fujibayashi et al. | Aug 2007 | A1 |
20070208901 | Purcell et al. | Sep 2007 | A1 |
20070226592 | Radke | Sep 2007 | A1 |
20070234004 | Oshima et al. | Oct 2007 | A1 |
20070234143 | Kim | Oct 2007 | A1 |
20070245061 | Harriman | Oct 2007 | A1 |
20070260811 | Merry, Jr. et al. | Nov 2007 | A1 |
20070263444 | Gorobets et al. | Nov 2007 | A1 |
20070276973 | Tan et al. | Nov 2007 | A1 |
20070277036 | Chamberlain et al. | Nov 2007 | A1 |
20070291556 | Kamei | Dec 2007 | A1 |
20070294496 | Goss et al. | Dec 2007 | A1 |
20070300130 | Gorobets | Dec 2007 | A1 |
20080019182 | Yanagidaira et al. | Jan 2008 | A1 |
20080022163 | Tanaka et al. | Jan 2008 | A1 |
20080028246 | Witham | Jan 2008 | A1 |
20080046630 | Lasser | Feb 2008 | A1 |
20080052446 | Lasser et al. | Feb 2008 | A1 |
20080077841 | Gonzalez et al. | Mar 2008 | A1 |
20080077937 | Shin et al. | Mar 2008 | A1 |
20080082736 | Chow et al. | Apr 2008 | A1 |
20080086677 | Yang et al. | Apr 2008 | A1 |
20080126720 | Danilak | May 2008 | A1 |
20080144371 | Yeh et al. | Jun 2008 | A1 |
20080147964 | Chow et al. | Jun 2008 | A1 |
20080147998 | Jeong | Jun 2008 | A1 |
20080148124 | Zhang et al. | Jun 2008 | A1 |
20080163030 | Lee | Jul 2008 | A1 |
20080168191 | Biran et al. | Jul 2008 | A1 |
20080168319 | Lee et al. | Jul 2008 | A1 |
20080170460 | Oh et al. | Jul 2008 | A1 |
20080183918 | Dhokia et al. | Jul 2008 | A1 |
20080189588 | Tanaka et al. | Aug 2008 | A1 |
20080229000 | Kim | Sep 2008 | A1 |
20080229003 | Mizushima et al. | Sep 2008 | A1 |
20080229176 | Arnez et al. | Sep 2008 | A1 |
20080263289 | Hosoya et al. | Oct 2008 | A1 |
20080270680 | Chang | Oct 2008 | A1 |
20080282128 | Lee et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20080313505 | Lee et al. | Dec 2008 | A1 |
20090003058 | Kang | Jan 2009 | A1 |
20090006900 | Lastras-Montano et al. | Jan 2009 | A1 |
20090019321 | Radke | Jan 2009 | A1 |
20090037652 | Yu et al. | Feb 2009 | A1 |
20090070651 | Diggs et al. | Mar 2009 | A1 |
20090083587 | Ng et al. | Mar 2009 | A1 |
20090089485 | Yeh | Apr 2009 | A1 |
20090091990 | Park et al. | Apr 2009 | A1 |
20090109786 | Ye et al. | Apr 2009 | A1 |
20090125670 | Keays | May 2009 | A1 |
20090138654 | Sutardja | May 2009 | A1 |
20090144598 | Yoon et al. | Jun 2009 | A1 |
20090146721 | Kurooka et al. | Jun 2009 | A1 |
20090157948 | Trichina et al. | Jun 2009 | A1 |
20090164702 | Kern | Jun 2009 | A1 |
20090164710 | Choi et al. | Jun 2009 | A1 |
20090168525 | Olbrich et al. | Jul 2009 | A1 |
20090172248 | You | Jul 2009 | A1 |
20090172258 | Olbrich et al. | Jul 2009 | A1 |
20090172259 | Prins et al. | Jul 2009 | A1 |
20090172260 | Olbrich et al. | Jul 2009 | A1 |
20090172261 | Prins et al. | Jul 2009 | A1 |
20090172262 | Olbrich et al. | Jul 2009 | A1 |
20090172308 | Prins et al. | Jul 2009 | A1 |
20090172335 | Kulkarni et al. | Jul 2009 | A1 |
20090172499 | Olbrich et al. | Jul 2009 | A1 |
20090179707 | Higashino | Jul 2009 | A1 |
20090193058 | Reid | Jul 2009 | A1 |
20090207660 | Hwang et al. | Aug 2009 | A1 |
20090222708 | Yamaga | Sep 2009 | A1 |
20090228634 | Nakamura et al. | Sep 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090259819 | Chen et al. | Oct 2009 | A1 |
20090259896 | Hsu et al. | Oct 2009 | A1 |
20090271562 | Sinclair | Oct 2009 | A1 |
20090287975 | Kim et al. | Nov 2009 | A1 |
20090296466 | Kim et al. | Dec 2009 | A1 |
20090296486 | Kim et al. | Dec 2009 | A1 |
20090300238 | Panabaker et al. | Dec 2009 | A1 |
20090319864 | Shrader | Dec 2009 | A1 |
20090323419 | Lee et al. | Dec 2009 | A1 |
20090327581 | Coulson | Dec 2009 | A1 |
20090327591 | Moshayedi | Dec 2009 | A1 |
20100017650 | Chin et al. | Jan 2010 | A1 |
20100023674 | Aviles | Jan 2010 | A1 |
20100050053 | Wilson et al. | Feb 2010 | A1 |
20100061151 | Miwa et al. | Mar 2010 | A1 |
20100082890 | Heo et al. | Apr 2010 | A1 |
20100103737 | Park | Apr 2010 | A1 |
20100122019 | Flynn et al. | May 2010 | A1 |
20100128537 | Suhail et al. | May 2010 | A1 |
20100138592 | Cheon | Jun 2010 | A1 |
20100161936 | Royer et al. | Jun 2010 | A1 |
20100165689 | Rotbard et al. | Jul 2010 | A1 |
20100169541 | Freikorn | Jul 2010 | A1 |
20100172179 | Gorobets et al. | Jul 2010 | A1 |
20100174845 | Gorobets et al. | Jul 2010 | A1 |
20100199125 | Reche | Aug 2010 | A1 |
20100202196 | Lee et al. | Aug 2010 | A1 |
20100208521 | Kim et al. | Aug 2010 | A1 |
20100217898 | Priborsky et al. | Aug 2010 | A1 |
20100217915 | O'Connor et al. | Aug 2010 | A1 |
20100223531 | Fukutomi et al. | Sep 2010 | A1 |
20100228928 | Asnaashari et al. | Sep 2010 | A1 |
20100262792 | Hetzler et al. | Oct 2010 | A1 |
20100262795 | Hetzler et al. | Oct 2010 | A1 |
20100262875 | Hetzler et al. | Oct 2010 | A1 |
20100262889 | Bains | Oct 2010 | A1 |
20100281207 | Miller et al. | Nov 2010 | A1 |
20100281342 | Chang et al. | Nov 2010 | A1 |
20100287328 | Feldman et al. | Nov 2010 | A1 |
20100293367 | Berke et al. | Nov 2010 | A1 |
20100312954 | Jeon et al. | Dec 2010 | A1 |
20100318719 | Keays et al. | Dec 2010 | A1 |
20100332726 | Wang | Dec 2010 | A1 |
20110002224 | Tamura | Jan 2011 | A1 |
20110016239 | Stenfort | Jan 2011 | A1 |
20110055455 | Post et al. | Mar 2011 | A1 |
20110055468 | Gonzalez et al. | Mar 2011 | A1 |
20110066788 | Eleftheriou et al. | Mar 2011 | A1 |
20110072423 | Fukata | Mar 2011 | A1 |
20110078393 | Lin | Mar 2011 | A1 |
20110083060 | Sakurada et al. | Apr 2011 | A1 |
20110099342 | Ozdemir | Apr 2011 | A1 |
20110107144 | Ohara | May 2011 | A1 |
20110113281 | Zhang et al. | May 2011 | A1 |
20110131365 | Zhang et al. | Jun 2011 | A1 |
20110131444 | Buch et al. | Jun 2011 | A1 |
20110131447 | Prakash et al. | Jun 2011 | A1 |
20110132000 | Deane et al. | Jun 2011 | A1 |
20110138100 | Sinclair | Jun 2011 | A1 |
20110145473 | Maheshwari | Jun 2011 | A1 |
20110161775 | Weingarten | Jun 2011 | A1 |
20110173378 | Filor et al. | Jul 2011 | A1 |
20110190963 | Glassl et al. | Aug 2011 | A1 |
20110191522 | Condict et al. | Aug 2011 | A1 |
20110191649 | Lim et al. | Aug 2011 | A1 |
20110205823 | Hemink et al. | Aug 2011 | A1 |
20110209032 | Choi et al. | Aug 2011 | A1 |
20110213920 | Frost et al. | Sep 2011 | A1 |
20110228601 | Olbrich et al. | Sep 2011 | A1 |
20110231600 | Tanaka et al. | Sep 2011 | A1 |
20110238892 | Tsai et al. | Sep 2011 | A1 |
20110239088 | Post | Sep 2011 | A1 |
20110258496 | Tseng et al. | Oct 2011 | A1 |
20110314219 | Ulrich et al. | Dec 2011 | A1 |
20110320687 | Belluomini et al. | Dec 2011 | A1 |
20120008401 | Katz et al. | Jan 2012 | A1 |
20120011336 | Saika | Jan 2012 | A1 |
20120023144 | Rub | Jan 2012 | A1 |
20120047318 | Yoon et al. | Feb 2012 | A1 |
20120047320 | Yoo et al. | Feb 2012 | A1 |
20120047409 | Post et al. | Feb 2012 | A1 |
20120066450 | Yochai et al. | Mar 2012 | A1 |
20120079348 | Naeimi | Mar 2012 | A1 |
20120079355 | Patapoutian et al. | Mar 2012 | A1 |
20120096217 | Son et al. | Apr 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
20120124046 | Provenzano | May 2012 | A1 |
20120124273 | Goss et al. | May 2012 | A1 |
20120151253 | Horn | Jun 2012 | A1 |
20120151260 | Zimmermann et al. | Jun 2012 | A1 |
20120170365 | Kang et al. | Jul 2012 | A1 |
20120185706 | Sistla et al. | Jul 2012 | A1 |
20120195126 | Roohparvar | Aug 2012 | A1 |
20120213004 | Yun et al. | Aug 2012 | A1 |
20120216085 | Weingarten et al. | Aug 2012 | A1 |
20120236656 | Cometti | Sep 2012 | A1 |
20120239858 | Melik-Martirosian | Sep 2012 | A1 |
20120239976 | Cometti et al. | Sep 2012 | A1 |
20120254686 | Esumi et al. | Oct 2012 | A1 |
20120266011 | Storer et al. | Oct 2012 | A1 |
20120266048 | Chung et al. | Oct 2012 | A1 |
20120278530 | Ebsen | Nov 2012 | A1 |
20120278531 | Horn | Nov 2012 | A1 |
20120284587 | Yu et al. | Nov 2012 | A1 |
20120297113 | Belluomini et al. | Nov 2012 | A1 |
20120311402 | Tseng et al. | Dec 2012 | A1 |
20120317334 | Suzuki et al. | Dec 2012 | A1 |
20120324191 | Strange et al. | Dec 2012 | A1 |
20120331207 | Lassa et al. | Dec 2012 | A1 |
20130007380 | Seekins et al. | Jan 2013 | A1 |
20130007543 | Goss et al. | Jan 2013 | A1 |
20130054881 | Ellis et al. | Feb 2013 | A1 |
20130060994 | Higgins et al. | Mar 2013 | A1 |
20130061019 | Fitzpatrick et al. | Mar 2013 | A1 |
20130073788 | Post et al. | Mar 2013 | A1 |
20130080691 | Weingarten et al. | Mar 2013 | A1 |
20130094289 | Sridharan et al. | Apr 2013 | A1 |
20130100600 | Yin et al. | Apr 2013 | A1 |
20130104005 | Weingarten et al. | Apr 2013 | A1 |
20130124792 | Melik-Martirosian et al. | May 2013 | A1 |
20130151753 | Jeon et al. | Jun 2013 | A1 |
20130198436 | Bandic et al. | Aug 2013 | A1 |
20130205102 | Jones et al. | Aug 2013 | A1 |
20130232290 | Ish et al. | Sep 2013 | A1 |
20130238833 | Vogan et al. | Sep 2013 | A1 |
20130265825 | Lassa | Oct 2013 | A1 |
20130332791 | Chu | Dec 2013 | A1 |
20140036589 | Parthasarathy et al. | Feb 2014 | A1 |
20140059359 | Bahirat | Feb 2014 | A1 |
20140108891 | Strasser et al. | Apr 2014 | A1 |
20140129874 | Zaltsman et al. | May 2014 | A1 |
20140158525 | Greene | Jun 2014 | A1 |
20140181370 | Cohen et al. | Jun 2014 | A1 |
20140208174 | Ellis et al. | Jul 2014 | A1 |
20140372777 | Reller et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
1465203 | Oct 2004 | EP |
1 956 489 | Aug 2008 | EP |
1 990 921 | Nov 2008 | EP |
2 498 259 | Sep 2012 | EP |
2002-532806 | Oct 2002 | JP |
2012129859 | Jul 2012 | JP |
WO 2007036834 | Apr 2007 | WO |
WO 2007080586 | Jul 2007 | WO |
WO 2008121553 | Oct 2008 | WO |
WO 2008121577 | Oct 2008 | WO |
WO 2009028281 | Mar 2009 | WO |
WO 2009032945 | Mar 2009 | WO |
WO 2009042296 | Apr 2009 | WO |
WO 2009058140 | May 2009 | WO |
WO 2009084724 | Jul 2009 | WO |
WO 2009134576 | Nov 2009 | WO |
WO 2011156466 | Dec 2011 | WO |
Entry |
---|
International Search Report and Written Opinion dated Nov. 7, 2014, received in International Patent Application No. PCT/US2014/049732, which corresponds to U.S. Appl. No. 14/334,350, 13 pages (Fitzpatrick). |
International Search Report and Written Opinoin dated Oct. 17, 2014, received in International Patent Application No. PCT/US2014/049734, which corresponds to U.S. Appl. No. 14/332,259, 8 pages (Higgins). |
International Search Report and Written Opinion dated Oct. 23, 2014, received in International Patent Application No. PCT/US2014/049736, which corresponds to U.S. Appl. No. 14/446,249 8 pages (Fitzpatrick). |
International Search Report and Written Opinion dated Nov. 5, 2014, received in International Patent Applciation No. PCT/US2014/049282, which corresponds to U.S. Appl. No. 13/957,407, 12 pages (Fitzpatrick). |
Barr, Introduction to Watchdog Timers, Oct. 2001, 3 pgs. |
Canim, Buffered Bloom ilters on Solid State Storage, ADMS*10, Singapore, Sep. 13-17, 2010, 8 pgs. |
Kang, A Multi-Channel Architecture for High-Performance NAND Flash-Based Storage System, J. Syst. Archit., 53, 9, Sep. 2007, 15 pgs. |
Kim, A Space-Efficient Flash Translation Layer for CompactFlash Systems, May 2002, 10 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, article, 6 pgs. |
Lu, A Forest-structured Bloom Filter with Flash Memory, MSST 2011, Denver, CO, May 23-27, 2011, presentation slides, 25 pgs. |
McLean, Information Technology-AT Attachment with Packet Interface Extension, Aug. 19, 1998, 339 pgs. |
Park, A High Performance Controller for NAND Flash-Based Solid State Disk (NSSD), Feb. 12-16, 2006, 4 pgs. |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074772, which corresponds to U.S. Appl. No. 13/831,218, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 24, 2014, received in International Patent Application No. PCT/US2013/074777, which corresponds to U.S. Appl. No. 13/831,308, 10 pages (George). |
International Search Report and Written Opinion dated Mar. 7, 2014, received in International Patent Application No. PCT/US2013/074779, which corresponds to U.S. Appl. No. 13/831,374, 8 pages (George). |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88133, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88136, Mar. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88146, Feb. 26, 2009, 10 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88154, Feb. 27, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88164, Feb. 13, 2009, 6 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88206, Feb. 18, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88217, Feb, 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88229, Feb. 13, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88232, Feb. 19, 2009, 8 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US08/88236, Feb. 19, 2009, 7 pgs. |
Pliant Technology, International Search Report / Written Opinion, PCT/US2011/028637, Oct. 27, 2011, 11 pgs. |
Pliant Technology, Supplementary ESR, 08866997.3, Feb. 23, 2012, 6 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042764, Aug. 31, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042771, Mar. 4, 2013, 14 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/042775, Sep. 26, 2012, 8 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059447, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059453, Jun. 6, 2013, 12 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/059459, Feb. 14, 2013, 9 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065914, May 23, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065916, Apr. 5, 2013, 7 pgs. |
SanDisk Enterprise IP LLC, International Search Report / Written Opinion, PCT/US2012/065919, Jun. 17, 2013, 8 pgs. |
SanDisk Enterprise IP LLC, Notification of the Decision to Grant a Patent Right for Patent for Invention, CN 200880127623.8, Jul. 4, 2013, 1 pg. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Apr. 18, 2012, 12 pgs. |
SanDisk Enterprise IP LLC, Office Action, CN 200880127623.8, Dec. 31, 2012, 9 pgs. |
SanDisk Enterprise IP LLC, Office Action, JP 2010-540863, Jul. 24, 2012, 3 pgs. |
Watchdog Timer and Power Savin Modes, Microchip Technology Inc., 2005, 14 pgs. |
Zeidman, 1999 Verilog Designer's Library, 9 pgs. |
Cooke, “Introduction to Flash Memory (T1A),” Flash Memory Summit, Aug. 22, 2008, Micron Technology, Inc., 102 pages. |
Gal et al., “Algotithms and Data Structures for Flash Memories,” ACM Computing Surveys, Jun. 2005, vol. 37, No. 2, 30 pages. |
IBM Corporation, “Systems Management, Work Management,” Version 5, Release 4, 9th Edition, Feb. 2006, pp. 1-21. |
O'Brien, “Smart Storage Systems Optimus SAS Enterprise SSD Review,” Smart Storage Systems, Oct. 9, 2012, 44 pages. |
Spanjer, “Flash Management—Why and How?” Smart Modular Technologies, Nov. 2009, http://www.scantee.de/fileadmin/pdf/Smart—Modular/Flash-Management.pdf, 14 pages. |
Texas Instruments, “Power Management IC for Digital Set Top Boxes,” SLVSA10A, Sep. 2009, pp. 1-22. |
International Search Report and Written Opinion dated Dec. 20, 2013, received in PCT/US2013/045282, which corresponds to U.S. Appl. No. 13/493,949, 7 pages (Ellis). |
International Search Report and Written Opinion dated Jun. 12, 2014, received in PCT/US2014/018972, which corresponds to U.S. Appl. No. 13/779,352, 12 pages (Schmier). |
International Search Report and Written Opinion dated May 14, 2014, received in International Patent Application No. PCT/US2014/017168, which corresponds to U.S. Appl. No. 14/076,115, 6 pages (Fitzpatrick). |
International Search Report and Written Opinion dated May 14, 2014, received in International Patent Application No. PCT/US2014/017169, which corresponds to U.S. Appl. No. 14/076,148, 6 pages (Fitzpatrick). |
Ulinktech, “ATA Command Table (in Alphabetic Order),” Feb. 6, 2011, https://web.archive.org/web/2011020606820/http://www.ulinktech.com/downloads/AT, 6 pages. |
International Search Report and Written Opinion dated Aug. 22, 2014, received in International Patent Application No. PCT/US2014/032978, which corresponds to U.S. Appl. No. 14/081,992, 10 pages (Ellis). |
International Search Report dated Mar. 25, 2014, received in International Patent Application No. PCT/US2013/072400, which corresponds to U.S. Appl. No. 13/690,337, 3 pages (Ellis). |
Invitation to Pay Additional Fees dated Jul. 25, 2014, received in International Patent Application No. PCT/US2014/021290, which corresponds to U.S. Appl. No. 13/791,797, 8 pages (Dean). |
International Search Report and Written Opinion dated Jul. 31, 2014, received in International Patent Application No. PCT/US2014/031465, which corresponds to U.S. Appl. No. 13/851,928, 13 pages (Ellis). |
International Search Report and Written Opinion dated Jul. 31, 2014, received in International Patent Application No. PCT/US2014/033876, which corresponds to U.S. Appl. No. 13/861,326, 9 pages (Fitzpatrick). |
Huang et al., “A concatenation scheme of LDPC codes and source codes for flash memories”, EURASIP Journal on Advances in Signal Processing 2012, A SpringerOpen Journal, pp. 1-8. |
Narayanan et al., “Migrating Server Storage to SSDs: Analysis of Tradeoffs,” Computer Systems, Apr. 2009, 12 pages. |
Shiraz et al., “Block Aging Prevention Technique (BAP) for Flash Based Solid State Disks,” 7th International Conference on Emerging Technologies (ICET), Sep. 5, 2011, 6 pages. |
Tai et al, “Prolongation of Lifetime and the Evaluation Method of Dependable SSD,”25 International Symposium on Defect and Fault Tolerance in VLSI Systems, 2010, NJ, USA, 8 pages. |
Tseng et al., “Understanding the Impact of Power Loss on Flash Memory,” DAC'11, Jun. 5-10, 2011, San Diego, California, 6 pages. |
Yimo et al., “WeLe-RAID: A SSD-Based RAID for System Endurance and Performance,” Jan. 2011, Network and Parallel Computing, Springer, 14 pages. |
International Search Report and Written Opinion dated Jan. 9, 2015, received in International Patent Application No. PCT/US2014/049731, which corresponds to U.S. Appl. No. 14/334,324, 9 pages (Fitzpatrick). |
International Search Report and Written Opinion dated Feb. 18, 2015, received in International Patent Application No. PCT/US2014/065401, which corresponds to U.S. Appl. No. 14/082,031, 9 pages (Higgins). |
International Search Report dated Apr. 15, 2014, received in International Patent Application No. PCT/US2013/078340, which corresponds to U.S. Appl. No. 13/746,542, 11 pages (Ellis). |
Online Merriam Webster Dictionary, definition of “Distinct” from Jun. 12, 2011, https://web.archive.org/web/20110612181129/http://www2.merriam-webster.com/cgi-bin/mwdictadu?book=Dictionary&va=distinct. |
Number | Date | Country | |
---|---|---|---|
20140237318 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61767236 | Feb 2013 | US |