1. Field
Aspects herein relate to a battery assembly that includes systems and methods for restraining battery cells for use in electric vehicles.
2. Discussion of Related Art
Electric vehicles are commonly powered by a number of battery cells that are disposed in each vehicle. During use, battery cells for an electric vehicle are typically bundled together as battery modules where walls of each battery cell are in contact with neighbouring battery cells. One reason that a module will commonly include battery cells whose walls are in contact with one another is to minimize the amount of volume that the module occupies. It is volumetrically more space saving for battery cell walls to be in contact, or to be shared. In addition, as ions travel between anodes and cathodes of battery cells, a phenomena called cell swelling may occur. Bundling battery cells closely together provides a compressive effect for the battery cells that serves to mitigate cell swelling, thereby extending cell life. Further, battery cells are commonly bundled together so as to decrease the number of contact terminals required for energy transfer. That is, it is possible to connect cells directly together (e.g., by welding through the walls) when the cells share walls or are in close contact.
In one aspect, a battery cell assembly is provided. The assembly can include a tray having individual receptacles for each battery cell. Rather than being bundled together as a module, battery cells can be substantially restrained from movement and kept spaced from one another while situated in receptacles of a cell tray. Spacing may provide for a method of cooling as well as for enhanced protection and stability of the system. Cell trays may have predetermined dimensions that depend on the type of electric vehicle the tray will be disposed in as well as the number of battery cells to be positioned in the tray. A battery assembly may include both an upper tray and a lower tray for restraining motion of the battery cells.
Battery cells for use in electric vehicles are often transported from one location to another. However, transporting battery cells may, at times, be cumbersome due to the number of cells to be transported. Because battery cells for electric vehicles are typically compact, so that damage to the cells is minimized, such cells are often transported in small numbers (e.g., one at a time). Accordingly, systems and methods are presented for securing together and transporting groups of battery cells together.
Battery cells may also be positioned in different arrangements for different electric vehicles. Hence, cell trays that include receptacles for receiving battery cells may have different configurations to suit varying battery cell arrangements. Aspects further relate to cell trays that are adjustable in configuration so as to accommodate varying arrangements of battery cells.
While in use, the temperature of a battery cell and/or a region around the battery cell may fluctuate. If the temperature of the cell reaches a certain maximum limit, the cell may consequently overheat and could be damaged or experience reduced life. Thus, aspects also relate to cooling and temperature monitoring of the battery cells.
In one illustrative embodiment a battery module is provided. The battery module includes a first battery cell sub-assembly and a second battery cell sub-assembly, the first battery cell sub-assembly disposed adjacent to the second battery cell sub-assembly, wherein each of the first and second battery cell sub-assemblies comprises a lower battery cell tray having a plurality of lower receptacles; an upper battery cell tray having a plurality of upper receptacles; a plurality of battery cells that are restrained by the plurality of lower receptacles of the lower cell tray and the plurality of upper receptacles of the upper cell tray, wherein each cell is disposed in a corresponding receptacle and the plurality of battery cells are spaced from one another to allow for air flow between battery cells; and a plurality of straps for securing the plurality of battery cells together in the plurality of lower and upper receptacles.
In another illustrative embodiment, a battery module adapted to monitor temperature is provided. The battery module includes a plurality of battery cells; an upper battery cell tray having a plurality of upper receptacles; a lower battery cell tray having a plurality of lower receptacles, wherein each of the upper and lower receptacles are constructed and arranged to receive a single battery cell, the upper and lower battery cell trays including a plurality of receiving portions; and at least one thermal sensor for sensing a temperature of a region near to at least one cell of the plurality of battery cells, wherein the at least one cell is disposed in at least one receptacle of the plurality of receptacles and the at least one thermal sensor is positioned by a region of the plurality of receiving portions such that the at least one thermal sensor is disposed adjacent to the at least one cell.
In a further illustrative embodiment, a battery module is provided. The battery module includes a lower battery cell tray having a plurality of lower receptacles; an upper battery cell tray having a plurality of upper receptacles; a plurality of battery cells that are restrained by the plurality of lower receptacles of the lower cell tray and the plurality of upper receptacles of the upper cell tray, wherein each cell is disposed in a corresponding receptacle; and a plurality of straps for securing the plurality of battery cells together, wherein the plurality of straps comprises at least one tightly tensioned strap adapted to firmly fix the plurality of battery cells together in the plurality of receptacles.
In yet another illustrative embodiment, an adjustable cell tray is provided. The adjustable cell tray includes a receiving area having one or more receptacles disposed in a first configuration, each receptacle constructed and arranged to receive a single battery cell, the first configuration being adapted to receive a first plurality of battery cells in a first arrangement, wherein the receiving area is user adjustable from the first configuration to a second configuration that is adapted to receive a second plurality of battery cells in a second arrangement that is different from the first arrangement.
In another illustrative embodiment, a battery assembly is provided. The battery assembly includes a first battery module and a second battery cell module, the first battery cell module disposed adjacent to the second battery module, wherein each of the first and second battery cell modules comprises a battery cell tray having a plurality of receptacles; a plurality of battery cells that are restrained by the plurality of receptacles of the battery cell tray, wherein each cell is disposed in a corresponding receptacle and the plurality of battery cells are spaced from one another to allow for air flow between battery cells; and a plurality of straps for securing the plurality of battery cells together in the plurality of receptacles.
In a different illustrative embodiment, a battery module adapted to monitor temperature is provided. The battery module includes a plurality of battery cells; a battery cell tray having a plurality of receptacles, wherein each of the plurality of receptacles are constructed and arranged to receive a single battery cell, the battery cell tray including a plurality of receiving portions; and at least one thermal sensor for sensing a temperature of a region near to at least one cell of the plurality of battery cells, wherein the at least one cell is disposed in at least one receptacle of the plurality of receptacles and the at least one thermal sensor is positioned by a region of the plurality of receiving portions such that the at least one thermal sensor is disposed adjacent to the at least one cell.
In yet another illustrative embodiment, a battery module is provided. The battery module includes a battery cell tray having a plurality of receptacles; a plurality of battery cells that are restrained by the plurality of receptacles of the battery cell tray, wherein each cell is disposed in a corresponding receptacle; and a plurality of straps for securing the plurality of battery cells together, wherein the plurality of straps comprises at least one tightly tensioned strap adapted to firmly fix the plurality of battery cells together in the plurality of receptacles.
Various embodiments of the present invention provide certain advantages. Not all embodiments of the invention share the same advantages and those that do may not share them under all circumstances.
Further features and advantages of the present invention, as well as the structure of various embodiments of the present invention are described in detail below with reference to the accompanying drawings.
The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. Various embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Battery modules and assemblies thereof restraining battery cells used in electric vehicles (EVs) are discussed herein. Battery modules may include one or more battery cell trays for holding a plurality of battery cells. Battery modules may also include an upper cell tray and a lower cell tray, where both trays can be used to securely position the battery cells in spaced apart relation. In some cases, battery cell trays are in contact with one or more busbars and/or interconnects that electrically connect battery cells and other components of the battery system together. A battery module may include multiple configurations of battery assemblies. In some embodiments, a battery module includes pairs of upper and lower cell trays that are attached to one another so as to bundle more battery cells according to desired configurations.
In one aspect, a battery cell tray has a receiving area with regions that are adapted to receive battery cells. Such regions may include receptacles where each receptacle has space to accommodate placement of a battery cell. In an embodiment, where an upper tray and a lower tray are provided in a battery module, each tray may contain features that substantially restrain translational and rotational motion of individual battery cells upon placement in the tray. In one embodiment, battery cells that are housed in receptacles of an upper tray are restrained in a first direction perpendicular to the plane of the upper tray as well as directions within the plane of the upper tray. Similarly, battery cells housed in receptacles of a lower tray are restrained in a second direction that is perpendicular to the plane of the lower tray where the second direction opposes the first direction. Receptacles in the lower tray may also be designed to restrain battery cells in directions that are within the plane of the lower tray. Additionally, both trays may include features that substantially restrain battery cells in rotational motion. Thus, a battery module having upper and lower trays may serve to restrain motion in 3 rotational directions and 3 translational directions of battery cells that are held between the trays.
In another aspect, battery assemblies may include the ability to monitor the temperature of one or more battery cells or regions in the assembly. As described herein, the ability to monitor the temperature of a battery cell or a region in the assembly may include monitoring the temperature of a space adjacent to a battery cell and/or monitoring the temperature of a portion of a battery cell. In one embodiment, a battery assembly includes a cell tray where a thermal sensor is positioned in a receiving portion of the cell tray such that the thermal sensor is disposed adjacent to a battery cell. In another embodiment, the thermal sensor positioned in the receiving portion is in contact with a battery cell.
In a further aspect, battery assemblies may also include a plurality of straps that are used to secure a plurality of battery cells together. In an embodiment, a tightly tensioned strap is wrapped around a plurality of battery cells that are disposed in receptacles of a battery cell tray such that the battery cells are firmly fixed relative to one another. In another embodiment, a loosely tensioned strap is wrapped around a plurality of battery cells that are disposed in receptacles of a cell tray for a user to conveniently carry the plurality of cells together. In some cases, straps that are both tightly tensioned and loosely tensioned are used to firmly secure a cluster of battery cells together while providing a user with the ability to carry the cluster of battery cells together with relative ease. In some embodiments, loosely tensioned straps are positioned symmetrically with respect to one another so that a cluster of battery cells can be balanced when carried. In more embodiments, cell trays have guide features that serve to securely position tensioned straps such that slippage of the straps is minimized.
In yet another aspect, the receiving area of a battery cell tray is adjustable in configuration. The receiving area of a cell tray may have a first configuration of receptacles for receiving an arrangement of battery cells. The cell tray may be modified from a first configuration of receptacles to a second configuration of receptacles that is adapted to receive a different arrangement of battery cells. In various embodiments, receiving areas of cell trays are adjustable to decrease the number of regions (e.g., receptacles) that are adapted to receive battery cells. In other embodiments, receiving areas of cell trays are adjustable to increase the number of regions (e.g., receptacles) that are adapted to receive battery cells.
Turning to the figures,
Battery cells 300 each have terminals 310. Terminals 310 includes a positive battery terminal and a negative battery terminal.
Battery cells 300 disposed in cell trays may be spaced from one another by openings 350 provided by construction of the receptacles in the trays. In some embodiments, openings 350 may provide space permitting air to flow between battery cells 300. Such air flow between battery cells may result in battery cells disposed in the receptacles to be suitably cooled, such as, while the cells are in use. For example, a cooling device such as a fan may be adapted to blow cooling air into channels created by openings 350 between battery cells. In an embodiment, the presence of openings 350 between battery cells 300 may also mitigate thermal conduction that would otherwise occur between battery cells if they were disposed in closer proximity to one another. Further, openings 350 may also provide space for thermal sensors to be positioned adjacent to or in contact with battery cells 300.
As discussed above, conventional arrangements of battery cells include cells that are bundled together where walls of battery cells are in contact with one another. Bundling of cells may serve to mitigate cell swelling by compression, save volumetric space, and/or decrease the required number of contact terminals. However, battery assemblies described herein where cells are spaced apart from one another may afford a number of advantages. One advantage for cells to be spaced apart is that cooling may occur between each individual cell. Another advantage for cells to be spaced apart is to minimize risk in the event of an undesirable occurrence. For example, if one battery cell experiences a mechanical load that gives rise to a fracture site, having battery cells spaced from one another may reduce the risk that the mechanical load and/or fracture may propagate to other cells.
In some cases, busbars are mechanically connected to regions of a cell tray. In an embodiment, features on the upper tray 100 of
Busbar 420 is disposed at an edge of the upper tray 100 opposite to busbar 400 and also provides an electrical connection between battery cells. Like busbar 400, busbar 420 includes a connection post 422 that provides for a further connection to be made between busbar 420 and a neighboring busbar of a different cell tray. Busbars 410 run parallel to and are located between busbars 400 and 420. Each busbar 410 provides connections between battery cells that are disposed along a row of a corresponding busbar, as shown in
Busbar 420 functions as a current collector interconnect where current originating from a number of rows of battery cells is transferred through the busbar. Due to increased amounts of current travelling through the busbar, restraining features may be provided (not shown) for limiting movement of the busbar. For example, busbar 420 may be attached to one or more boss features. Or, busbar 420 may be screwed and/or snapped into a restraining feature in order to prevent the busbar from substantial vertical movement.
In addition to connection posts that provide a method for busbars of neighboring cell trays to be connected, for some embodiments, additional mechanical features such as clips and/or posts may be included. In some cases, such mechanical features may allow for direct attachment of wiring harness elements (not shown in
So that interconnection elements, busbars, or wiring harness elements are further protected, battery assemblies may include standoff features (not shown in the figures) that serve to provide added mechanical support to battery cells and to prevent a container of the battery assembly from damaging any of the above elements.
Busbars may have any suitable thickness or width. In some embodiments, busbars have a thickness of between about 0.1 mm and about 5 mm. In some embodiments, busbars have a width of between about 2 mm and about 40 mm.
Busbars may include any appropriate conductive material. In some embodiments, busbars include a strip of copper, aluminum, nickel or other suitable electrical conductor. In an embodiment, a copper busbar is Ni-plated. Indeed, busbars may include metallic and/or non-metallic conductors.
As discussed above, a battery assembly may have a number of components.
Straps 600 are assisted into position by guide features 602 that serve to better secure the straps 600 in place. Straps 600 that are secured in guide features 602 are less prone to slippage and provide the ability for battery assemblies to be handled in a relatively easier way as compared to if the guide features were absent. Different types of straps for use with the battery assembly will be discussed further below.
Further depicted in
Upper struts 120 provide spacing between battery cells that are disposed in a column along reference direction L. Upper struts 130, on the other hand, run parallel to reference direction L and provide spacing between battery cells that are disposed in a row along reference direction W. As discussed above, spacing between battery cells may allow for cooling air to flow between cells. Such spacing may also provide a region for thermal sensors to be disposed in close proximity to battery cells, as will be described later.
Upper struts 130 may include attachment sites 132 which provide the ability for other elements (e.g., wires, connectors, busbars) to be connected to the tray. Although not shown in
Another component of the battery assembly, as depicted in
In some embodiments, receptacles 210 of lower tray 200 include support features 240 that provide support for battery cells to remain seated in the receptacles. In some embodiments, support features 240 include a ledge or a shelf portion on which battery cells may rest. In some embodiments, support features 240 include chamfers having radii on leading edges that may be able to facilitate placement of battery cells in receptacles 210. Thus, when a battery cell is disposed in a receptacle 210 and, hence, rests on a support feature 240, upon lifting of the lower tray 200, the battery cell is supported by the receptacle 210.
Lower tray 200 also includes positioning elements 250 that serve to support and position thermal sensors in close proximity to battery cells. Positioning elements 250 used to support thermal sensors will be described in more detail below in
Additionally, lower tray 200 includes an attachment region 260 for attaching the battery assembly to other components. For example, attachment region 260 may be used to attach one cell tray to another cell tray in a larger battery assembly. Alternatively, attachment region 260 may be used to attach a battery assembly to a support fixture of the battery enclosure.
In some embodiments, upper and lower trays are constructed differently from one another such as those depicted in
Continuing on,
Battery cells may be placed between upper and lower tray 100 and 200 by any appropriate method. In an embodiment, battery cells are placed in receptacles of a lower tray 200. Upper tray 100 is subsequently placed over corresponding battery cells such that receptacles of each tray face one another. Conversely, battery cells may be placed in receptacles of an upper tray 100, where a lower tray 200 with receptacles may subsequently be placed over corresponding battery cells. As discussed above, receptacles may also include support features (not explicitly shown the figures) that provide support for battery cells to remain secure.
Although not shown, locating fixtures may be provided between battery cells. In some embodiments, removable or permanent laths and/or battens are used to maintain positioning of battery cells. For example, upon installation of an upper tray on a group of battery cells that are disposed on a lower tray, locating fixtures may be inserted adjacent to one or more battery cells to occupy extra space so that the cells are more suitably or snugly positioned within receptacles.
Receptacles may be spaced apart from one another by an appropriate distance. In some embodiments, receptacles 50 are spaced apart from one another in the reference direction W by a center-to-center distance d1. For example, d1 may range between about 2 cm and about 30 cm. In other embodiments, receptacles 50 are spaced apart from one another in the reference direction L by a center-to-center distance d2. For example, d2 may range between about 2 cm and about 30 cm.
Sidewalls 20 and 30 may be formed with appropriate dimensions. In an embodiment, sidewall 20 has a length of between about 1 cm and about 20 cm, a height of between about 1 cm and 10 cm, and a width of between about 1 cm and about 20 cm. In a further embodiment, sidewall 30 has a length of between about 1 cm and about 20 cm, a height of between about 1 cm and 10 cm, and a width of between about 1 cm and about 20 cm. In some embodiments, the bottom wall 60 extends inward a distance of between about 1 mm and about 5 cm, leaving an opening 70. In various embodiments, opening 70 has an area of between about 1 cm2 and about 100 cm2.
Similarly to that described above for
Although embodiments provided illustrate lower trays to include positioning elements 250, but do not explicitly show upper trays to include positioning elements, it can be appreciated that any suitable positioning element may be incorporated in an upper tray. Accordingly, thermal sensors may be disposed in close proximity to battery cells via positioning elements on an upper tray.
Even further, despite embodiments having both an upper and a lower tray, it can also be appreciated that battery assemblies having both upper and lower trays are not required. Indeed, battery assemblies may include a single cell tray within which battery cells are disposed. For example, a single cell tray may include additional support features that provide attachment and/or harnessing elements that function to secure battery cells to appropriate regions of the cell tray.
It can be appreciated that battery assemblies may include one cell tray, a pair of cell trays or more than a pair of cell trays. In an embodiment, a battery assembly includes a plurality of cell trays disposed side by side to one another where each cell tray houses a number of battery cells. For example, a battery assembly may include a plurality of pairs of upper and lower cell trays where each of the pairs of upper and lower cell trays houses a number of battery cells.
Connecting elements 92 and 94 are electrically conductive, providing a conductive pathway between busbars of neighboring battery assemblies. Accordingly, for example, an electrical current may travel along busbar 400 of cell tray 100 to a busbar of a neighboring cell tray through connecting element 92. Busbars that carry power from battery cells may also connect battery cells housed in different cell trays in a battery assembly. It should be understood that connecting elements may be arranged to connect busbars of cell trays together in any appropriate manner.
In another embodiment, a battery assembly includes a plurality of cell trays disposed in a stacked arrangement where battery cells restrained by a cell tray (or a pair of cell trays) are disposed above battery cells restrained by another cell tray (or another pair of cell trays). Similarly to how battery cells restrained by cell trays that are adjacent to one another may be connected through interconnection elements (e.g., busbars), battery cells housed in a stacked arrangement of cell trays may also be connected by appropriately positioned interconnection elements. Accordingly, the voltage and overall dimensions of battery assemblies can be selectively tailored based on the number of battery cells that are connected together as well as the relative position of battery cells with respect to one another. Indeed, a battery assembly may include a 3-dimensional array of battery cells with multiple battery cells disposed in 3 independent directions.
As indicated above, a battery assembly may include thermal sensors that are positioned adjacent to or in contact with battery cells so as to provide the ability for the temperature of battery cells to be monitored. In some embodiments, one or more thermal sensors are placed along a thermal sensing strip. The strip may be placed in a cell tray such that thermal sensor(s) on the strip are near to battery cells. For example, positioning elements that are located on an upper or lower tray may secure or support a thermal sensing strip so as to be positioned in between battery cells. In some embodiments, thermal sensors are individually placed in close proximity to battery cells without the support of a thermal sensing strip.
Any suitable device that can be used for monitoring temperature may be employed as a thermal sensor. In some embodiments, a thermal sensor is a positive temperature coefficient (PTC) resistive device or a thermistor element where, as temperature of the element increases above a characteristic temperature, the electrical resistance of the element also increases. A printed circuit board may be provided in conjunction with thermistor elements so as to measure changes in electrical resistance in addition to providing communication of thermal sensing to other systems of the vehicle.
In some embodiments, a thermal sensing strip 500 is flexible. Flexibility in a thermal sensing strip 500 may allow for the strip to be placed in a cell tray having one configuration and transferred to another cell tray having a different configuration or shape. Indeed, a thermal sensing strip that is flexible may be easily adjusted to suit varying configurations in cell trays.
However, in other embodiments, a thermal sensing strip 500 is substantially rigid. A substantially rigid thermal sensing strip 500 does not easily change shape and, thus, may be placed in a cell tray where significant mechanical adjustment is not required. In some instances, a thermal sensing strip that is substantially rigid provides convenience in assembly, where placement of thermal sensors in relation to adjacent battery cells is more predictably accomplished than if a more flexible strip were used. For example, the distance between thermal sensors and adjacent battery cells may be more consistent when thermal sensors are located along a more rigid thermal sensing strip as compared to a more flexible thermal sensing strip.
Indeed, in various embodiments, a thermal sensing strip 500 has enough flexibility so as to be adjustable upon placement in cell trays having different configurations, yet may also be rigid enough to maintain its position in a cell tray.
It can be appreciated that thermal sensors disposed between battery cells may be located by positioning elements 250 in upper cell trays and/or lower cell trays. In some cases, an upper and/or lower tray may include small holes so as to permit thermal sensors to be inserted between battery cells in regions that are commonly stagnant in airflow.
In some embodiments, thermal sensing strips are provided with a tightening mechanism and/or are installed with extra slack such that the strips can be easily tightened or loosened if adjustments are required after installation. For example, an improperly installed thermal sensing strip may result in thermal sensors not being positioned appropriately with respect to adjacent battery cells. Tightening/loosening mechanisms and/or extra slack in the thermal sensing strips may permit such adjustment to occur. In some embodiments, thermal sensing strips are placed within through-hole regions (not shown) of the cell tray to ensure appropriate positioning of the strips.
Further, thermal sensing strips may be attached to other thermal sensing strips that are disposed in positioning elements of a cell tray. In some cases, thermal sensing strips are easily inserted into and/or removed from a string of thermal sensing strips. Accordingly, in some embodiments, thermal sensing strips having malfunctioning thermal sensors are replaced with relative ease.
In some embodiments, thermal sensing strips 500 are connected together so that rows of battery cells may be concurrently monitored. For example, strips connected together in a series configuration may be monitored by a battery management system. In some cases, thermal sensing strips include a printed circuit board region that is in communication with a battery management system.
In the assembly, a plurality of thermal sensing strips 500 may be configured and arranged so as to monitor the temperature of a cluster of one or more battery cells in a desired location of a cell tray. In one embodiment, thermal sensing strips 500 are connected to other thermal sensing strips via electrical connections 502 and 504. In an embodiment, thermal sensing strips 500 are connected in a series configuration. In some embodiments, thermal sensing strips 500 are provided in an assembly in a repeating pattern 560. However, it can be appreciated that an assembly of thermal sensing strips used to monitor temperature fluctuations of battery cells may be configured in any suitable manner. Indeed, it is not a requirement for thermal sensing strips to be attached or connected to other thermal sensing strips.
As discussed, thermal sensors or thermal sensing strips to which thermal sensors are attached may be connected to a battery management system. When the temperature of a battery cell or region increases past a certain threshold and, for some embodiments, a corresponding thermal sensor exhibits an increased electrical resistance, a signal is sent to the battery management system. Such a signal may indicate that the temperature of the battery cell or region has risen past a particular value so as to signify the occurrence of an over-temperature event for the battery cell or region.
Alternatively, a battery management system may receive a continuous signal indicative of the temperature of thermal sensors of a thermal sensing strip. Such a signal may be in the form of electrical resistance detection, for example. Once the battery management system detects the temperature of a battery cell or region increases past a particular threshold, the battery management system makes a determination that an over-temperature event has transpired.
As discussed, over-temperature events determined by a battery management system may be detected upon the increase of the temperature adjacent to a battery cell past a particular limit. In some embodiments, an over-temperature event is determined when the temperature adjacent to a battery cell rises over 70 C.
Once the battery management system determines that an over-temperature event has occurred within the battery assembly, a suitable feedback response, such as the triggering of a cooling device, may arise. In addition, depending on the degree of the over-temperature event, the battery management system may trigger an appropriate course of action (or inaction). For example, upon detection of one over-temperature event, a battery management system may activate a cooling system for the battery assembly, such as a fan or other cooling device. In another example, if the battery management system determines that the temperature exceeds a higher threshold, an emergency response may be triggered, such as safety shut down of vehicle components and battery disconnection. In a further example, a battery management system may determine that one or more battery cells are in need of replacement. In such a case, the battery management system may alert a vehicle operator through any suitable manner that replacement of one or more battery cells is required. In yet another example, if the battery management determines that the temperature has exceeded a certain amount, yet is not a cause for concern, a simple warning light may be activated. It can be appreciated that a number of different feedback responses may be elicited by the battery management system upon detection of an over-temperature event.
In a further aspect, configurations of receiving regions in cell trays may be adjustable.
In some embodiments, the number of battery cell regions 750 or receptacles can be decreased. For example, the cell tray 700 of
In some embodiments, to change the configuration of a cell tray 700 from that shown in
In more embodiments, a cell tray 700 is adjusted to increase the number of battery cell regions 750. As an example, the cell tray 700 of
In some embodiments, adjusting the configuration of a cell tray 700 from that shown in
In some embodiments, a cell tray may have a grid configuration. Where a cell tray is configured as a grid, the width W1 of the cell tray may range between about 0.1 m and about 2 m; and the length L1 of the cell tray may range between about 0.1 m and about 2 m. It can be appreciated, however, that a cell tray 700 may have any suitable configuration and is not required to be configured as a grid.
Battery assembly 800 of
In some embodiments, a battery assembly is positioned in a larger container or battery box for sub-assemblies of the battery assembly to be contained together in forming a larger battery assembly. As such, battery cells may be positioned within receptacles of upper and lower cell trays and spaced apart from one another according to how the receptacles are constructed. Battery cells disposed within receptacles of upper and lower cell trays, together with the cell trays, may be grouped into a sub-assembly. Sub-assemblies may be disposed adjacent to one another and may or may not be in a spaced apart relation.
A battery assembly may be referred to as a battery pack and a battery sub-assembly may be referred to as a battery module. That is, a battery module includes one or more battery cell trays where battery cells are disposed within receptacles of the tray(s). In an embodiment, a battery module includes an upper cell tray, a lower cell tray, and a plurality of battery cells disposed in receptacles of the upper and lower cell trays. In another embodiment, a battery module includes a single battery cell tray having receptacles that a plurality of battery cells are disposed within.
Thus, a battery pack may include a plurality of battery modules where each battery module includes battery cells that are spaced apart from one another due to their position within receptacles of cell trays of the module. Any suitable number of battery modules can be grouped together to form a battery pack. In some embodiments, a battery pack includes a container or battery box that is adapted to position battery modules within the container adjacent to one another. In some embodiments, battery modules of a battery pack are spaced apart from one another according to the structure of the container that respective battery modules are positioned within. In other embodiments, battery modules of a battery pack are clustered together in a container such that neighboring battery modules are in contact with one another, yet battery cells within the battery modules are in spaced apart relation.
Although a battery module and a battery sub-assembly may refer to the same grouping of battery cells disposed within receptacles of one or more cell trays, for some embodiments, a battery module may generally include one or more battery sub-assemblies within a battery assembly or a battery pack. That is, a battery module may also include a grouping of sub-assemblies where each sub-assembly includes upper and lower cell trays and a plurality of battery cells disposed within receptacles of the trays.
Cell trays of a battery assembly or sub-assembly may be fastened (e.g., bolted) to a larger battery container for the battery assembly. Any number of fasteners may be used to attach cell trays to a larger battery container. In one example, an upper tray includes 4 fasteners for attaching the tray to a battery container. In another example, a lower tray includes 2 fasteners for attaching the tray to a battery container. It can be appreciated that cell trays may be attached to a battery container by any suitable method.
U.S. Provisional Patent Application No. 61/363,470, filed Jul. 12, 2010, and entitled “Battery Assembly” is incorporated herein by reference in its entirety for all purposes.
Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modification, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 61/363,470, filed Jul. 12, 2010, and entitled “Battery Assembly,” which is incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61363470 | Jul 2010 | US |