A metal cooling plate has been disposed against a battery cell to cool the battery cell. However, the inventors have recognized that a side of the metal cooling plate may have an abrasive residue formed thereon which can undesirably rub against an adjacent battery cell.
Accordingly, the inventors herein have recognized a need for an improved battery cell assembly and a method for manufacturing a cooling fin in the battery cell assembly that minimizes and/or eliminates the above-mentioned deficiency.
A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a cooling fin having a tube and a flexible thermally conductive sheet disposed on the tube. The tube has first, second, and third tube portions fluidly communicating with one another. The first and second tube portions are substantially parallel to one another. The third tube portion is substantially perpendicular to the first and second tube portions and extends between the first and second tube portions. The flexible thermally conductive sheet has first, second, and third sheet portions. The first and second sheet portions are disposed on at least the first and second tube portions, respectively, and the third sheet portion extends between the first and second tube portions. The battery cell assembly further includes a first clamping member configured to clamp the first sheet portion of the flexible thermally conductive sheet to the first tube portion. The battery cell assembly further includes a second clamping member configured to clamp the second sheet portion of the flexible thermally conductive sheet to the second tube portion. The battery cell assembly further includes a battery cell disposed against the third sheet portion of the flexible thermally conductive sheet.
A method for manufacturing a cooling fin of a battery cell assembly in accordance with another exemplary embodiment is provided. The method includes providing a cooling fin having a tube. The tube has first, second, and third tube portions fluidly communicating with one another. The first and second tube portions are substantially parallel to one another. The third tube portion is substantially perpendicular to the first and second tube portions and extends between the first and second tube portions. The method further includes providing a flexible thermally conductive sheet having first, second, and third sheet portions. The method further includes disposing the first and second sheet portions of the flexible thermally conductive sheet on at least the first and second tube portions, respectively, such that the third sheet portion extends between the first and second tube portions. The method further includes clamping the first sheet portion of the flexible thermally conductive sheet to the first tube portion utilizing a first clamping member. The method further includes clamping the second sheet portion of the flexible thermally conductive sheet to the second tube portion utilizing a second clamping member. The method further includes disposing a battery cell against the third sheet portion of the flexible thermally conductive sheet.
Referring to
The rectangular ring-shaped frame members 20, 22 are configured to be coupled together to hold the battery cells 30, 32 and the cooling fins 40, 42 therebetween. In one exemplary embodiment, the rectangular ring-shaped frame members 20, 22 are constructed of plastic. However, in alternative embodiments, the rectangular ring-shaped frame members 20, 22 could be constructed of other materials known to those skilled in the art.
The battery cells 30, 32 are each configured to generate an operational voltage. In one exemplary embodiment, each of the battery cells 30, 32 are pouch-type lithium-ion battery cells having a substantially rectangular peripheral profile. Of course, other types of battery cells known to those skilled in the art could be utilized. Also, in an exemplary embodiment, the battery cells 30, 32 are electrically coupled in series to one another.
The battery cell 30 includes a rectangular-shaped pouch 50 and electrodes 52, 54 extending from the pouch 50. The battery cell 30 is disposed between the battery cell 32 and the cooling fin 40.
The battery cell 32 has an identical structure as the battery cell 30. The battery cell 32 is disposed between the battery cell 30 and the cooling fin 42.
Referring to
Referring to
Referring to
In one exemplary embodiment, the flexible thermally conductive sheet 72 is constructed at least in part utilizing graphite having a thickness in a range of 0.25-0.5 millimeters. Further, the sheet 72 has an in-plane heat conductivity of greater than 200 Watts/meter—Kelvin. Also, in one exemplary embodiment, a side of the flexible thermally conductive sheet 72 contacting the battery cell 30 has a roughness average (RA) in a range of 0.8-4.0 micro inches. Of course, in an alternative embodiment, the flexible thermally conductive sheet 72 could have an RA less than 0.8 or greater than 4.0. Of course, in alternative embodiments, the flexible thermally conductive sheet 72 could have other shapes and sizes known to those skilled in the art. The flexible thermally conductive sheet 72 is configured to transfer heat energy from the battery cell 30 to the tube 70. In particular, for example, the flexible thermally conductive sheet 72 could comprise “Spreadershield SS-400” manufactured by GrafTech International Holdings Inc.
Referring to
In one exemplary embodiment, a structure of each of the clamping members 74-84 is identical to one another. Accordingly, only the structure of the clamping member 74 will be described in greater detail below. In one exemplary embodiment, the clamping member 74 has a C-shaped cross-sectional profile. Further, a diameter of the C-shaped cross-sectional profile is substantially equal to a diameter of the tube 70. Also, a longitudinal length of the clamping member 74 is less than one-fifth of a length of the first tube portion 90.
Referring to
Referring to
Referring to
Referring to
At step 200, an operator provides the cooling fin 40 having the tube 70. The tube 70 has first, second, and third tube portions 90, 92, 94 fluidly communicating with one another. The first and second tube portions 90, 92 are substantially parallel to one another. The third tube portion 94 is substantially perpendicular to the first and second tube portions 90, 92 and extends between the first and second tube portions 90, 92.
At step 202, the operator provides the flexible thermally conductive sheet 72 having first, second, and third sheet portions 150, 152, 154.
At step 204, the operator disposes the first and second sheet portions 150, 152 of the flexible thermally conductive sheet 72 on at least the first and second tube portions 90, 92, respectively, such that the third sheet portion 154 extends between the first and second tube portions 90, 92.
At step 206, the operator clamps the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 utilizing the clamping member 74.
At step 208, the operator clamps the second sheet portion 152 of the flexible thermally conductive sheet 72 to the second tube portion 92 utilizing the clamping member 80.
At step 210, the operator further clamps the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 utilizing the clamping member 76.
At step 212, the operator further clamps the second sheet portion 152 of the flexible thermally conductive sheet 72 to the second tube portion 92 utilizing the clamping member 82.
At step 214, the operator disposes the battery cell 30 against the third sheet portion 154 of the flexible thermally conductive sheet 72.
The battery cell assembly 10 and the method for manufacturing the cooling fin 40 provide a substantial advantage over other battery cell assemblies and methods. In particular, the battery cell assembly 10 and the method provide a technical effect of utilizing a cooling fin 40 with a flexible thermally conductive sheet 72 to extract heat energy from battery cells.
While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
2273244 | Cornelius | Feb 1942 | A |
2391859 | Earl | Jan 1946 | A |
3503558 | Galiulo et al. | Mar 1970 | A |
3522100 | Lindstrom | Jul 1970 | A |
3550681 | Stier et al. | Dec 1970 | A |
3964930 | Reiser | Jun 1976 | A |
4009752 | Wilson | Mar 1977 | A |
4063590 | Mcconnell | Dec 1977 | A |
4298904 | Koenig | Nov 1981 | A |
4322776 | Job et al. | Mar 1982 | A |
4444994 | Baker et al. | Apr 1984 | A |
4518663 | Kodali et al. | May 1985 | A |
4646202 | Hook et al. | Feb 1987 | A |
4701829 | Bricaud et al. | Oct 1987 | A |
4777561 | Murphy et al. | Oct 1988 | A |
4849858 | Grapes et al. | Jul 1989 | A |
4995240 | Barthel et al. | Feb 1991 | A |
5057968 | Morrison | Oct 1991 | A |
5071652 | Jones et al. | Dec 1991 | A |
5214564 | Metzler et al. | May 1993 | A |
5270131 | Diethelm et al. | Dec 1993 | A |
5322745 | Yanagihara et al. | Jun 1994 | A |
5329988 | Juger | Jul 1994 | A |
5346786 | Hodgetts | Sep 1994 | A |
5356735 | Meadows et al. | Oct 1994 | A |
5510203 | Hamada et al. | Apr 1996 | A |
5520976 | Giannetti et al. | May 1996 | A |
5663007 | Ikoma et al. | Sep 1997 | A |
5736836 | Hasegawa et al. | Apr 1998 | A |
5756227 | Suzuki et al. | May 1998 | A |
5937664 | Matsuno et al. | Aug 1999 | A |
6087036 | Rouillard et al. | Jul 2000 | A |
6111387 | Kouzu et al. | Aug 2000 | A |
6176095 | Porter | Jan 2001 | B1 |
6344728 | Kouzu et al. | Feb 2002 | B1 |
6399238 | Oweis et al. | Jun 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6512347 | Hellmann et al. | Jan 2003 | B1 |
6569556 | Zhou et al. | May 2003 | B2 |
6662891 | Misu et al. | Dec 2003 | B2 |
6689510 | Gow et al. | Feb 2004 | B1 |
6696197 | Inagaki et al. | Feb 2004 | B2 |
6703160 | Gao | Mar 2004 | B2 |
6750630 | Inoue et al. | Jun 2004 | B2 |
6775998 | Yuasa et al. | Aug 2004 | B2 |
6780538 | Hamada et al. | Aug 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6826948 | Bhatti et al. | Dec 2004 | B1 |
6878485 | Ovshinsky et al. | Apr 2005 | B2 |
6982131 | Hamada et al. | Jan 2006 | B1 |
7070874 | Blanchet et al. | Jul 2006 | B2 |
7143124 | Garthwaite | Nov 2006 | B2 |
7150935 | Hamada et al. | Dec 2006 | B2 |
7264902 | Horie et al. | Sep 2007 | B2 |
7278389 | Kirakosyan | Oct 2007 | B2 |
7467525 | Ohta et al. | Dec 2008 | B1 |
7531270 | Buck et al. | May 2009 | B2 |
7795845 | Cho | Sep 2010 | B2 |
7797958 | Alston et al. | Sep 2010 | B2 |
7816029 | Takamatsu et al. | Oct 2010 | B2 |
7846573 | Kelly | Dec 2010 | B2 |
7879480 | Yoon et al. | Feb 2011 | B2 |
7883793 | Niedzwiecki et al. | Feb 2011 | B2 |
7976978 | Shin et al. | Jul 2011 | B2 |
7981538 | Kim et al. | Jul 2011 | B2 |
7997367 | Nakamura | Aug 2011 | B2 |
8007915 | Kurachi | Aug 2011 | B2 |
8030886 | Mahalingam et al. | Oct 2011 | B2 |
8067111 | Koetting et al. | Nov 2011 | B2 |
8209991 | Kondou et al. | Jul 2012 | B2 |
20020182493 | Ovshinsky et al. | Dec 2002 | A1 |
20030211384 | Hamada et al. | Nov 2003 | A1 |
20040069474 | Wu et al. | Apr 2004 | A1 |
20050026014 | Fogaing et al. | Feb 2005 | A1 |
20050089750 | Ng et al. | Apr 2005 | A1 |
20050103486 | Demuth et al. | May 2005 | A1 |
20050110460 | Arai et al. | May 2005 | A1 |
20050134038 | Walsh | Jun 2005 | A1 |
20060234119 | Kruger et al. | Oct 2006 | A1 |
20060286450 | Yoon et al. | Dec 2006 | A1 |
20070087266 | Bourke et al. | Apr 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080041079 | Nishijima et al. | Feb 2008 | A1 |
20080182151 | Mizusaki et al. | Jul 2008 | A1 |
20080248338 | Yano et al. | Oct 2008 | A1 |
20090087727 | Harada et al. | Apr 2009 | A1 |
20090104512 | Fassnacht et al. | Apr 2009 | A1 |
20090155680 | Maguire et al. | Jun 2009 | A1 |
20090186265 | Koetting et al. | Jul 2009 | A1 |
20090258288 | Weber et al. | Oct 2009 | A1 |
20090280395 | Nemesh et al. | Nov 2009 | A1 |
20090325051 | Niedzwiecki et al. | Dec 2009 | A1 |
20090325052 | Koetting et al. | Dec 2009 | A1 |
20090325054 | Payne et al. | Dec 2009 | A1 |
20090325055 | Koetting et al. | Dec 2009 | A1 |
20100112419 | Jang et al. | May 2010 | A1 |
20100203376 | Choi et al. | Aug 2010 | A1 |
20100209760 | Yoshihara et al. | Aug 2010 | A1 |
20100262791 | Gilton | Oct 2010 | A1 |
20100275619 | Koetting et al. | Nov 2010 | A1 |
20100276132 | Payne | Nov 2010 | A1 |
20100279152 | Payne | Nov 2010 | A1 |
20100279154 | Koetting et al. | Nov 2010 | A1 |
20110027640 | Gadawski et al. | Feb 2011 | A1 |
20110041525 | Kim et al. | Feb 2011 | A1 |
20110052959 | Koetting et al. | Mar 2011 | A1 |
20120082880 | Koetting et al. | Apr 2012 | A1 |
20130045410 | Yang | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1577966 | Sep 2005 | EP |
1852925 | Nov 2007 | EP |
08111244 | Apr 1996 | JP |
09129213 | May 1997 | JP |
09219213 | Aug 1997 | JP |
2001105843 | Apr 2001 | JP |
2002038033 | Feb 2002 | JP |
2002319383 | Oct 2002 | JP |
2003188323 | Jul 2003 | JP |
2005126315 | May 2005 | JP |
2005349955 | Dec 2005 | JP |
2006139928 | Jun 2006 | JP |
2007305425 | Nov 2007 | JP |
2008054379 | Mar 2008 | JP |
2008062875 | Mar 2008 | JP |
2008080995 | Apr 2008 | JP |
2008159440 | Jul 2008 | JP |
2009009889 | Jan 2009 | JP |
2009054297 | Mar 2009 | JP |
20050092605 | Sep 2005 | KR |
100637472 | Oct 2006 | KR |
100765659 | Oct 2007 | KR |
20080047641 | May 2008 | KR |
20090082212 | Jul 2009 | KR |
100921346 | Oct 2009 | KR |
2006101343 | Sep 2006 | WO |
2007007503 | Jan 2007 | WO |
2007115743 | Oct 2007 | WO |
2008111162 | Sep 2008 | WO |
2009073225 | Jun 2009 | WO |
WO 2011146919 | Nov 2011 | WO |
Entry |
---|
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>. |
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages. |
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages. |
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed Mar. 29, 2012. |
U.S. Appl. No. 13/475,963, filed May 19, 2012 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly. |
U.S. Appl. No. 13/586,960, filed Aug. 16, 2012 entitled Battery Module. |
U.S. Appl. No. 13/587,030, filed Aug. 16, 2012 entitled Battery Module and Method for Assembling the Battery Module. |
U.S. Appl. No. 13/766,162, filed Feb. 13, 2013 entitled Battery Cell Assembly and Method for Manufacturing the Battery Cell Assembly. |
U.S. Appl. No. 13/686,018, filed Nov. 27, 2012 entitled Battery System and Method for Cooling a Battery Cell Assembly. |
Number | Date | Country | |
---|---|---|---|
20140308558 A1 | Oct 2014 | US |