Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly

Information

  • Patent Grant
  • 9647292
  • Patent Number
    9,647,292
  • Date Filed
    Friday, April 12, 2013
    11 years ago
  • Date Issued
    Tuesday, May 9, 2017
    7 years ago
Abstract
A battery cell assembly having a cooling fin with a tube and a flexible thermally conductive sheet disposed on the tube is provided. The tube has first, second, and third tube portions. The sheet has first, second, and third sheet portions. The first and second sheet portions are disposed on at least the first and second tube portions, respectively, and the third sheet portion extends between the first and second tube portions. The assembly further includes a first clamping member clamping the first sheet portion to the first tube portion, and a second clamping member clamping the second sheet portion to the second tube portion. The assembly further includes a battery cell disposed against the third sheet portion.
Description
BACKGROUND

A metal cooling plate has been disposed against a battery cell to cool the battery cell. However, the inventors have recognized that a side of the metal cooling plate may have an abrasive residue formed thereon which can undesirably rub against an adjacent battery cell.


Accordingly, the inventors herein have recognized a need for an improved battery cell assembly and a method for manufacturing a cooling fin in the battery cell assembly that minimizes and/or eliminates the above-mentioned deficiency.


SUMMARY

A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a cooling fin having a tube and a flexible thermally conductive sheet disposed on the tube. The tube has first, second, and third tube portions fluidly communicating with one another. The first and second tube portions are substantially parallel to one another. The third tube portion is substantially perpendicular to the first and second tube portions and extends between the first and second tube portions. The flexible thermally conductive sheet has first, second, and third sheet portions. The first and second sheet portions are disposed on at least the first and second tube portions, respectively, and the third sheet portion extends between the first and second tube portions. The battery cell assembly further includes a first clamping member configured to clamp the first sheet portion of the flexible thermally conductive sheet to the first tube portion. The battery cell assembly further includes a second clamping member configured to clamp the second sheet portion of the flexible thermally conductive sheet to the second tube portion. The battery cell assembly further includes a battery cell disposed against the third sheet portion of the flexible thermally conductive sheet.


A method for manufacturing a cooling fin of a battery cell assembly in accordance with another exemplary embodiment is provided. The method includes providing a cooling fin having a tube. The tube has first, second, and third tube portions fluidly communicating with one another. The first and second tube portions are substantially parallel to one another. The third tube portion is substantially perpendicular to the first and second tube portions and extends between the first and second tube portions. The method further includes providing a flexible thermally conductive sheet having first, second, and third sheet portions. The method further includes disposing the first and second sheet portions of the flexible thermally conductive sheet on at least the first and second tube portions, respectively, such that the third sheet portion extends between the first and second tube portions. The method further includes clamping the first sheet portion of the flexible thermally conductive sheet to the first tube portion utilizing a first clamping member. The method further includes clamping the second sheet portion of the flexible thermally conductive sheet to the second tube portion utilizing a second clamping member. The method further includes disposing a battery cell against the third sheet portion of the flexible thermally conductive sheet.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a battery cell assembly in accordance with an exemplary embodiment;



FIG. 2 is an exploded view of the battery cell assembly of FIG. 1;



FIG. 3 is a schematic of a cooling fin utilized in the battery cell assembly of FIG. 1;



FIG. 4 is an exploded view of the cooling fin of FIG. 3;



FIG. 5 is a schematic of a tube utilized in the cooling fin of FIG. 3;



FIG. 6 is a schematic of a flexible thermally conductive sheet utilized in the cooling fin of FIG. 3; and



FIG. 7 is a flowchart of a method for manufacturing the cooling fin of FIG. 3 in accordance with another exemplary embodiment.





DETAILED DESCRIPTION

Referring to FIGS. 1-3, a battery cell assembly 10 in accordance with an exemplary embodiment is provided. The battery cell assembly 10 includes rectangular ring-shaped frame members 20, 22, battery cells 30, 32, and cooling fins 40, 42. An advantage of the battery cell assembly 10 is that the assembly 10 utilizes the cooling fin 40 having a flexible thermally conductive sheet 72 which is easily manufactured and has excellent thermal characteristics for conducting heat energy from the battery cells to a tube 70 of the cooling fin 40.


The rectangular ring-shaped frame members 20, 22 are configured to be coupled together to hold the battery cells 30, 32 and the cooling fins 40, 42 therebetween. In one exemplary embodiment, the rectangular ring-shaped frame members 20, 22 are constructed of plastic. However, in alternative embodiments, the rectangular ring-shaped frame members 20, 22 could be constructed of other materials known to those skilled in the art.


The battery cells 30, 32 are each configured to generate an operational voltage. In one exemplary embodiment, each of the battery cells 30, 32 are pouch-type lithium-ion battery cells having a substantially rectangular peripheral profile. Of course, other types of battery cells known to those skilled in the art could be utilized. Also, in an exemplary embodiment, the battery cells 30, 32 are electrically coupled in series to one another.


The battery cell 30 includes a rectangular-shaped pouch 50 and electrodes 52, 54 extending from the pouch 50. The battery cell 30 is disposed between the battery cell 32 and the cooling fin 40.


The battery cell 32 has an identical structure as the battery cell 30. The battery cell 32 is disposed between the battery cell 30 and the cooling fin 42.


Referring to FIGS. 2-6, the cooling fin 40 is disposed between the rectangular ring-shaped member 20 and the battery cell 30 and is configured to transfer heat energy from the battery cell 30 to a refrigerant or a liquid flowing through the cooling fin 40 to cool the battery cell 30. The cooling fin 40 includes a tube 70, a flexible thermally conductive sheet 72, and clamping members 74, 76, 78, 80, 82, 84.


Referring to FIG. 5, the tube 70 is configured to transfer at least a portion of the heat energy from the battery cell 30 to a liquid or a refrigerant flowing through the tube 70. The tube 70 includes a first tube portion 90, a second tube portion 92, a third tube portion 94, a fourth tube portion 96, a fifth tube portion 98, the sixth tube portion 100, and a seventh tube portion 102 that fluidly communicate with one another. The first and second tube portions and 90, 92 are substantially parallel to one another. The third tube portion 94 is substantially perpendicular to the first and second tube portions 90, 92 and extends between the first and second tube portions 90, 92. The fourth and fifth tube portions 96, 98 extend from the first and second tube portions 90, 92, respectively, and are substantially perpendicular to the first and second tube portions 90, 92, respectively. The sixth and seventh tube portions 100, 102 extend from the fourth and fifth tube portions 96, 98, respectively, and are substantially perpendicular to the fourth and fifth tube portions 96, 98, respectively. In one exemplary embodiment, the tube 70 is constructed of aluminum. However, the tube 70 could be constructed of other materials known to those skilled in the art.


Referring to FIGS. 3 and 6, the flexible thermally conductive sheet 72 is configured to transfer heat energy from the battery cell 30 to the tube 70. The flexible thermally conductive sheet 72 includes a first sheet portion 150, a second sheet portion 152, and a third sheet portion 154. As shown, the first and second sheet portions 150, 152 are coupled to opposite sides of the third sheet portion 154 and extend substantially parallel to one another.


In one exemplary embodiment, the flexible thermally conductive sheet 72 is constructed at least in part utilizing graphite having a thickness in a range of 0.25-0.5 millimeters. Further, the sheet 72 has an in-plane heat conductivity of greater than 200 Watts/meter—Kelvin. Also, in one exemplary embodiment, a side of the flexible thermally conductive sheet 72 contacting the battery cell 30 has a roughness average (RA) in a range of 0.8-4.0 micro inches. Of course, in an alternative embodiment, the flexible thermally conductive sheet 72 could have an RA less than 0.8 or greater than 4.0. Of course, in alternative embodiments, the flexible thermally conductive sheet 72 could have other shapes and sizes known to those skilled in the art. The flexible thermally conductive sheet 72 is configured to transfer heat energy from the battery cell 30 to the tube 70. In particular, for example, the flexible thermally conductive sheet 72 could comprise “Spreadershield SS-400” manufactured by GrafTech International Holdings Inc.


Referring to FIGS. 3 and 4, the clamping members 74, 76, 78 are configured to configured to clamp the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 of the tube 70 after the first sheet portion 150 is disposed on the first tube portion 90. Similarly, the clamping members 80, 82, 84 are configured to clamp the second sheet portion 152 of the flexible thermally conductive sheet 72 to the second tube portion 92 of the tube 70 after the second sheet portion 152 is disposed on the second tube portion 92. In one exemplary embodiment, the clamping members 74-84 are constructed of plastic. Of course, in alternative embodiments, the clamping members 74-84 could be constructed of other materials such as steel or aluminum for example. An advantage of the clamping members 74-84 is that the clamping members 74-84 allow an operator to quickly and effectively couple the flexible thermally conductive sheet 72 to the tube 70. In an exemplary embodiment, six clamping members utilized to clamp the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 of the tube 70. However, in an alternative embodiment, the number of clamping members and the position of the clamping members can be changed as long as the flexible thermally conductive sheet 72 is sufficiently coupled to the tube 70. For example, the number of clamping members could be less than six or greater than six.


In one exemplary embodiment, a structure of each of the clamping members 74-84 is identical to one another. Accordingly, only the structure of the clamping member 74 will be described in greater detail below. In one exemplary embodiment, the clamping member 74 has a C-shaped cross-sectional profile. Further, a diameter of the C-shaped cross-sectional profile is substantially equal to a diameter of the tube 70. Also, a longitudinal length of the clamping member 74 is less than one-fifth of a length of the first tube portion 90.


Referring to FIGS. 2 and 6, the third sheet portion 154 extends between the first sheet portion 150 and the second sheet portion 152 and is sized to be disposed against a generally rectangular-shaped side surface of the battery cell 30 and to cover substantially the entire generally rectangular-shaped side surface of the battery cell 30.


Referring to FIG. 2, the cooling fin 42 has an identical structure as the structure of the cooling fin 40. The cooling fin 42 is disposed on the rectangular ring-shaped frame member 22 and against the battery cell 32 and extracts heat energy from the battery cell 32 to a refrigerant or a liquid flowing through the cooling fin 42 to cool the battery cell 32.


Referring to FIGS. 2, 3 and 5, during operation, a refrigerant or a liquid enters the sixth tube portion 100 from a source device (not shown) and flows through the fourth tube portion 96, the first tube portion 90, the third tube portion 94, the second tube portion 92, the fifth tube portion 98, and the seventh tube portion 102 and exits the seventh tube portion 102 to a receiving device. Heat energy generated by the battery cell 30 is conducted through the flexible thermally conductive sheet 72 to the tube 70. Further, heat energy generated by the battery cell 32 is conducted through a flexible thermally conductive sheet of the cooling fin 42 to a tube of the cooling fin 42. Further, the heat energy in the tube of the cooling fin 42 is conducted into the refrigerant or the liquid flowing through the respective tube. Thus, the refrigerant or the liquid flowing through the tube 70 and the tube of the cooling fin 42 absorb the heat energy from the battery cells 30, 32 to reduce a temperature of the battery cells 30, 32.


Referring to FIGS. 2-7, a flowchart of a method for manufacturing the cooling fin 40 in accordance with another exemplary embodiment will now be explained.


At step 200, an operator provides the cooling fin 40 having the tube 70. The tube 70 has first, second, and third tube portions 90, 92, 94 fluidly communicating with one another. The first and second tube portions 90, 92 are substantially parallel to one another. The third tube portion 94 is substantially perpendicular to the first and second tube portions 90, 92 and extends between the first and second tube portions 90, 92.


At step 202, the operator provides the flexible thermally conductive sheet 72 having first, second, and third sheet portions 150, 152, 154.


At step 204, the operator disposes the first and second sheet portions 150, 152 of the flexible thermally conductive sheet 72 on at least the first and second tube portions 90, 92, respectively, such that the third sheet portion 154 extends between the first and second tube portions 90, 92.


At step 206, the operator clamps the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 utilizing the clamping member 74.


At step 208, the operator clamps the second sheet portion 152 of the flexible thermally conductive sheet 72 to the second tube portion 92 utilizing the clamping member 80.


At step 210, the operator further clamps the first sheet portion 150 of the flexible thermally conductive sheet 72 to the first tube portion 90 utilizing the clamping member 76.


At step 212, the operator further clamps the second sheet portion 152 of the flexible thermally conductive sheet 72 to the second tube portion 92 utilizing the clamping member 82.


At step 214, the operator disposes the battery cell 30 against the third sheet portion 154 of the flexible thermally conductive sheet 72.


The battery cell assembly 10 and the method for manufacturing the cooling fin 40 provide a substantial advantage over other battery cell assemblies and methods. In particular, the battery cell assembly 10 and the method provide a technical effect of utilizing a cooling fin 40 with a flexible thermally conductive sheet 72 to extract heat energy from battery cells.


While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A battery cell assembly, comprising: a cooling fin having a tube and a flexible thermally conductive graphite sheet disposed on the tube;the tube having first, second, and third tube portions fluidly communicating with one another, the first and second tube portions being substantially parallel to one another, the third tube portion being substantially perpendicular to the first and second tube portions and extending between the first and second tube portions;the flexible thermally conductive graphite sheet having first, second, and third sheet portions; the flexible thermally conductive graphite sheet further having a first side and a second side; the third sheet portion being coupled to and extending between the first and second sheet portions, the first and second tube portions being disposed on the first and second sheet portions, respectively, on the first side of the flexible thermally conductive graphite sheet;a first plastic C-shaped clamping member contacting the first tube portion and the first sheet portion on the second side of the flexible thermally conductive graphite sheet to clamp the first sheet portion to the first tube portion, a length of the first plastic C-shaped clamping member being less than one-fifth of a length of the first tube portion;a second plastic C-shaped clamping member contacting the first tube portion and the first sheet portion on the second side of the flexible thermally conductive graphite sheet to further clamp the first sheet portion to the first tube portion, the second plastic C-shaped clamping member being separated from and disposed away from the first plastic C-shaped clamping member a first distance, a length of the second plastic C-shaped clamping member being substantially equal to the length of the first plastic C-shaped clamping member;a third plastic C-shaped clamping member contacting the second tube portion and the second sheet portion on the second side of the flexible thermally conductive graphite sheet to clamp the second sheet portion to the second tube portion, a length of the third plastic C-shaped clamping member being less than one-fifth of a length of the second tube portion;a fourth plastic C-shaped clamping member contacting the second tube portion and the second sheet portion on the second side of the flexible thermally conductive graphite sheet to further clamp the second sheet portion to the second tube portion, the fourth plastic C-shaped clamping member being separated from and disposed away from the third plastic C-shaped clamping member a second distance, a length of the fourth plastic C-shaped clamping member being substantially equal to the length of the third plastic C-shaped clamping member;a battery cell disposed against the third sheet portion of the flexible thermally conductive graphite sheet; andfirst and second frame members being coupled together that hold the cooling tin and the battery cell therebetween.
  • 2. The battery cell assembly of claim 1, wherein a diameter of the first plastic C-shaped clamping member is substantially equal to a diameter of the tube.
  • 3. The battery cell assembly of claim 1, wherein the flexible thermally conductive sheet is configured to transfer heat energy from the battery cell to the tube.
  • 4. The battery cell assembly of claim 3, wherein the tube is configured to transfer at least a portion of the heat energy to a liquid or a refrigerant flowing through the tube.
  • 5. The battery cell assembly of claim 1, wherein the tube is an aluminum tube.
  • 6. The battery cell assembly of claim 1, wherein the first sheet portion is sized to cover substantially an entire generally rectangular-shaped side surface of the battery cell.
  • 7. The battery cell assembly of claim 1, wherein the flexible thermally conductive sheet has a roughness average in a range of 0.8-4.0 micro-inches.
  • 8. The battery cell assembly of claim 1, further comprising fourth and fifth tube portions extending from the first and second tube portions, respectively, the fourth and fifth tube portions being substantially perpendicular to the first and second tube portions, respectively.
  • 9. The battery cell assembly of claim 8, further comprising sixth and seventh tube portions extending from the fourth and fifth tube portions, respectively, the sixth and seventh tube portions being substantially perpendicular to the fourth and fifth tube portions, respectively.
  • 10. A method for manufacturing a cooling fin of a battery cell assembly, comprising: providing a cooling fin having a tube; the tube having first, second, and third tube portions fluidly communicating with one another, the first and second tube portions being substantially parallel to one another, the third tube portion being substantially perpendicular to the first and second tube portions and extending between the first and second tube portions;providing a flexible thermally conductive sheet having first, second, and third sheet portions, the flexible thermally conductive sheet further having a first side and a second side; the third sheet portion being coupled to and extending between the first and second sheet portions;disposing the first and second tube portions on the first and second sheet portions, respectively, of the flexible thermally conductive sheet on the first side of the flexible thermally conductive sheet;clamping the first sheet portion of the flexible thermally conductive sheet to the first tube portion utilizing a first and second C-shaped plastic clamping members such that the first and second C-shaped plastic clamping members contact the first tube portion and the first sheet portion on the second side of the flexible thermally conductive sheet, the first C-shaped plastic clamping member being separated from and disposed away from the second C-shaped plastic clamping member a first distance, a longitudinal length of the first C-shaped plastic clamping member being less than one-fifth of a length of the first tube portion;clamping the second sheet portion of the flexible thermally conductive sheet to the second tube portion utilizing third and fourth C-shaped plastic clamping members such that the third and fourth C-shaped plastic clamping members contact the second tube portion and the second sheet portion on the second side of the flexible thermally conductive sheet, the third C-shaped plastic clamping member being separated from and disposed away from the fourth C-shaped plastic clamping member a second distance, a longitudinal length of the third C-shaped plastic clamping member being less than one-fifth of a length of the second tube portion; anddisposing a battery cell against the third sheet portion of the flexible thermally conductive sheet; andcoupling first and second frame members together such that the cooling fin and the battery cell are held between the first and second frame members.
  • 11. The method of claim 10, wherein a diameter of the first C-shaped plastic clamping member is substantially equal to a diameter of tube.
  • 12. A battery cell assembly, comprising: a cooling fin having a tube and a flexible thermally conductive sheet disposed on the tube;the tube having first, second, and third tube portions fluidly communicating with one another, the first and second tube portions being substantially parallel to one another, the third tube portion being substantially perpendicular to the first and second tube portions and extending between the first and second tube portions;the flexible thermally conductive sheet having first, second, and third sheet portions; the flexible thermally conductive sheet further having a first side and a second side; the third sheet portion being coupled to and extending between the first and second sheet portions, the first and second tube portions being disposed on the first and second sheet portions, respectively, on the first side of the flexible thermally conductive sheet;a first C-shaped clamping member contacting the first tube portion and the first sheet portion on the second side of the flexible thermally conductive sheet to clamp the first sheet portion to the first tube portion, a length of the first C-shaped clamping member being less than one-fifth of a length of the first tube portion;a second C-shaped clamping member contacting the first tube portion and the first sheet portion on the second side of the flexible thermally conductive sheet to further clamp the first sheet portion to the first tube portion, the second C-shaped clamping member being separated from and disposed away from the first C-shaped clamping member a first distance, a length of the second C-shaped clamping member being substantially equal to the length of the first C-shaped clamping member,a third C-shaped clamping member contacting the second tube portion and the second sheet portion on the second side of the flexible thermally conductive sheet to clamp the second sheet portion to the second tube portion, a length of the third C-shaped clamping member being less than one-fifth of a length of the second tube portion;a fourth C-shaped clamping member contacting the second tube portion and the second sheet portion on the second side of the flexible thermally conductive sheet to further clamp the second sheet portion to the second tube portion, the fourth C-shaped clamping member being separated from and disposed away from the third C-shaped clamping member a second distance, a length of the fourth C-shaped clamping member being substantially equal to the length of the third C-shaped clamping member; anda battery cell disposed against the third sheet portion of the flexible thermally conductive sheet.
  • 13. The battery cell assembly of claim 12, wherein the flexible thermally conductive sheet is a flexible thermally conductive graphite sheet, the first sheet portion is a first arcuate-shaped sheet portion that receives the first tube portion thereon, and the second sheet portion is a second arcuate-shaped sheet portion that receives the second tube portion thereon.
  • 14. The battery cell assembly of claim 12, further comprising first and second rectangular ring-shaped frame members being coupled together that hold the cooling fin and the battery cell therebetween.
US Referenced Citations (108)
Number Name Date Kind
2273244 Cornelius Feb 1942 A
2391859 Earl Jan 1946 A
3503558 Galiulo et al. Mar 1970 A
3522100 Lindstrom Jul 1970 A
3550681 Stier et al. Dec 1970 A
3964930 Reiser Jun 1976 A
4009752 Wilson Mar 1977 A
4063590 Mcconnell Dec 1977 A
4298904 Koenig Nov 1981 A
4322776 Job et al. Mar 1982 A
4444994 Baker et al. Apr 1984 A
4518663 Kodali et al. May 1985 A
4646202 Hook et al. Feb 1987 A
4701829 Bricaud et al. Oct 1987 A
4777561 Murphy et al. Oct 1988 A
4849858 Grapes et al. Jul 1989 A
4995240 Barthel et al. Feb 1991 A
5057968 Morrison Oct 1991 A
5071652 Jones et al. Dec 1991 A
5214564 Metzler et al. May 1993 A
5270131 Diethelm et al. Dec 1993 A
5322745 Yanagihara et al. Jun 1994 A
5329988 Juger Jul 1994 A
5346786 Hodgetts Sep 1994 A
5356735 Meadows et al. Oct 1994 A
5510203 Hamada et al. Apr 1996 A
5520976 Giannetti et al. May 1996 A
5663007 Ikoma et al. Sep 1997 A
5736836 Hasegawa et al. Apr 1998 A
5756227 Suzuki et al. May 1998 A
5937664 Matsuno et al. Aug 1999 A
6087036 Rouillard et al. Jul 2000 A
6111387 Kouzu et al. Aug 2000 A
6176095 Porter Jan 2001 B1
6344728 Kouzu et al. Feb 2002 B1
6399238 Oweis et al. Jun 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6512347 Hellmann et al. Jan 2003 B1
6569556 Zhou et al. May 2003 B2
6662891 Misu et al. Dec 2003 B2
6689510 Gow et al. Feb 2004 B1
6696197 Inagaki et al. Feb 2004 B2
6703160 Gao Mar 2004 B2
6750630 Inoue et al. Jun 2004 B2
6775998 Yuasa et al. Aug 2004 B2
6780538 Hamada et al. Aug 2004 B2
6821671 Hinton et al. Nov 2004 B2
6826948 Bhatti et al. Dec 2004 B1
6878485 Ovshinsky et al. Apr 2005 B2
6982131 Hamada et al. Jan 2006 B1
7070874 Blanchet et al. Jul 2006 B2
7143124 Garthwaite Nov 2006 B2
7150935 Hamada et al. Dec 2006 B2
7264902 Horie et al. Sep 2007 B2
7278389 Kirakosyan Oct 2007 B2
7467525 Ohta et al. Dec 2008 B1
7531270 Buck et al. May 2009 B2
7795845 Cho Sep 2010 B2
7797958 Alston et al. Sep 2010 B2
7816029 Takamatsu et al. Oct 2010 B2
7846573 Kelly Dec 2010 B2
7879480 Yoon et al. Feb 2011 B2
7883793 Niedzwiecki et al. Feb 2011 B2
7976978 Shin et al. Jul 2011 B2
7981538 Kim et al. Jul 2011 B2
7997367 Nakamura Aug 2011 B2
8007915 Kurachi Aug 2011 B2
8030886 Mahalingam et al. Oct 2011 B2
8067111 Koetting et al. Nov 2011 B2
8209991 Kondou et al. Jul 2012 B2
20020182493 Ovshinsky et al. Dec 2002 A1
20030211384 Hamada et al. Nov 2003 A1
20040069474 Wu et al. Apr 2004 A1
20050026014 Fogaing et al. Feb 2005 A1
20050089750 Ng et al. Apr 2005 A1
20050103486 Demuth et al. May 2005 A1
20050110460 Arai et al. May 2005 A1
20050134038 Walsh Jun 2005 A1
20060234119 Kruger et al. Oct 2006 A1
20060286450 Yoon et al. Dec 2006 A1
20070087266 Bourke et al. Apr 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080041079 Nishijima et al. Feb 2008 A1
20080182151 Mizusaki et al. Jul 2008 A1
20080248338 Yano et al. Oct 2008 A1
20090087727 Harada et al. Apr 2009 A1
20090104512 Fassnacht et al. Apr 2009 A1
20090155680 Maguire et al. Jun 2009 A1
20090186265 Koetting et al. Jul 2009 A1
20090258288 Weber et al. Oct 2009 A1
20090280395 Nemesh et al. Nov 2009 A1
20090325051 Niedzwiecki et al. Dec 2009 A1
20090325052 Koetting et al. Dec 2009 A1
20090325054 Payne et al. Dec 2009 A1
20090325055 Koetting et al. Dec 2009 A1
20100112419 Jang et al. May 2010 A1
20100203376 Choi et al. Aug 2010 A1
20100209760 Yoshihara et al. Aug 2010 A1
20100262791 Gilton Oct 2010 A1
20100275619 Koetting et al. Nov 2010 A1
20100276132 Payne Nov 2010 A1
20100279152 Payne Nov 2010 A1
20100279154 Koetting et al. Nov 2010 A1
20110027640 Gadawski et al. Feb 2011 A1
20110041525 Kim et al. Feb 2011 A1
20110052959 Koetting et al. Mar 2011 A1
20120082880 Koetting et al. Apr 2012 A1
20130045410 Yang Feb 2013 A1
Foreign Referenced Citations (31)
Number Date Country
1577966 Sep 2005 EP
1852925 Nov 2007 EP
08111244 Apr 1996 JP
09129213 May 1997 JP
09219213 Aug 1997 JP
2001105843 Apr 2001 JP
2002038033 Feb 2002 JP
2002319383 Oct 2002 JP
2003188323 Jul 2003 JP
2005126315 May 2005 JP
2005349955 Dec 2005 JP
2006139928 Jun 2006 JP
2007305425 Nov 2007 JP
2008054379 Mar 2008 JP
2008062875 Mar 2008 JP
2008080995 Apr 2008 JP
2008159440 Jul 2008 JP
2009009889 Jan 2009 JP
2009054297 Mar 2009 JP
20050092605 Sep 2005 KR
100637472 Oct 2006 KR
100765659 Oct 2007 KR
20080047641 May 2008 KR
20090082212 Jul 2009 KR
100921346 Oct 2009 KR
2006101343 Sep 2006 WO
2007007503 Jan 2007 WO
2007115743 Oct 2007 WO
2008111162 Sep 2008 WO
2009073225 Jun 2009 WO
WO 2011146919 Nov 2011 WO
Non-Patent Literature Citations (20)
Entry
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>.
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages.
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages.
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages.
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed Mar. 29, 2012.
U.S. Appl. No. 13/475,963, filed May 19, 2012 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly.
U.S. Appl. No. 13/586,960, filed Aug. 16, 2012 entitled Battery Module.
U.S. Appl. No. 13/587,030, filed Aug. 16, 2012 entitled Battery Module and Method for Assembling the Battery Module.
U.S. Appl. No. 13/766,162, filed Feb. 13, 2013 entitled Battery Cell Assembly and Method for Manufacturing the Battery Cell Assembly.
U.S. Appl. No. 13/686,018, filed Nov. 27, 2012 entitled Battery System and Method for Cooling a Battery Cell Assembly.
Related Publications (1)
Number Date Country
20140308558 A1 Oct 2014 US