Battery cell assembly

Information

  • Patent Grant
  • 9257732
  • Patent Number
    9,257,732
  • Date Filed
    Tuesday, October 22, 2013
    11 years ago
  • Date Issued
    Tuesday, February 9, 2016
    8 years ago
Abstract
A battery cell assembly having a first battery cell and a cooling fin is provided. The first battery cell has a first housing and first and second electrical terminals. The cooling fin is disposed against the first housing. The cooling fin has a substantially rectangular-shaped plate that extends along a longitudinal axis. The substantially rectangular-shaped plate has a plate portion with a first side and a second side. The first side has a first plurality of recessed regions and a first plurality of flat regions. Each recessed region of the first plurality of recessed regions is disposed between two flat regions of the first plurality of flat regions along the longitudinal axis. The first housing of the first battery cell is disposed against the first side such that the first housing contacts the first plurality of flat regions.
Description
BACKGROUND

As battery cells within a battery cell assembly age, the battery cells can swell and produce an outward pressure on frame members holding the battery cells therein.


Accordingly, the inventors herein have recognized a need for an improved battery cell assembly that is designed to accommodate a swelling of battery cells that reduces an amount of force applied to frame members holding the battery cells therein.


SUMMARY

A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a first battery cell having a first housing and first and second electrical terminals extending from the first housing. The battery cell assembly further includes a cooling fin disposed against the first housing of the first battery cell. The cooling fin has a substantially rectangular-shaped plate that extends along a longitudinal axis. The substantially rectangular-shaped plate has a plate portion with a first side and a second side. The first side has a first plurality of recessed regions and a first plurality of flat regions. Each recessed region of the first plurality of recessed regions is disposed between two flat regions of the first plurality of flat regions along the longitudinal axis. The first housing of the first battery cell is disposed against the first side such that the first housing contacts the first plurality of flat regions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a battery cell assembly in accordance with an exemplary embodiment;



FIG. 2 is an exploded view of the battery cell assembly of FIG. 1;



FIG. 3 is another exploded view of the battery cell assembly of FIG. 1;



FIG. 4 is a schematic of a cooling fin utilized in the battery cell assembly of FIG. 1;



FIG. 5 is another schematic of a cooling fin utilized in the battery cell assembly of FIG. 1;



FIG. 6 is an exploded view of the cooling fin of FIG. 4;



FIG. 7 is an enlarged cross-sectional schematic of a portion of the battery cell assembly of FIG. 1 illustrating a portion of a battery cell and a portion of the cooling fin of FIG. 4;



FIG. 8 is a schematic of a substantially rectangular-shaped plate utilized in the cooling fin of FIG. 4; and



FIG. 9 is an enlarged schematic of a portion of the substantially rectangular-shaped plate of FIG. 8.





DETAILED DESCRIPTION

Referring to FIGS. 1-3, a battery cell assembly 10 in accordance with an exemplary embodiment is provided. The battery cell assembly 10 includes rectangular ring-shaped frame members 20, 22, battery cells 30, 32, and a cooling fin 40. An advantage of the battery cell assembly 10 is that the assembly 10 utilizes the cooling fin 40 having recessed regions which can receive portions of the battery cells 30, 32 therein as the battery cells 30, 32 age and begin to swell outwardly, such that the recessed regions reduce an amount of force applied by the battery cells to the frame members 20, 22.


The rectangular ring-shaped frame members 20, 22 are configured to be coupled together to hold the battery cells 30, 32 and the cooling fin 40 therebetween. In one exemplary embodiment, the rectangular ring-shaped frame members 20, 22 are constructed of plastic. However, in alternative embodiments, the rectangular ring-shaped frame members 20, 22 could be constructed of other materials known to those skilled in the art. The rectangular ring-shaped frame members 20, 22 may be ultrasonically welded together.


Referring to FIGS. 2 and 3, the battery cells 30, 32 are each configured to generate an operational voltage. In one exemplary embodiment, each of the battery cells 30, 32 are pouch-type lithium-ion battery cells having a substantially rectangular peripheral profile. Of course, other types of battery cells known to those skilled in the art could be utilized. In an exemplary embodiment, the battery cells 30, 32 are electrically coupled in series to one another.


The battery cell 30 includes a rectangular-shaped housing 50 and electrical terminals 52, 54 extending from the housing 50. The battery cell 30 is disposed between the rectangular ring-shaped frame member 20 and the cooling fin 40.


The battery cell 32 includes a rectangular-shaped housing 60 and electrical terminals 62, 64 extending from the housing 60. The battery cell 32 is disposed between the rectangular ring-shaped frame member 22 and the cooling fin 40.


Referring to FIGS. 2 and 4-9, the cooling fin 40 is disposed against and between the housings 50, 60 of the battery cells 30, 32, respectively, and is configured to transfer heat energy from the battery cells 30, 32 to a refrigerant or a liquid flowing through the cooling fin 40 to cool the battery cells 30, 32. The cooling fin 40 includes a substantially rectangular-shaped plate 70 and a tube 72.


The substantially rectangular-shaped plate 70 extends along a longitudinal axis 74. The substantially rectangular-shaped plate 70 includes a plate portion 80 (shown in FIG. 6) and first, second, third, and fourth peripheral edge portions 82, 84, 86, 88 coupled to and around a periphery of the plate portion 80. In an exemplary embodiment, the substantially rectangular-shaped plate 70 is constructed of aluminum. Of course, in an alternative embodiment, the substantially rectangular-shaped plate 70 could be constructed of other materials such as steel, stainless steel, or copper for example.


The plate portion 80 is substantially rectangular-shaped and includes a first side 100 and a second side 102 disposed opposite to the first side 100. The first side 100 is sized to cover or encompass substantially all of a substantially rectangular-shaped side surface of the battery cell 30. The second side 102 is sized to cover or encompass substantially all of a substantially rectangular-shaped side surface of the battery cell 32.


Referring to FIGS. 2, 4, 6, 8 and 9, the first side 100 has a first plurality of recessed regions 110 and a first plurality of flat regions 112. Each recessed region of the first plurality of recessed regions 110 is disposed between two flat regions of the first plurality of flat regions 112 along the longitudinal axis 74. A depth D1 (shown in FIG. 9) of the each recessed region of the first plurality of recessed regions 110 is less than one-half of a thickness T of the plate portion 80. Each recessed region of the first plurality of recessed regions 110 extends substantially perpendicular to the longitudinal axis 74 and extends across at least two-thirds of a width W of the plate portion 80. The first plurality of recessed regions 110 are configured to receive portions of the housing 50 of the battery cell 30 as the housing 50 expands outwardly over time. The first plurality of recessed regions 110 includes recessed regions 130, 132, 134, 136 disposed apart from one another along the longitudinal axis 74 and extending substantially parallel to one another. Further, the first plurality of flat regions 112 includes flat regions 140, 142, 144, 146, 148 disposed apart from one another along the longitudinal axis 74. During assembly of the battery cell assembly 10, the housing 50 of the battery cell 30 is disposed against the first side 100 such that the housing 50 contacts the first plurality of flat regions 112 and does not contact the first plurality of recessed regions 110, before the housing 50 expands outwardly during the aging of the battery cell 30 over time durations such as months and years for example.


Referring to FIGS. 2, 5, 8 and 9, the second side 102 has a second plurality of recessed regions 120 and a second plurality of flat regions 122. Each recessed region of the second plurality of recessed regions 120 is disposed between two flat regions of the second plurality of flat regions 122 along the longitudinal axis 74. A depth D2 (shown in FIG. 9) of the each recessed region of the second plurality of recessed regions 120 is less than one-half of a thickness T of the plate portion 80. Each recessed region of the second plurality of recessed regions 120 extends substantially perpendicular to the longitudinal axis 74 and extends across at least two-thirds of a width of the plate portion 80. The second plurality of recessed regions 120 are configured to receive portions of the housing 60 of the battery cell 32 as the housing 60 expands outwardly over time. The second plurality of recessed regions 120 includes recessed regions 150, 152, 154, 156 disposed apart from one another along the longitudinal axis 74 and extending substantially parallel to one another. The second plurality of flat regions 122 includes flat regions 160, 162, 164, 166, 168 disposed apart from one another along the longitudinal axis 74. During assembly of the battery cell assembly 10, the housing 60 of the battery cell 32 is disposed against the second side 102 such that the housing 60 contacts the second plurality of flat regions 122 and does not contact the second plurality of recessed regions 120, before the housing 60 expands outwardly during the aging of the battery cell 32 over time durations such as months and years for example.


Referring to FIGS. 7-9, each recessed region of the first plurality of recessed regions 110 is disposed opposite to a respective flat region of the second plurality of flat regions 112. Further, each flat region of the first plurality of flat regions 112 is disposed opposite to a recessed region of the second plurality of recessed regions 120.


Referring to FIG. 6, the first, second, third, and fourth peripheral edge portions 82, 84, 86, 88 are coupled to and extend from the plate portion 80. In an exemplary embodiment, the first, second, third, and fourth peripheral edge portions 82, 84, 86, 88 extend outwardly from first, second, third, and fourth edges, respectively, of the plate portion 80. The first peripheral edge portion 82 and the third peripheral edge portion 86 extend substantially parallel to one another. The second peripheral edge portion 84 and the fourth peripheral edge 88 extend substantially parallel to one another. The first, second, third, and fourth peripheral edge portions 82, 84, 86, 88 define an arcuate-shaped groove 207 (shown in FIGS. 8 and 9) configured to receive the tube 72 thereon.


Referring to FIGS. 4 and 6, the tube 72 is coupled to the first, second, third, and fourth peripheral edge portions 82, 84, 86, 88, and the tube 72 defines an internal flow path therein. The tube 72 is configured to transfer at least a portion of the heat energy from the battery cells 30, 32 to a liquid or a refrigerant flowing through the tube 72.


The tube 72 includes a first tube portion 190, a second tube portion 192, a third tube portion 194, a fourth tube portion 196, a fifth tube portion 198, a sixth tube portion 200, and a seventh tube portion 202 that fluidly communicate with one another. The first and second tube portions 190, 192 are substantially parallel to one another. The third tube portion 194 is substantially perpendicular to the first and second tube portions 190, 192 and extends between the first and second tube portions 190, 192. The fourth and fifth tube portions 196, 198 extend from the first and second tube portions 190, 192, respectively, and are substantially perpendicular to the first and second tube portions 190, 192, respectively. The sixth and seventh tube portions 200, 202 extend from the fourth and fifth tube portions 196, 198, respectively, and are substantially perpendicular to the fourth and fifth tube portions 196, 198, respectively. As shown, the tube portions 190, 194, 192 are coupled to the second, third, fourth peripheral edge portions 84, 86, 88, respectively. Further, the tube portions 196, 198 are both coupled to the first peripheral edge portion 82. In an exemplary embodiment, the tube 72 is welded to the first, second, third, and fourth peripheral edge portions 82, 84, 86, 88. In an exemplary embodiment, the tube 72 is constructed of aluminum. However, the tube 72 could be constructed of other materials known to those skilled in the art.


Referring to FIGS. 2 and 4, during operation, a refrigerant or a liquid enters the sixth tube portion 200 from a source device (not shown) and flows through the fourth tube portion 196, the first tube portion 190, the third tube portion 194, the second tube portion 192, the fifth tube portion 198, and the seventh tube portion 202 and exits the seventh tube portion 202 to a receiving device. Heat energy generated by the battery cells 30, 32 are conducted through the substantially rectangular-shaped plate 70 to the tube 72. Further, the heat energy in the tube 72 is conducted into the refrigerant or the liquid flowing through the tube 72. Thus, the refrigerant or the liquid flowing through the tube 72 absorbs the heat energy from the battery cells 30, 32 to reduce a temperature of the battery cells 30, 32.


The battery cell assembly 10 provides a substantial advantage over other battery cell assemblies. In particular, the battery cell assembly 10 provides a technical effect of utilizing a cooling fin having recessed regions which is configured to receive portions of the battery cells as the battery cells begin to swell outwardly over time (e.g., months or years) that reduces an amount of force applied to frame members holding the battery cells therein.


While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A battery cell assembly, comprising: a first battery cell having a first housing and first and second electrical terminals extending from the first housing; anda cooling fin disposed against and contacting the first housing of the first battery cell, the cooling fin having a substantially rectangular-shaped plate that extends along a longitudinal axis, the substantially rectangular-shaped plate having a plate portion with a first side and a second side, the first side having first, second, and third recessed regions and first, second, third, and fourth flat regions, the first recessed region being disposed between and contacting the first and second flat regions along the longitudinal axis, the second recessed region being disposed between and contacting the second and third fiat regions along the longitudinal axis, the third recessed region being disposed between and contacting the third and fourth flat reions along the longitudinal axis; the first, second, and third recessed regions being disposed away and apart from each other; each of the first, second, and third recessed regions extending substantially perpendicular to the longitudinal axis and extending across at least two-thirds of a width of the plate portion, a depth of the each of the first, second, and third recessed regions is less than one-half of a thickness of the plate portion; andthe first housing of the first battery cell being disposed against the first side of the plate portion of the substantially rectangular-shaped plate such that the first housing contacts the first, second, third, and fourth flat regions.
  • 2. The battery cell assembly of claim 1, wherein the first, second, and third recessed regions are configured to receive portions of the first housing of the first battery cell therein as the first housing expands outwardly over time.
  • 3. The battery cell assembly of claim 1, further comprising: a second battery cell having a second housing and first and second electrical terminals extending from the second housing; andthe second side of the plate portion having a fourth, fifth, and sixth recessed regions and fifth, sixth, seventh, and eighth flat regions, the fourth recessed region being disposed between the fifth and sixth flat regions along the longitudinal axis, the fifth recessed region being disposed between the sixth and seventh flat regions along the longitudinal axis, the sixth recessed region being disposed between the seventh and eighth flat regions along the longitudinal axis, the second housing of the second battery cell being disposed against the second side such that the second housing contacts the fifth, sixth, seventh, and eighth flat regions.
  • 4. The battery cell assembly of claim 3, wherein the fourth, fifth, and sixth recessed regions are configured to receive portions of the second housing of the second battery cell therein as the second housing expands outwardly over time.
  • 5. The battery cell assembly of claim 3, wherein a depth of the fourth, fifth, and sixth recessed regions is less than one-half of a thickness of the plate portion.
  • 6. The battery cell assembly of claim 3, wherein each of the fourth, fifth, and sixth recessed regions extend substantially perpendicular to the longitudinal axis and extends across at least two-thirds of the width of the plate portion.
  • 7. The battery cell assembly of claim 3, wherein the fourth, fifth, and sixth recessed regions are disposed opposite to the first, second, and third recessed regions, respectively.
  • 8. The battery cell assembly of claim 3, further comprising first and second rectangular ring-shaped frame members, the cooling fin and the first and second battery cells being disposed between the first and second rectangular ring-shaped frame members.
  • 9. The battery cell assembly of claim 1, wherein the substantially rectangular-shaped plate further includes first, second, third, and fourth peripheral edge portions coupled to and extending from the plate portion, the cooling fin further having a tube coupled to the first, second, third, and fourth peripheral edge portions, the tube defining an internal flow path therein.
  • 10. The battery cell assembly of claim 9, wherein the first, second, third, and fourth peripheral edge portions of the substantially rectangular-shaped plate define an arcuate-shaped groove configured to receive the tube thereon.
  • 11. The battery cell assembly of claim 9, wherein the tube includes an inlet port, an outlet port, and an internal flow path disposed between the inlet port and the outlet port, the cooling fin configured to receive a two-phase refrigerant in the inlet port, the cooling fin further configured to receive heat energy from the first battery cell and to transition the two-phase refrigerant into a gaseous refrigerant within the internal flow path utilizing the heat energy.
  • 12. The battery cell assembly of claim 1, wherein the substantially rectangular-shaped plate is constructed of aluminum.
  • 13. The battery cell assembly of claim 1, wherein the plate portion of the substantially rectangular-shaped plate is sized to cover substantially all of a substantially rectangular-shaped side surface of the first battery cell.
  • 14. The battery cell assembly of claim 1, further comprising first and second rectangular ring-shaped frame members, the cooling fin and the first battery cell being disposed between the first and second rectangular ring-shaped frame members; wherein the first housing of the first battery cell has an unexpanded size such that the first housing is disposed a predetermined distance away from the first and second recessed regions and the first housing is not contacting the first and second recessed regions.
  • 15. The battery cell assembly of claim 1, wherein the first, second, and third recessed regions do not contact one another.
  • 16. A battery cell assembly, comprising: a first battery cell having a first housing and first and second electrical terminals extending from the first housing; anda cooling fin disposed against and contacting the first housing of the first battery cell, the cooling fin having a substantially rectangular-shaped metal plate that extends along a longitudinal axis, the substantially rectangular-shaped metal plate having a plate portion with a first side and a second side, the first side having first, second, and third recessed regions and first, second, third and fourth flat regions, the first recessed region being disposed between and contacting the first and second flat regions along the longitudinal axis, the second recessed region being disposed between and contacting the second and third flat regions along the longitudinal axis, the third recessed region being disposed between and contacting the third and fourth flat regions along the longitudinal axis; the first, second, and third recessed regions being disposed away and apart from each other; a depth of the each of the first, second, and third recessed regions is less than one-half of a thickness of the plate portion; andthe first housing of the first battery cell being disposed against the first side of the plate portion of the substantially rectangular-shaped metal plate such that the first housing contacts the first, second, third, and fourth flat regions.
  • 17. The battery cell assembly of claim 16, wherein each of the first, second, and third recessed regions extend substantially perpendicular to the longitudinal axis and extend across at least two-thirds of a width of the plate portion.
  • 18. The battery cell assembly of claim 16, further comprising first and second rectangular ring-shaped frame members, the cooling fin and the first battery cell being disposed between the first and second rectangular ring-shaped frame members; wherein the first housing of the first battery cell has an unexpanded size such that the first housing is disposed a predetermined distance away from the first and second recessed regions and the first housing is not contacting the first and second recessed regions.
US Referenced Citations (122)
Number Name Date Kind
2273244 Cornelius Feb 1942 A
2391859 Earl Jan 1946 A
3503558 Galiulo et al. Mar 1970 A
3522100 Lindstrom Jul 1970 A
3550681 Stier et al. Dec 1970 A
3964930 Reiser Jun 1976 A
4009752 Wilson Mar 1977 A
4063590 Mcconnell Dec 1977 A
4298904 Koenig Nov 1981 A
4305456 Mueller et al. Dec 1981 A
4322776 Job et al. Mar 1982 A
4444994 Baker et al. Apr 1984 A
4518663 Kodali et al. May 1985 A
4646202 Hook et al. Feb 1987 A
4701829 Bricaud et al. Oct 1987 A
4777561 Murphy et al. Oct 1988 A
4849858 Grapes et al. Jul 1989 A
4982785 Tomlinson Jan 1991 A
4995240 Barthel et al. Feb 1991 A
5057968 Morrison Oct 1991 A
5071652 Jones et al. Dec 1991 A
5214564 Metzler et al. May 1993 A
5270131 Diethelm et al. Dec 1993 A
5322745 Yanagihara et al. Jun 1994 A
5329988 Juger Jul 1994 A
5346786 Hodgetts Sep 1994 A
5356735 Meadows et al. Oct 1994 A
5510203 Hamada et al. Apr 1996 A
5520976 Giannetti et al. May 1996 A
5663007 Ikoma et al. Sep 1997 A
5736836 Hasegawa et al. Apr 1998 A
5756227 Suzuki et al. May 1998 A
5937664 Matsuno et al. Aug 1999 A
6087036 Rouillard et al. Jul 2000 A
6111387 Kouzu et al. Aug 2000 A
6176095 Porter Jan 2001 B1
6344728 Kouzu et al. Feb 2002 B1
6362598 Laig-Horstebrock et al. Mar 2002 B2
6399238 Oweis et al. Jun 2002 B1
6422027 Coates, Jr. et al. Jul 2002 B1
6448741 Inui et al. Sep 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6512347 Hellmann et al. Jan 2003 B1
6569556 Zhou et al. May 2003 B2
6662891 Misu et al. Dec 2003 B2
6689510 Gow et al. Feb 2004 B1
6696197 Inagaki et al. Feb 2004 B2
6724172 Koo Apr 2004 B2
6750630 Inoue et al. Jun 2004 B2
6775998 Yuasa et al. Aug 2004 B2
6780538 Hamada et al. Aug 2004 B2
6821671 Hinton et al. Nov 2004 B2
6826948 Bhatti et al. Dec 2004 B1
6878485 Ovshinsky et al. Apr 2005 B2
6982131 Hamada et al. Jan 2006 B1
7070874 Blanchet et al. Jul 2006 B2
7143724 Hashizumi et al. Dec 2006 B2
7150935 Hamada et al. Dec 2006 B2
7250741 Koo et al. Jul 2007 B2
7264902 Horie et al. Sep 2007 B2
7278389 Kirakosyan Oct 2007 B2
7467525 Ohta et al. Dec 2008 B1
7531270 Buck et al. May 2009 B2
7795845 Cho Sep 2010 B2
7797958 Alston et al. Sep 2010 B2
7816029 Takamatsu et al. Oct 2010 B2
7846573 Kelly Dec 2010 B2
7879480 Yoon et al. Feb 2011 B2
7883793 Niedzwiecki et al. Feb 2011 B2
7976978 Shin et al. Jul 2011 B2
7981538 Kim et al. Jul 2011 B2
7997367 Nakamura Aug 2011 B2
8007915 Kurachi Aug 2011 B2
8030886 Mahalingam et al. Oct 2011 B2
8067111 Koetting et al. Nov 2011 B2
8209991 Kondou et al. Jul 2012 B2
20020182493 Ovshinsky et al. Dec 2002 A1
20030080714 Inoue et al. May 2003 A1
20030211384 Hamada et al. Nov 2003 A1
20040069474 Wu et al. Apr 2004 A1
20050026014 Fogaing et al. Feb 2005 A1
20050089750 Ng et al. Apr 2005 A1
20050103486 Demuth et al. May 2005 A1
20050110460 Arai et al. May 2005 A1
20050134038 Walsh Jun 2005 A1
20060234119 Kruger et al. Oct 2006 A1
20060286450 Yoon et al. Dec 2006 A1
20070062681 Beech Mar 2007 A1
20070087266 Bourke et al. Apr 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080041079 Nishijima et al. Feb 2008 A1
20080110189 Alston et al. May 2008 A1
20080182151 Mizusaki et al. Jul 2008 A1
20080248338 Yano et al. Oct 2008 A1
20080314071 Ohta et al. Dec 2008 A1
20090074478 Kurachi Mar 2009 A1
20090087727 Harada et al. Apr 2009 A1
20090104512 Fassnacht et al. Apr 2009 A1
20090155680 Maguire et al. Jun 2009 A1
20090186265 Koetting et al. Jul 2009 A1
20090258288 Weber et al. Oct 2009 A1
20090258289 Weber et al. Oct 2009 A1
20090280395 Nemesh et al. Nov 2009 A1
20090325051 Niedzwiecki et al. Dec 2009 A1
20090325052 Koetting et al. Dec 2009 A1
20090325054 Payne et al. Dec 2009 A1
20090325055 Koetting et al. Dec 2009 A1
20100112419 Jang et al. May 2010 A1
20100203376 Choi et al. Aug 2010 A1
20100209760 Yoshihara et al. Aug 2010 A1
20100262791 Gilton Oct 2010 A1
20100275619 Koetting et al. Nov 2010 A1
20100276132 Payne Nov 2010 A1
20100279152 Payne Nov 2010 A1
20100279154 Koetting et al. Nov 2010 A1
20110027640 Gadawski et al. Feb 2011 A1
20110041525 Kim et al. Feb 2011 A1
20110052959 Koetting et al. Mar 2011 A1
20110293982 Martz Dec 2011 A1
20120040223 Odumodu Feb 2012 A1
20120082880 Koetting et al. Apr 2012 A1
20130189557 Haussmann Jul 2013 A1
Foreign Referenced Citations (33)
Number Date Country
1577966 Sep 2005 EP
1852925 Nov 2007 EP
08111244 Apr 1996 JP
09129213 May 1997 JP
09219213 Aug 1997 JP
2001105843 Apr 2001 JP
2002038033 Feb 2002 JP
2002319383 Oct 2002 JP
2003188323 Jul 2003 JP
2003282112 Oct 2003 JP
2004333115 Nov 2004 JP
2005126315 May 2005 JP
2005147443 Jun 2005 JP
2005349955 Dec 2005 JP
2006139928 Jun 2006 JP
2007305425 Nov 2007 JP
2008054379 Mar 2008 JP
2008062875 Mar 2008 JP
2008080995 Apr 2008 JP
2008159440 Jul 2008 JP
2009009889 Jan 2009 JP
2009054297 Mar 2009 JP
20050092605 Sep 2005 KR
100637472 Oct 2006 KR
100765659 Oct 2007 KR
20080047641 May 2008 KR
20090082212 Jul 2009 KR
100921346 Oct 2009 KR
2006101343 Sep 2006 WO
2007007503 Jan 2007 WO
2007115743 Oct 2007 WO
2008111162 Sep 2008 WO
2009073225 Jun 2009 WO
Non-Patent Literature Citations (22)
Entry
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>.
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages.
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages.
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010, 2 pages.
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages.
Thomas J. Gadawski et al., pending U.S. Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed with the U.S. Patent and Trademark Office on Mar. 29, 2012.
U.S. Appl. No. 13/475,963, filed May 19, 2012 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly.
U.S. Appl. No. 13/586,960, filed Aug. 16, 2012 entitled Battery Module.
U.S. Appl. No. 13/587,030, filed Aug. 16, 2012 entitled Battery Module and Method for Assembling the Battery Module.
U.S. Appl. No. 13/766,162, filed Feb. 13, 2013 entitled Battery Cell Assembly and Method for Manufacturing the Battery Cell Assembly.
U.S. Appl. No. 13/686,018, filed Nov. 27, 2012 entitled Battery System and Method for Cooling a Battery Cell Assembly.
U.S. Appl. No. 13/861,426, filed Apr. 12, 2013 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly.
U.S. Appl. No. 13/936,556, filed Jul. 8, 2013 entitled Battery Assembly.
Related Publications (1)
Number Date Country
20150111075 A1 Apr 2015 US