Battery cell assembly

Information

  • Patent Grant
  • 9412980
  • Patent Number
    9,412,980
  • Date Filed
    Friday, October 17, 2014
    10 years ago
  • Date Issued
    Tuesday, August 9, 2016
    8 years ago
Abstract
A battery cell assembly having first and second rectangular-shaped end plates, a battery cell, and a metal spring clip are provided. The first rectangular-shaped end plate includes first and second grooves, and the second rectangular-shaped end plate includes first and second grooves. The battery cell is disposed between the first and second rectangular-shaped end plates. The metal spring clip has first and second end portions. The first end portion is disposed in the first groove of the first rectangular-shaped end plate, and the second end portion is disposed in the first groove of the second substantially rectangular-shaped end plate to bias the first rectangular-shaped end plate toward the second rectangular-shaped end plate.
Description
BACKGROUND

The inventors herein have recognized a need for an improved battery cell assembly having end plates and frame members that can be readily coupled together utilizing externally disposed metal spring clips.


SUMMARY

A battery cell assembly in accordance with an exemplary embodiment is provided. The battery cell assembly includes a first substantially rectangular-shaped end plate having first and second sides. The first substantially rectangular-shaped end plate further includes first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the first substantially rectangular-shaped end plate. The battery cell assembly further includes a second substantially rectangular-shaped end plate having first and second sides. The second substantially rectangular-shaped end plate further includes first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the second substantially rectangular-shaped end plate. The battery cell assembly further includes a first battery cell that is disposed and held between the first and second substantially rectangular-shaped end plates. The battery cell assembly further includes a first metal spring clip having first and second end portions. The first end portion of the first metal spring clip is disposed in the first groove of the first substantially rectangular-shaped end plate, and the second end portion of the first metal spring clip is disposed in the first groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate. The battery cell assembly further includes a second metal spring clip having first and second end portions. The first end portion of the second metal spring clip is disposed in the second groove of the first substantially rectangular-shaped end plate and the second end portion of the second metal spring clip is disposed in the second groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a battery cell assembly in accordance with an exemplary embodiment;



FIG. 2 is a cross-sectional schematic of the battery cell assembly of FIG. 1 taken along lines 2-2;



FIG. 3 is another cross-sectional schematic of the battery cell assembly of FIG. 1 taken along lines 3-3;



FIG. 4 is a schematic of the battery cell assembly of FIG. 1 before first, second, third and fourth metal spring clips are disposed on first and second substantially rectangular-shaped end plates;



FIG. 5 is a top view of a first side of a first substantially rectangular-shaped end plate utilized in the battery cell assembly of FIG. 1;



FIG. 6 is a bottom view of a first side of a second substantially rectangular-shaped end plate utilized in the battery cell assembly of FIG. 1;



FIG. 7 is a schematic of a metal spring clip utilizing in the battery cell assembly of FIG. 1; and



FIG. 8 is a side view of the metal spring clip of FIG. 7.





DETAILED DESCRIPTION

Referring to FIGS. 1-2, a battery cell assembly 10 in accordance with an exemplary embodiment is provided. The battery cell assembly 10 includes first and second substantially rectangular-shaped end plates 30, 32, frame members 38, 40, 42, battery cells 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, and metal spring clips 80, 82, 84, 86.


The first and second substantially rectangular-shaped end plates 30, 32 are utilized to hold the remaining components of the battery cell assembly 10 therebetween. In an exemplary embodiment, the first and second substantially rectangular-shaped end plates 30, 32 are constructed of plastic. In an alternative embodiment, the end plates 30, 32 could be constructed of other materials such as a metal or a ceramic material for example.


Referring to FIGS. 1-5, the first substantially rectangular-shaped end plate 30 has first and second sides 100, 102, and first and second ends 104, 106. The first substantially rectangular-shaped end plate 30 further includes grooves 180, 182, 184, 186 extending therein.


Referring to FIGS. 2 and 3, the grooves 180, 184 extend into the first side 100 and are disposed proximate to the first end 104. The grooves 180, 184 are configured to receive portions of the metal spring clips 80, 84, respectively, therein.


The groove 180 includes groove portions 200, 202. The groove portion 200 is disposed adjacent to and communicates with the groove portion 202. The groove portion 200 extends from the first end 104 a predetermined distance toward the second end 106. Also, the groove portion 200 extends a first depth into the end plate 30 parallel to a vertical axis 89 of the battery cell assembly 10. The groove portion 202 extends a second depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10. The second depth is greater than the first depth.


The groove 184 includes groove portions 208, 210. The groove portion 208 is disposed adjacent to and communicates with the groove portion 210. The groove portion 208 extends from the first end 104 a predetermined distance toward the second end 106. Also, the groove portion 208 extends a first depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 210 extends the second depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10.


The grooves 182, 186 extend into the first side 100 and are disposed proximate to the second end 106. The grooves 182, 186 are configured to receive portions of the metal spring clips 82, 86, respectively, therein.


The groove 182 includes groove portions 204, 206. The groove portion 204 is disposed adjacent to and communicates with the groove portion 206. The groove portion 204 extends from the second end 106 a predetermined distance toward the first end 104. Also, the groove portion 204 extends the first depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 206 extends the second depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10.


The groove 186 includes groove portions 212, 214. The groove portion 212 is disposed adjacent to and communicates with the groove portion 214. The groove portion 212 extends from the second end 106 a predetermined distance toward the first end 104. Also, the groove portion 212 extends the first depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 214 extends the second depth into the end plate 30 parallel to the vertical axis 89 of the battery cell assembly 10.


Referring to FIGS. 2-4 and 6, the second substantially rectangular-shaped end plate 32 has first and second sides 300, 302, and first and second ends 304, 306. The second substantially rectangular-shaped end plate 32 further includes grooves 380, 382, 384, 386. In an exemplary embodiment, the second substantially rectangular-shaped end plate 32 is constructed of plastic. In an alternative embodiment, the end plate 32 could be constructed of other materials such as a metal or a ceramic material for example.


The grooves 380, 384 extend into the first side 300 and are disposed proximate to the first end 304. The grooves 380, 384 are configured to receive portions of the metal spring clips 80, 84, respectively, therein.


The groove 380 includes groove portions 400, 402. The groove portion 400 is disposed adjacent to and communicates with the groove portion 402. The groove portion 400 extends from the first end 304 a predetermined distance toward the second end 306. Also, the groove portion 400 extends a first depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 402 extends second depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10. The second depth is greater than the first depth.


The groove 384 includes groove portions 408, 410. The groove portion 408 is disposed adjacent to and communicates with the groove portion 410. The groove portion 408 extends from the first end 304 a predetermined distance toward the second end 306. Also, the groove portion 408 extends the first depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 410 extends the second depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10.


The grooves 382, 386 extend into the first side 300 and are disposed proximate to the second end 306. The grooves 382, 386 are configured to receive portions of the metal spring clips 82, 86, respectively, therein.


The groove 382 includes groove portions 404, 406. The groove portion 404 is disposed adjacent to and communicates with the groove portion 406. The groove portion 404 extends from the second end 306 a predetermined distance toward the first end 304. Also, the groove portion 404 extends the first depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 406 extends the second depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10.


The groove 386 includes groove portions 412, 414. The groove portion 412 is disposed adjacent to and communicates with the groove portion 414. The groove portion 412 extends from the second end 306 a predetermined distance toward the first end 304. Also, the groove portion 412 extends the first depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10. The groove portion 414 extends the second depth into the end plate 32 parallel to the vertical axis 89 of the battery cell assembly 10.


Referring to FIGS. 1 and 2, the frame member 38 and the first substantially rectangular-shaped end plate 30 are configured to hold the battery cells 50, 52 therebetween. The frame member 38 and the frame member 40 are configured to hold the battery cells 54, 56, 58, 60 therebetween. Further, the frame member 40 and the frame member 42 are configured to hold the battery cells 62, 64, 66, 68 therebetween. Finally, the frame member 40 and the second substantially rectangular-shaped end plate 32 are configured to hold the battery cells 70, 72 therebetween.


Referring to FIG. 2, the frame member 38 includes a rectangular ring-shaped body portion 500, a central member 502, and a heat exchanger 504. The rectangular ring-shaped body portion 500 defines a central region. In an exemplary embodiment, the rectangular ring-shaped body portion 500 is constructed of plastic. The central member 502 is coupled to opposite walls of the rectangular ring-shaped body portion 500 and extends across the central region defined by the rectangular ring-shaped body portion 500. In an exemplary embodiment, the central member 502 is constructed of plastic and is integrally formed with the rectangular ring-shaped body portion 500. The metal plates 506, 508 have peripheral ends coupled to outer walls of the rectangular ring-shaped body portion 500. The metal plates 506, 508 further extend through the central member 502. The metal plates 506, 508 define open regions 510, 512 therebetween for receiving air therethrough from an external air source. The metal plate 506 is disposed against the battery cells 50, 52 and extracts heat energy from the battery cells 50, 52 to cool the batteries cells 50, 52. Further, the metal plate 508 is disposed against the battery cells 54, 56 and extracts heat energy from the battery cells 54, 56 to cool the batteries cells 54, 56.


The frame member 40 includes a rectangular ring-shaped body portion 600, a central member 602, and a heat exchanger 604. The rectangular ring-shaped body portion 600 defines a central region. In an exemplary embodiment, the rectangular ring-shaped body portion 600 is constructed of plastic. The central member 602 is coupled to opposite walls of the rectangular ring-shaped body portion 600 and extends across the central region defined by the rectangular ring-shaped body portion 600. In an exemplary embodiment, the central member 602 is constructed of plastic and is integrally formed with the rectangular ring-shaped body portion 600. The metal plates 606, 608 have peripheral ends coupled to outer walls of the rectangular ring-shaped body portion 600. The metal plates 606, 608 further extend through the central member 602. The metal plates 606, 608 define open regions 610, 612 therebetween for receiving air therethrough from an external air source. The metal plate 606 is disposed against the battery cells 58, 60 and extracts heat energy from the battery cells 58, 60 to cool the batteries cells 58, 60. Further, the metal plate 608 is disposed against the battery cells 62, 64 and extracts heat energy from the battery cells 62, 64 to cool the batteries cells 62, 64.


The frame member 42 includes a rectangular ring-shaped body portion 700, a central member 702, and a heat exchanger 704. The rectangular ring-shaped body portion 700 defines a central region. In an exemplary embodiment, the rectangular ring-shaped body portion 700 is constructed of plastic. The central member 702 is coupled to opposite walls of the rectangular ring-shaped body portion 700 and extends across the central region defined by the rectangular ring-shaped body portion 700. In an exemplary embodiment, the central member 702 is constructed of plastic and is integrally formed with the rectangular ring-shaped body portion 700. The metal plates 706, 708 have peripheral ends coupled to outer walls of the rectangular ring-shaped body portion 700. The metal plates 706, 708 further extend through the central member 702. The metal plates 706, 708 define open regions 710, 712 therebetween for receiving air therethrough from an external air source. The metal plate 706 is disposed against the battery cells 66, 68 and extracts heat energy from the battery cells 66, 68 to cool the batteries cells 66, 68. Further, the metal plate 708 is disposed against the battery cells 70, 72 and extracts heat energy from the battery cells 70, 72 to cool the batteries cells 70, 72.


The battery cells 50-72 are each configured to generate an operational voltage. In one exemplary embodiment, the battery cells 50-72 are pouch-type lithium-ion battery cells that have a substantially rectangular-shaped body portion and a pair of electrical terminals. In an exemplary embodiment, the battery cells 50-72 are electrically coupled in series with one another. The structure of the battery cells 50-72 are identical to one another.


Referring to FIGS. 1-3, the metal spring clips 80, 82, 84, 86 are provided to hold the other components of the battery cell assembly 10 together. In particular, the metal spring clips 80, 82, 84, 86 are removably coupled to the first and second substantially rectangular-shaped end plates 30, 32 and bias the end plates 30, 32 toward one another. In an exemplary embodiment, the metal spring clips 80-86 are constructed of steel. In an alternative embodiment, the metal spring clips 80-86 could be constructed of another material such as stainless steel, aluminum, or copper for example. Since the structure of the metal spring clips 80-86 are identical to one another, only the structure of the metal spring clip 80 will be described in greater detail below.


Referring to FIGS. 2, 7 and 8, the metal spring clip 80 includes first and second end portions 900, 902, a substantially arcuate-shaped portion 904, and first and second substantially flat portions 906, 908. The substantially arcuate-shaped portion 904 includes a first end 920 and a second end 922. Further, the substantially arcuate-shaped portion 904 has a predetermined length such that the substantially arcuate-shaped portion 904 extends from the first end 104 of the first substantially rectangular-shaped end plate 30 to the first end 304 of the second substantially rectangular-shaped end plate 32. The first substantially flat portion 906 is coupled between and to the first end 920 of the substantially arcuate-shaped portion 904 and the first end portion 900. The second substantially flat portion 908 is coupled between and to the second end 922 of the substantially arcuate-shaped portion 904 and the second end portion 902. The first end portion 900 has a v-shaped cross-sectional profile having an apex that points towards the second end portion 902. Similarly, the second portion 900 has a v-shaped cross-sectional profile having an apex that points towards the first end portion 900. The metal spring clip 80 has a first predetermined length that is less than or equal to a distance from the first side 100 of the first substantially rectangular-shaped end plate 30 to the first side 300 of the second substantially rectangular-shaped end plate 32.


Referring to FIGS. 1 and 2, during installation of the metal spring clip 80 on the first and second substantially rectangular shaped end plates 30, 32, the first end portion 900 is disposed in the groove 180, and the second end portion 902 is disposed in the groove 380 of the second substantially rectangular-shaped end plate 32 to bias the first substantially rectangular-shaped end plate 30 toward the second substantially rectangular-shaped end plate 32.


In particular, during installation of the metal spring clip 80 on the end plates 30, 32, the metal spring clip 80 is positioned such that: (i) an apex of the v-shaped cross-section profile of the first end portion 900 contacts a bottom surface defined by the groove portion 202 of the groove 180 in the first substantially rectangular-shaped end plate 30; and (ii) the first substantially flat portion 906 is disposed against a surface defined by the groove portion 200 of the groove 180 in the first substantially rectangular-shaped end plate 30. Further, during installation of the metal spring clip 80 on the end plates 30, 32, the metal spring clip 80 is positioned such that: (i) an apex of the v-shaped cross-section profile of the second end portion 902 contacts a bottom surface defined by the groove portion 402 of the groove 380 in the second substantially rectangular-shaped end plate 32; and (ii) the second substantially flat portion 908 is disposed against a surface defined by the groove portion 400 of the groove 380 in the second substantially rectangular-shaped end plate 32. Still further, during installation of the metal spring clip 80 on the end plates 30, 32, the substantially arcuate-shaped portion 904 is disposed away from the frame members 38, 40, 42 and does not contact the frame members 38, 40, 42.


Referring to FIG. 2, during installation of the metal spring clip 82 on the first and second substantially rectangular shaped end plates 30, 32, a first end portion of the metal spring clip 82 is disposed in the groove 182 of the first substantially rectangular-shaped end plate, and a second end portion of the metal spring clip 82 is disposed in the groove 382 of the second substantially rectangular-shaped end plate 32 to bias the first substantially rectangular-shaped end plate 30 toward the second substantially rectangular-shaped end plate 32.


Referring to FIG. 3, during installation of the metal spring clip 84 on the first and second substantially rectangular shaped end plates 30, 32, a first end portion of the metal spring clip 84 is disposed in the groove 184 of the first substantially rectangular-shaped end plate, and a second end portion of the metal spring clip 84 is disposed in the groove 384 of the second substantially rectangular-shaped end plate 32 to bias the first substantially rectangular-shaped end plate 30 toward the second substantially rectangular-shaped end plate 32.


Further, during installation of the metal spring clip 86 on the first and second substantially rectangular shaped end plates 30, 32, a first end portion of the metal spring clip 86 is disposed in the groove 186 of the first substantially rectangular-shaped end plate, and a second end portion of the metal spring clip 86 is disposed in the groove 386 of the second substantially rectangular-shaped end plate 32 to bias the first substantially rectangular-shaped end plate 30 toward the second substantially rectangular-shaped end plate 32.


The battery cell assembly described and claimed herein provides a substantial advantage over other battery cell assemblies. In particular, the battery cell assembly utilizes metal spring clips to hold the battery cell assembly together, and to readily disassemble the battery cell assembly for repair or maintenance if needed.


While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.

Claims
  • 1. A battery cell assembly, comprising: a first substantially rectangular-shaped end plate having first and second sides, the first substantially rectangular-shaped end plate further having first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the first substantially rectangular-shaped end plate;a second substantially rectangular-shaped end plate having first and second sides, the second substantially rectangular-shaped end plate further having first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the second substantially rectangular-shaped end plate;a first battery cell being disposed and held between the first and second substantially rectangular-shaped end plates;a first metal spring clip having first and second end portions, a substantially arcuate-shaped portion, and first and second substantially flat portions; the first substantially flat portion being couple between and to a first end of the substantially arcuate-shaped portion and the first end portion, the second substantially flat portion being coupled between and to a second end of the substantially arcuate-shaped portion and the second end portion, the first end portion of the first metal spring clip being disposed in the first groove of the first substantially rectangular-shaped end plate, and the second end portion of the first metal spring clip being disposed in the first groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate; anda second metal spring clip having first and second end portions, the first end portion of the second metal spring clip being disposed in the second groove of the first substantially rectangular-shaped end plate and the second end portion of the second metal spring clip being disposed in the second groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate.
  • 2. The battery cell assembly of claim 1, wherein the first metal spring clip has a first predetermined length that is less than or equal to a distance from the first side of the first substantially rectangular-shaped end plate to the first side of the second substantially rectangular-shaped end plate.
  • 3. The battery cell assembly of claim 1, wherein the first end portion of the first metal spring clip has a v-shaped cross-sectional profile.
  • 4. The battery cell assembly of claim 3, wherein the first groove in the first substantially rectangular-shaped end plate has first and second groove portions, the first groove portion being disposed adjacent to and communicating with the second groove portion, the first groove portion extending from the first end of the first substantially rectangular-shaped end plate a predetermined distance toward the second end of the first substantially rectangular-shaped end plate, the first groove portion has a first depth, the second groove portion having a second depth greater than the first depth.
  • 5. The battery cell assembly of claim 4, wherein an apex of the v-shaped cross-section profile contacts a bottom surface defined by the second groove portion of the first groove in the first substantially rectangular-shaped end plate.
  • 6. The battery cell assembly of claim 5, wherein the first substantially flat portion of the first metal spring clip is disposed against a surface defined by the first groove portion of the first groove in the first substantially rectangular-shaped end plate.
  • 7. The battery cell assembly of claim 1, wherein the substantially arcuate-shaped portion of the first metal spring clip has a second predetermined length such that the substantially arcuate-shaped portion extends from the first end of the first substantially rectangular-shaped end plate to the first end of the second substantially rectangular-shaped end plate.
  • 8. The battery cell assembly of claim 1, further comprising a first frame member disposed between the first and second substantially rectangular-shaped end plates such that the first battery cell is disposed between and contacts the first substantially rectangular-shaped end plate and the first frame member.
  • 9. The battery cell assembly of claim 8, wherein the substantially arcuate-shaped portion of the first metal spring clip is disposed away from the first frame member and does not contact the first frame member.
  • 10. The battery cell assembly of claim 8, further comprising a second battery cell that is disposed between and contacts the first substantially rectangular-shaped end plate and the first frame member.
  • 11. The battery cell assembly of claim 10, wherein the first frame member includes a rectangular ring-shaped body portion and a heat exchanger coupled to the rectangular ring-shaped body portion, the first and second battery cells being disposed against the heat exchanger.
  • 12. A battery cell assembly, comprising: a first substantially rectangular-shaped end plate having first and second sides, the first substantially rectangular-shaped end plate further having first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the first substantially rectangular-shaped end plate;a second substantially rectangular-shaped end plate having first and second sides, the second substantially rectangular-shaped end plate further having first and second grooves extending into the first side thereof that are disposed proximate to first and second ends respectively, of the second substantially rectangular-shaped end plate;a first battery cell being disposed and held between the first and second substantially rectangular-shaped end plates;a first metal spring clip having first and second v-shaped end portions, the first v-shaped end portion of the first metal spring clip being disposed in the first groove of the first substantially rectangular-shaped end plate, and the second v-shaped end portion of the first metal spring clip being disposed in the first groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate; anda second metal spring clip having first and second v-shaped end portions, the first v-shaped end portion of the second metal spring clip being disposed in the second groove of the first substantially rectangular-shaped end plate and the second v-shaped end portion of the second metal spring clip being disposed in the second groove of the second substantially rectangular-shaped end plate to bias the first substantially rectangular-shaped end plate toward the second substantially rectangular-shaped end plate.
  • 13. The battery cell assembly of claim 12, wherein the first groove in the first substantially rectangular-shaped end plate has first and second groove portions, the first groove portion being disposed adjacent to and communicating with the second groove portion, the first groove portion extending from the first end of the first substantially rectangular-shaped end plate a predetermined distance toward the second end of the first substantially rectangular-shaped end plate, the first groove portion has a first depth, the second groove portion having a second depth greater than the first depth.
  • 14. The battery cell assembly of claim 13, wherein an apex of the first v-shaped end portion of the first metal spring clip contacts a bottom surface defined by the second groove portion of the first groove in the first substantially rectangular-shaped end plate.
  • 15. The battery cell assembly of claim 14, wherein an apex of the first v-shaped end portion of the first metal spring clip contacts a bottom surface defined by the first groove in the first substantially rectangular-shaped end plate.
  • 16. The battery cell assembly of claim 12, wherein the first metal spring clip further includes a substantially arcuate-shaped portion disposed between the first and second v-shaped end portions of the first metal spring clip.
US Referenced Citations (149)
Number Name Date Kind
1587425 Schepp Jun 1926 A
2273244 Cornelius Feb 1942 A
2391859 Babcock Jan 1946 A
3503558 Galiulo et al. Mar 1970 A
3522100 Lindstrom Jul 1970 A
3550681 Stier et al. Dec 1970 A
3964930 Reiser Jun 1976 A
4009752 Wilson Mar 1977 A
4063590 Mcconnell Dec 1977 A
4298904 Koenig Nov 1981 A
4305456 Mueller et al. Dec 1981 A
4322776 Job et al. Mar 1982 A
4444994 Baker et al. Apr 1984 A
4518663 Kodali et al. May 1985 A
4646202 Hook et al. Feb 1987 A
4701829 Bricaud et al. Oct 1987 A
4777561 Murphy et al. Oct 1988 A
4849858 Grapes et al. Jul 1989 A
4982785 Tomlinson Jan 1991 A
4995240 Barthel et al. Feb 1991 A
5057968 Morrison Oct 1991 A
5071652 Jones et al. Dec 1991 A
5186250 Ouchi et al. Feb 1993 A
5214564 Metzler et al. May 1993 A
5270131 Diethelm et al. Dec 1993 A
5322745 Yanagihara et al. Jun 1994 A
5329988 Juger Jul 1994 A
5346786 Hodgetts Sep 1994 A
5356735 Meadows et al. Oct 1994 A
5443926 Holland et al. Aug 1995 A
5510203 Hamada et al. Apr 1996 A
5520976 Giannetti et al. May 1996 A
5663007 Ikoma et al. Sep 1997 A
5736836 Hasegawa et al. Apr 1998 A
5756227 Suzuki et al. May 1998 A
5937664 Matsuno et al. Aug 1999 A
5985483 Verhoog et al. Nov 1999 A
6087036 Rouillard et al. Jul 2000 A
6111387 Kouzu et al. Aug 2000 A
6176095 Porter Jan 2001 B1
6289979 Kato Sep 2001 B1
6344728 Kouzu et al. Feb 2002 B1
6362598 Laig-Horstebrock et al. Mar 2002 B2
6399238 Oweis et al. Jun 2002 B1
6422027 Coates, Jr. et al. Jul 2002 B1
6448741 Inui et al. Sep 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6512347 Hellmann et al. Jan 2003 B1
6569556 Zhou et al. May 2003 B2
6662891 Misu et al. Dec 2003 B2
6689510 Gow et al. Feb 2004 B1
6696197 Inagaki et al. Feb 2004 B2
6724172 Koo Apr 2004 B2
6750630 Inoue et al. Jun 2004 B2
6775998 Yuasa et al. Aug 2004 B2
6780538 Hamada et al. Aug 2004 B2
6821671 Hinton et al. Nov 2004 B2
6826948 Bhatti et al. Dec 2004 B1
6878485 Ovshinsky et al. Apr 2005 B2
6982131 Hamada et al. Jan 2006 B1
7070874 Blanchet et al. Jul 2006 B2
7143724 Hashizumi et al. Dec 2006 B2
7150935 Hamada et al. Dec 2006 B2
7250741 Koo et al. Jul 2007 B2
7264902 Horie et al. Sep 2007 B2
7278389 Kirakosyan Oct 2007 B2
7467525 Ohta et al. Dec 2008 B1
7531270 Buck et al. May 2009 B2
7591303 Zeigler et al. Sep 2009 B2
7795845 Cho Sep 2010 B2
7797958 Alston et al. Sep 2010 B2
7816029 Takamatsu et al. Oct 2010 B2
7846573 Kelly Dec 2010 B2
7879480 Yoon et al. Feb 2011 B2
7883793 Niedzwiecki et al. Feb 2011 B2
7976978 Shin et al. Jul 2011 B2
7981538 Kim et al. Jul 2011 B2
7997367 Nakamura Aug 2011 B2
8007915 Kurachi Aug 2011 B2
8011467 Asao et al. Sep 2011 B2
8030886 Mahalingam et al. Oct 2011 B2
8067111 Koetting et al. Nov 2011 B2
8209991 Kondou et al. Jul 2012 B2
8409743 Okada et al. Apr 2013 B2
8663829 Koetting et al. Mar 2014 B2
20020182493 Ovshinsky et al. Dec 2002 A1
20030080714 Inoue et al. May 2003 A1
20030211384 Hamada et al. Nov 2003 A1
20040069474 Wu et al. Apr 2004 A1
20050026014 Fogaing et al. Feb 2005 A1
20050089750 Ng et al. Apr 2005 A1
20050103486 Demuth et al. May 2005 A1
20050110460 Arai et al. May 2005 A1
20050134038 Walsh Jun 2005 A1
20060234119 Kruger et al. Oct 2006 A1
20060286450 Yoon et al. Dec 2006 A1
20070062681 Beech Mar 2007 A1
20070087266 Bourke et al. Apr 2007 A1
20070227166 Rafalovich et al. Oct 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080041079 Nishijima et al. Feb 2008 A1
20080110189 Alston et al. May 2008 A1
20080182151 Mizusaki et al. Jul 2008 A1
20080248338 Yano et al. Oct 2008 A1
20080299446 Kelly Dec 2008 A1
20080314071 Ohta et al. Dec 2008 A1
20090074478 Kurachi Mar 2009 A1
20090087727 Harada et al. Apr 2009 A1
20090104512 Fassnacht et al. Apr 2009 A1
20090142653 Okada Jun 2009 A1
20090155680 Maguire et al. Jun 2009 A1
20090186265 Koetting et al. Jul 2009 A1
20090258288 Weber et al. Oct 2009 A1
20090258289 Weber et al. Oct 2009 A1
20090280395 Nemesh et al. Nov 2009 A1
20090325051 Niedzwiecki et al. Dec 2009 A1
20090325052 Koetting et al. Dec 2009 A1
20090325054 Payne et al. Dec 2009 A1
20090325055 Koetting et al. Dec 2009 A1
20100112419 Jang et al. May 2010 A1
20100203376 Choi et al. Aug 2010 A1
20100209760 Yoshihara et al. Aug 2010 A1
20100262791 Gilton Oct 2010 A1
20100275619 Koetting et al. Nov 2010 A1
20100276132 Payne Nov 2010 A1
20100279152 Payne Nov 2010 A1
20100279154 Koetting et al. Nov 2010 A1
20100304203 Buck et al. Dec 2010 A1
20100307723 Thomas et al. Dec 2010 A1
20110000241 Favaretto Jan 2011 A1
20110020676 Kurosawa Jan 2011 A1
20110027631 Koenigsmann Feb 2011 A1
20110027640 Gadawski et al. Feb 2011 A1
20110041525 Kim et al. Feb 2011 A1
20110045326 Leuthner et al. Feb 2011 A1
20110052959 Koetting et al. Mar 2011 A1
20110189523 Eom Aug 2011 A1
20120082880 Koetting et al. Apr 2012 A1
20120171543 Hirsch et al. Jul 2012 A1
20130045410 Yang et al. Feb 2013 A1
20130136136 Ando et al. May 2013 A1
20130255293 Gadawski et al. Oct 2013 A1
20130309542 Merriman et al. Nov 2013 A1
20140050953 Yoon et al. Feb 2014 A1
20140050966 Merriman et al. Feb 2014 A1
20140120390 Merriman et al. May 2014 A1
20140147709 Ketkar et al. May 2014 A1
20140227575 Ketkar Aug 2014 A1
20140308558 Merriman et al. Oct 2014 A1
Foreign Referenced Citations (44)
Number Date Country
19639115 Mar 1998 DE
1577966 Sep 2005 EP
1852925 Nov 2007 EP
2262048 Dec 2010 EP
481891 Mar 1938 GB
08111244 Apr 1996 JP
H09129213 May 1997 JP
H09219213 Aug 1997 JP
2001105843 Apr 2001 JP
2002038033 Feb 2002 JP
2002319383 Oct 2002 JP
2002333255 Nov 2002 JP
2003188323 Jul 2003 JP
2003282112 Oct 2003 JP
2004333115 Nov 2004 JP
2005126315 May 2005 JP
2005147443 Jun 2005 JP
2005349955 Dec 2005 JP
2006139928 Jun 2006 JP
2007305425 Nov 2007 JP
2008054379 Mar 2008 JP
2008062875 Mar 2008 JP
2008080995 Apr 2008 JP
2008159440 Jul 2008 JP
2009009889 Jan 2009 JP
2009054297 Mar 2009 JP
20050092605 Sep 2005 KR
100637472 Oct 2006 KR
100765659 Oct 2007 KR
20080047641 May 2008 KR
20090082212 Jul 2009 KR
100921346 Oct 2009 KR
20090107443 Oct 2009 KR
1020100119497 Nov 2010 KR
1020100119498 Nov 2010 KR
1020110013269 Feb 2011 KR
1020110013270 Feb 2011 KR
20110126764 Nov 2011 KR
2006101343 Sep 2006 WO
2007007503 Jan 2007 WO
2007115743 Oct 2007 WO
2008111162 Sep 2008 WO
2009073225 Jun 2009 WO
2011145830 Nov 2011 WO
Non-Patent Literature Citations (22)
Entry
U.S. Appl. No. 13/936,556, filed Jul. 8, 2013 entitled Battery Assembly.
U.S. Appl. No. 14/059,547, filed Oct. 22, 2013 entitled Battery Cell Assembly.
U.S. Appl. No. 14/273,572, filed May 9, 2014 entitled Battery Pack and Method of Assembling the Battery Pack.
U.S. Appl. No. 14/328,000, filed Jul. 10, 2014 entitled Battery System and Method of Assembling the Battery System.
U.S. Appl. No. 14/330,163, filed Jul. 14, 2014 entitled Battery System and Method for Cooling the Battery System.
U.S. Appl. No. 14/511,389, filed Oct. 10, 2014 entitled Battery Cell Assembly.
Written Opinion for International application No. PCT/KR2014/002090 dated May 26, 2014.
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>.
International Search Report for International application No. PCT/KR2013/004015 dated Sep. 26, 2013.
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages.
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages.
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages.
Related Publications (1)
Number Date Country
20160111691 A1 Apr 2016 US