Battery module and method for cooling the battery module

Information

  • Patent Grant
  • 8399119
  • Patent Number
    8,399,119
  • Date Filed
    Friday, August 28, 2009
    15 years ago
  • Date Issued
    Tuesday, March 19, 2013
    11 years ago
Abstract
A battery module and a method for cooling the battery module are provided. The battery module includes a battery cell and a cooling fin disposed adjacent to the battery cell. The cooling fin has a solid plate and first and second tab portions extending from first and second edges, respectively, of the solid plate. The first and second tab portions are bent perpendicular to a front surface of the battery cell. The cooling fin extracts heat energy from the battery cell thereto. The battery module further includes a first cooling manifold that contacts the first tab portion of the cooling fin. The first cooling manifold has at least one flow channel extending therethrough that receives a fluid therethrough. The first cooling manifold conducts heat energy from the cooling fin into the fluid flowing through the first cooling manifold to cool the battery cell.
Description
TECHNICAL FIELD

This application relates to a battery module and a method for cooling the battery module.


BACKGROUND OF THE INVENTION

In a typical air-cooled battery pack, ambient air from ambient atmosphere is directed across battery cells in the battery pack and is subsequently exhausted from the battery pack. However, the typical air-cooled battery pack has a major challenge in maintaining a temperature of the battery pack within a desired temperature range.


In particular, a maximum operating temperature of the battery cells can often be less than a temperature of ambient air utilized to cool the batteries. In this situation, it is impossible to maintain the battery cells within a desired temperature range in an air-cooled battery pack.


Accordingly, the inventors herein have recognized a need for an improved battery module and a method for cooling the battery module that minimizes and/or eliminates the above-mentioned deficiency.


SUMMARY OF THE INVENTION

A battery module in accordance with an exemplary embodiment is provided. The battery module includes a battery cell and a cooling fin disposed adjacent to the battery cell. The cooling fin has a solid plate and first and second tab portions extending from first and second edges, respectively, of the solid plate. The first and second tab portions are configured to be bent perpendicular to a front surface of the battery cell. The cooling fin is configured to extract heat energy from the battery cell thereto. The battery module further includes a first cooling manifold that contacts the first tab portion of the cooling fin. The first cooling manifold has at least one flow channel extending therethrough configured to receive a fluid therethrough. The first cooling manifold is configured to conduct heat energy from the cooling fin into the fluid flowing through the first cooling manifold to cool the battery cell.


A method for cooling a battery module in accordance with another exemplary embodiment is provided. The battery module has a battery cell and a cooling fin disposed adjacent to the battery cell. The battery module further includes a first cooling manifold that contacts the cooling fin. The cooling fin has a solid plate and first and second tab portions extending from first and second edges, respectively, of the solid plate. The method includes conducting heat energy from the battery cell into the solid plate of the cooling fin. The method further includes conducting heat energy from the first tab portion of the cooling fin into the first cooling manifold. The method further includes receiving a fluid in the first cooling manifold and conducting heat energy from the first cooling manifold into the fluid flowing therethrough to cool the battery cell.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a battery system having a battery module in accordance with an exemplary embodiment;



FIG. 2 is a schematic of the battery module utilized in the battery system of FIG. 1 in accordance with another exemplary embodiment;



FIG. 3 is another schematic of the battery module of FIG. 2 having a cooling manifold removed therefrom;



FIG. 4 is an enlarged schematic of a portion of the battery module of FIG. 2;



FIG. 5 is another enlarged schematic of a portion of the battery module of FIG. 2;



FIG. 6 is a schematic of an exploded view of a portion of the battery module of FIG. 2;



FIG. 7 is a schematic of two rectangular ring-shaped walls surrounding a cooling fin utilized in the battery module of FIG. 2;



FIG. 8 is schematic of the cooling fin of FIG. 7;



FIG. 9 is a schematic of a cooling manifold utilized in the battery module of FIG. 2;



FIG. 10 is a cross-sectional schematic of the cooling manifold of FIG. 9;



FIG. 11 is another cross-sectional schematic of the cooling manifold of FIG. 9;



FIG. 12 is a flowchart of a method for cooling a battery module in accordance with another exemplary embodiment; and



FIG. 13 is a schematic of another battery system in accordance with another exemplary embodiment.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Referring to FIG. 1, a battery system 10 for generating electrical power in accordance with an exemplary embodiment is illustrated. The battery system 10 includes a battery module 20, a compressor 22, a condenser 24, conduits 28, 30, 32, a temperature sensor 36, a fan 38, and a microprocessor 40. An advantage of the battery module 20 is that the battery module utilizes cooling fins with external tab portions that contact a cooling manifold to transfer heat energy from battery cells to the cooling manifold to cool the battery cells.


For purposes of understanding, the term “fluid” means either a liquid or a gas. For example, a fluid can comprise either a coolant or a refrigerant. Exemplary coolants include ethylene glycol and propylene glycol. Exemplary refrigerants include R-11, R-12, R-22, R-134A, R-407C and R-410A.


Referring to FIGS. 1-5, the battery module 20 is provided to generate a voltage therein. The battery module 20 includes battery cell assemblies 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, cooling fins 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, and cooling manifolds 120, 122, 124, 126.


The battery cell assemblies 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 are provided to generate an electrical voltage. Each of the battery cell assemblies 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 have rectangular ring-shaped frame members with engagement features which allow the battery cell assemblies to be coupled and secured together.


Referring to FIGS. 3 and 6, the battery cell assemblies each have a substantially similar structure. Accordingly, only the battery cell assemblies 60, 62 will be described in greater detail below. The battery cell assembly 60 includes a rectangular ring-shaped frame member 140, battery cells 142, 144, and a rectangular ring-shaped frame member 146. Each of the rectangular ring-shaped frame members 140, 146 have engagement features which allow the frame members 140, 146 to be coupled and secured together. As shown, both of the battery cells 142, 144 are secured between the rectangular ring-shaped frame members 140, 146.


It should be noted that each of the battery cells have a substantially similar structure in the battery module 20. Accordingly, only the structure of the battery cell 142 will be described in greater detail below. The battery cell 142 includes a body portion 160, a peripheral lip portion 162, and electrodes 164, 166 extending upwardly from the body portion 160. The peripheral lip portion 162 extends around the periphery of the body portion 160. The electrodes 164, 166 extend outwardly from the body portion 150 and have a voltage generated therebetween. The electrodes of the battery cells of the battery module 20 can be electrically coupled together either in series or in parallel depending upon a desired voltage and current of the battery module 20. In one exemplary embodiment, each battery cell is a lithium-ion battery cell. In alternative embodiments, the battery cells could be nickel-cadmium battery cells or nickel metal hydride battery cells for example. Of course, other types of battery cells known to those skilled in the art could be utilized.


Referring to FIGS. 3, 6, 7, and 8, the cooling fins 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112 are provided to conduct heat energy from the battery cells into the cooling fins. Each of the cooling fins have a substantially similar structure and are constructed from at least one of copper, aluminum, and steel. Accordingly, only the structure of the cooling fin 90 will be described in greater detail below. The cooling fin 90 includes a solid rectangular-shaped plate 180, tab portions 182, 184, 186, 188, and plastic end portions 190, 192.


The tab portions 182, 184 extend outwardly from a first edge of the rectangular-shaped plate 180. Further, the tab portions 182, 184 are bent perpendicular in a first direction with respect to the plate 180, such that the tab portions 182, 184 are disposed against a side surface of the battery cell assembly 62. The tab portions 182, 184 are also perpendicular to a front surface of the battery cell 144. The tab portions 182, 184 contact the cooling manifolds 120, 122, respectively, such that the cooling manifolds 120, 122 conduct heat energy away from the cooling fin 90.


The tab portions 186, 188 extend outwardly from a second edge of the rectangular-shaped plate 180. Further, the tab portions 186, 188 are bent perpendicular in a first direction with respect to the plate 180, such that the tab portions 186, 188 are disposed against a side surface of the battery cell assembly 62. The tab portions 186, 188 are also perpendicular to a front surface of the battery cell 144. The tab portions 186, 188 contact the cooling manifolds 124, 126, respectively, such that the cooling manifolds 124, 126 conduct heat energy away from the cooling fin 90.


The plastic end portions 190, 192 are disposed on a bottom end and a top end, respectively, of the cooling fin 90. The plastic end portions 190, 192 are ultrasonically welded to the cooling fin 90.


Referring again to FIG. 6, the battery cell assembly 60 includes a rectangular ring-shaped frame member 210, battery cells 212, 214, and a rectangular ring-shaped frame member 216. Each of the rectangular ring-shaped frame members 210, 216 have engagement features which allow the frame members 210, 216 to be coupled and secured together. As shown, both of the battery cells 212, 214 are secured between the rectangular ring-shaped frame members 210, 216. Further, the frame members 146, 210 of the battery modules 60, 62, respectively, have engagement features which allow the frame members 146, 210 to be coupled and secured together with the cooling fin 90 disposed therebetween.


Referring to FIGS. 1, 2, 9, 10 and 11, the cooling manifolds 120, 122, 124, 126 are configured to allow fluid to flow therethrough to remove heat energy from cooling fins contacting the cooling manifolds. The cooling manifolds 120, 122 are disposed on a first side of the battery module 20, and the cooling manifolds 124, 126 are disposed on a second side of the battery module 20. Further, the cooling manifolds 120, 122, 124, 126 are fluidly coupled between the conduits 28, 30, such that a fluid flows from the conduit 28 into the cooling manifolds and then the fluid flows through the cooling manifolds into the conduit 30. The cooling manifolds 120, 122, 124, 126 are coupled to the battery cell assemblies utilizing known coupling devices or adhesives, such as screws or glues for example.


Referring to FIGS. 2, 9, 10 and 11, the structure of the cooling manifolds 120, 122, 124, 126 are substantially similar to one another. Accordingly, only the structure the cooling manifold 120 will be discussed in greater detail below. The cooling manifold 120 includes an outer rectangular ring-shaped wall 230 that extends in a first direction and inner walls 230, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 254, 256 disposed therein. The outer rectangular ring-shaped wall 230 and the inner walls disposed inside an interior region defined by the wall 230 further define flow channels 270, 272, 274, 276, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296 therein. The flow channels are configured to allow fluid the flow therethrough to extract heat energy from the cooling manifold 120. The cooling manifolds are constructed from a least one of copper and aluminum.


Referring to FIGS. 1 and 2, during operation, in one exemplary embodiment, heat energy is conducted from the battery cell assemblies 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 into the cooling fins 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112 to cool the battery cell assemblies. The cooling fins further conduct heat energy to the cooling manifolds 120, 122, 124, 126. A fluid flows through the cooling manifolds 120, 122, 124, 126 to conduct heat energy from the cooling manifolds into the fluid.


The cooling fins 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112 and the cooling manifolds 120, 122, 124, 126 maintain the battery cells within a desired temperature range, and in particular can maintain the battery cells at a temperature less than a threshold temperature level. In one exemplary embodiment, the desired temperature range is 15° Celsius-35° Celsius. In another exemplary embodiment, the threshold temperature level is 40° Celsius.


Referring again to FIG. 1, in one exemplary embodiment, the compressor 22 is configured to pump a refrigerant through the conduit 28 into cooling manifolds 120, 122, 124, 126 of the battery module 20 in response to a control signal from the microprocessor 40. The conduit 30 is also fluidly coupled to the cooling manifolds 120, 122, 124, 126 of the battery module 20. The conduit 30 receives refrigerant from the cooling manifolds 120, 122, 124, 126 and routes the refrigerant to the condenser 24.


The condenser 24 is provided to extract heat energy from the refrigerant flowing therethrough to cool the refrigerant. As shown, a conduit 32 is fluidly coupled between the condenser 24 and the compressor 22. After exiting the condenser 24, the refrigerant is pumped through the conduit 32 to the compressor 22.


The temperature sensor 36 is provided to generate a signal indicative of a temperature level of the battery cells disposed in the housing 60 that is received by the microprocessor 40.


The fan 38 is provided to urge air past the condenser 24 to cool the condenser 24 in response to a control signal from the microprocessor 40. As shown, the fan 38 is disposed proximate to the condenser 24.


The microprocessor 40 is provided to control operation of the battery system 10. In particular, the microprocessor 40 is configured to generate a control signal for inducing the compressor 22 to pump refrigerant through cooling manifolds of the battery module 20 when the signal from the temperature sensor 36 indicates a temperature level of the battery cells is greater than a predetermined temperature level. Further, the microprocessor 40 is configured to generate another control signal for inducing the fan 38 to blow air across the condenser 24 when the signal from the temperature sensor 36 indicates the temperature level of the battery cells is greater than the predetermined temperature level.


Referring to FIGS. 6, 7 and 12, a flowchart of a method for cooling the battery module 20 having a battery cell will now be explained. For purposes of simplicity, only one battery cell, one cooling fin, and two cooling manifolds will be described.


At step 320, heat energy is conducted from the battery cell 144 into the solid plate 180 of the cooling fin 90.


At step 322, heat energy is conducted from the solid plate 180 of the cooling fin 90 into tab portions 182, 186 disposed on first and second edges, respectively, of the solid plate 180.


At step 324, heat energy is conducted from the tab portion 182 of the cooling fin 90 into the cooling manifold 120.


At step 326, the cooling manifold 120 receives a fluid therein and conducts heat energy from the cooling manifold 120 into the fluid flowing therethrough to cool the battery cell 144.


At step 328, heat energy is conducted from the tab portion 186 of the cooling fin 90 into the cooling manifold 124.


At step 330, the cooling manifold 124 receives a fluid therein and conducts heat energy from the cooling manifold 124 into the fluid flowing therethrough to cool the battery cell 144.


Referring to FIG. 13, a battery system 410 for generating electrical power in accordance with another exemplary embodiment is illustrated. The battery system 410 includes a battery module 420, a pump 422, a heat exchanger 424, a cold plate 425, a reservoir 426, conduits 428, 430, 431, 432, 434, a temperature sensor 436, a fan 437, a refrigerant system 438, and a microprocessor 440. The primary difference between the battery system 410 and the battery system 10 is that the battery system 410 utilizes a coolant instead of a refrigerant to cool the battery module 420.


The battery module 420 has an identical structure as the battery module 20 discussed above.


The pump 422 is configured to pump a coolant through the conduit 428 into cooling manifolds of the battery module 420 in response to a control signal from the microprocessor 440. As shown, the conduit 428 is fluidly coupled between the pump 422 and the battery module 420, and the conduit 430 is fluidly coupled between the cooling manifolds of the battery module 420 and the heat exchanger 424. After exiting the cooling manifolds of the battery module 420, the coolant is pumped through the conduit 430 to the heat exchanger 424.


The heat exchanger 424 is provided to extract heat energy from the coolant flowing therethrough to cool the coolant. As shown, a conduit 431 is fluidly coupled between the heat exchanger 424 and the cold plate 425. After exiting the heat exchanger 424, the coolant is pumped through the conduit 431 to the cold plate 425.


The fan 437 is provided to urge air past the heat exchanger 424 to cool the heat exchanger 424 in response to a control signal from the microprocessor 440. As shown, the fan 437 is disposed proximate to the heat exchanger 424.


The cold plate 425 is provided to extract heat energy from the coolant flowing therethrough to further cool the coolant. As shown, a conduit 422 is fluidly coupled between the cold plate 425 and the reservoir 426. After exiting the cold plate 425, the coolant is pumped through the conduit 432 to the reservoir 426.


The reservoir 426 is provided to store at least a portion of the coolant therein. As shown, a conduit 434 is fluidly coupled between the reservoir 426 and the pump 422. After exiting the reservoir 426, the coolant is pumped through the conduit 434 to the pump 422.


The temperature sensor 436 is provided to generate a signal indicative of a temperature level of at least one of the battery cells in the battery module 420, that is received by the microprocessor 440.


The refrigerant system 438 is provided to cool the heat exchanger 424 in response to a control signal from the microprocessor 440. As shown, the refrigerant system 438 is operably coupled to the cold plate 425.


The microprocessor 440 is provided to control operation of the battery system 410. In particular, the microprocessor 440 is configured to generate a control signal for inducing the pump 422 to pump refrigerant through the cooling manifolds of the battery module 420 when the signal from the temperature sensor 436 indicates a temperature level of at least one of the battery cells is greater than a predetermined temperature level. Further, the microprocessor 440 is configured to generate another control signal for inducing the fan 437 to blow air across the heat exchanger 424 when the signal from the temperature sensor 436 indicates the temperature level of at least one of the battery cells is greater than the predetermined temperature level. Further, the microprocessor 440 is configured to generate another control signal for inducing the refrigerant system 438 to cool the cold plate 425 when the signal from the temperature sensor 436 indicates the temperature level of at least one of the battery cells is greater than the predetermined temperature level.


The battery module and the method for cooling the battery module provide a substantial advantage over other modules and methods. In particular, the battery module and the method provide a technical effect of cooling a battery cell in the battery module utilizing cooling fins with external tab portions that contact a cooling manifold to transfer heat energy from battery cells to the cooling manifold to cool the battery cells.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed for carrying this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms, first, second, etc. are used to distinguish one element from another. Further, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.

Claims
  • 1. A battery module, comprising: a battery cell; anda cooling fin disposed adjacent to the battery cell, the cooling fin having a solid plate and first and second tab portions extending from first and second edges, respectively, of the solid plate, the first and second tab portions configured to be bent perpendicular with respect to the solid plate and extending in a first direction, the cooling fin configured to extract heat energy from the battery cell thereto;a first cooling manifold that contacts the first tab portion of the cooling fin, the first cooling manifold having an outer rectangular ring-shaped wall extending in the first direction that defines at least one flow channel therethrough configured to receive a fluid therethrough, the first cooling manifold configured to conduct heat energy from first tab portion of the cooling fin into the fluid flowing through the first cooling manifold to cool the battery cell; anda second cooling manifold that contacts the second tab portion of the cooling fin, the second cooling manifold having at least one flow channel extending therethrough configured to receive a fluid therethrough, the second cooling manifold configured to conduct heat energy from the cooling fin into the fluid flowing through the second cooling manifold to cool the battery cell.
  • 2. The battery module of claim 1, wherein the solid plate of the cooling fin is rectangular shaped.
  • 3. The battery module of claim 1, wherein the cooling fin is constructed of at least one of copper, aluminum, and steel.
  • 4. The battery module of claim 1, wherein the first cooling manifold is constructed of at least one of copper and aluminum.
  • 5. The battery module of claim 1, wherein the fluid is a coolant.
  • 6. The battery module of claim 5, wherein the coolant comprises at least one of ethylene glycol and propylene glycol.
  • 7. The battery module of claim 1, wherein the first cooling manifold further includes an inner wall disposed within an interior region defined by the outer rectangular ring-shaped wall, the inner wall and the outer rectangular ring-shaped wall defining at least another flow channel therethrough that is configured to receive the fluid therethrough.
  • 8. The battery module of claim 1, further comprising first and second rectangular ring-shaped frame members configured to hold the battery cell and the solid plate of the cooling fin therebetween.
  • 9. The battery module of claim 1, wherein the fluid is a refrigerant.
US Referenced Citations (164)
Number Name Date Kind
2273244 Cornelius Feb 1942 A
2391859 Earl Jan 1946 A
3503558 Galiulo et al. Mar 1970 A
3522100 Lindstrom Jul 1970 A
3550681 Stier et al. Dec 1970 A
3964930 Reiser Jun 1976 A
4063590 McConnell Dec 1977 A
4298904 Koenig Nov 1981 A
4322776 Job et al. Mar 1982 A
4390841 Martin et al. Jun 1983 A
4518663 Kodali et al. May 1985 A
4646202 Hook et al. Feb 1987 A
4701829 Bricaud et al. Oct 1987 A
4777561 Murphy et al. Oct 1988 A
4849858 Grapes et al. Jul 1989 A
4995240 Barthel et al. Feb 1991 A
5057968 Morrison Oct 1991 A
5071652 Jones et al. Dec 1991 A
5214564 Metzler et al. May 1993 A
5270131 Diethelm et al. Dec 1993 A
5322745 Yanagihara et al. Jun 1994 A
5329988 Juger Jul 1994 A
5346786 Hodgetts Sep 1994 A
5356735 Meadows et al. Oct 1994 A
5510203 Hamada et al. Apr 1996 A
5606242 Hull et al. Feb 1997 A
5652502 Van Phuoc et al. Jul 1997 A
5658682 Usuda et al. Aug 1997 A
5663007 Ikoma et al. Sep 1997 A
5736836 Hasegawa et al. Apr 1998 A
5756227 Suzuki et al. May 1998 A
5796239 Van Phuoc et al. Aug 1998 A
5825155 Ito et al. Oct 1998 A
5937664 Matsuno et al. Aug 1999 A
5982403 Inagaki Nov 1999 A
6016047 Notten et al. Jan 2000 A
6087036 Rouillard et al. Jul 2000 A
6111387 Kouzu et al. Aug 2000 A
6176095 Porter Jan 2001 B1
6344728 Kouzu et al. Feb 2002 B1
6353815 Vilim et al. Mar 2002 B1
6362598 Laig-Horstebrock et al. Mar 2002 B2
6399238 Oweis et al. Jun 2002 B1
6441586 Tate, Jr. et al. Aug 2002 B1
6462949 Parish, IV et al. Oct 2002 B1
6512347 Hellmann et al. Jan 2003 B1
6515454 Schoch Feb 2003 B2
6534954 Plett Mar 2003 B1
6563318 Kawakami et al. May 2003 B2
6569556 Zhou et al. May 2003 B2
6662891 Misu et al. Dec 2003 B2
6689510 Gow et al. Feb 2004 B1
6696197 Inagaki et al. Feb 2004 B2
6724172 Koo Apr 2004 B2
6750630 Inoue et al. Jun 2004 B2
6775998 Yuasa et al. Aug 2004 B2
6780538 Hamada et al. Aug 2004 B2
6821671 Hinton et al. Nov 2004 B2
6826948 Bhatti et al. Dec 2004 B1
6829562 Sarfert Dec 2004 B2
6832171 Barsoukov et al. Dec 2004 B2
6876175 Schoch Apr 2005 B2
6878485 Ovshinsky et al. Apr 2005 B2
6892148 Barsoukov et al. May 2005 B2
6927554 Tate, Jr. et al. Aug 2005 B2
6943528 Schoch Sep 2005 B2
6967466 Koch Nov 2005 B2
6982131 Hamada et al. Jan 2006 B1
7012434 Koch Mar 2006 B2
7039534 Ryno et al. May 2006 B1
7061246 Dougherty et al. Jun 2006 B2
7070874 Blanchet et al. Jul 2006 B2
7072871 Tinnemeyer Jul 2006 B1
7098665 Laig-Hoerstebrock Aug 2006 B2
7109685 Tate, Jr. et al. Sep 2006 B2
7126312 Moore Oct 2006 B2
7143124 Garthwaite Nov 2006 B2
7147045 Quisenberry et al. Dec 2006 B2
7150935 Hamada et al. Dec 2006 B2
7197487 Hansen et al. Mar 2007 B2
7199557 Anbuky et al. Apr 2007 B2
7250741 Koo et al. Jul 2007 B2
7251889 Kroliczek et al. Aug 2007 B2
7253587 Meissner Aug 2007 B2
7264902 Horie et al. Sep 2007 B2
7278389 Kirakosyan Oct 2007 B2
7315789 Plett Jan 2008 B2
7321220 Plett Jan 2008 B2
7327147 Koch Feb 2008 B2
7467525 Ohta et al. Dec 2008 B1
7531270 Buck et al. May 2009 B2
7795845 Cho Sep 2010 B2
7797958 Alston et al. Sep 2010 B2
7816029 Takamatsu et al. Oct 2010 B2
7846573 Kelly Dec 2010 B2
7879480 Yoon et al. Feb 2011 B2
7883793 Niedzwiecki et al. Feb 2011 B2
7976978 Shin et al. Jul 2011 B2
7981538 Kim et al. Jul 2011 B2
7997367 Nakamura Aug 2011 B2
8007915 Kurachi Aug 2011 B2
8030886 Mahalingam et al. Oct 2011 B2
8067111 Koetting et al. Nov 2011 B2
20010035739 Laig-Horstebrock et al. Nov 2001 A1
20020130637 Schoch Sep 2002 A1
20020169581 Sarfert Nov 2002 A1
20020182493 Ovshinsky et al. Dec 2002 A1
20030052690 Schoch Mar 2003 A1
20030184307 Kozlowski et al. Oct 2003 A1
20030211384 Hamada et al. Nov 2003 A1
20040000892 Jae-Seung Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040189257 Dougherty et al. Sep 2004 A1
20050001627 Anbuky et al. Jan 2005 A1
20050026014 Fogaing et al. Feb 2005 A1
20050035742 Koo et al. Feb 2005 A1
20050046388 Tate, Jr. et al. Mar 2005 A1
20050089750 Ng et al. Apr 2005 A1
20050100786 Ryu et al. May 2005 A1
20050103486 Demuth et al. May 2005 A1
20050110460 Arai et al. May 2005 A1
20050127874 Lim et al. Jun 2005 A1
20050134038 Walsh Jun 2005 A1
20050194936 Cho Sep 2005 A1
20060097698 Plett May 2006 A1
20060100833 Plett May 2006 A1
20060111854 Plett May 2006 A1
20060111870 Plett May 2006 A1
20060234119 Kruger et al. Oct 2006 A1
20060286450 Yoon et al. Dec 2006 A1
20070035307 Schoch Feb 2007 A1
20070046292 Plett Mar 2007 A1
20070087266 Bourke et al. Apr 2007 A1
20070103120 Plett May 2007 A1
20070120533 Plett May 2007 A1
20070188143 Plett Aug 2007 A1
20070236182 Plett Oct 2007 A1
20080003491 Yahnker et al. Jan 2008 A1
20080041079 Nishijima et al. Feb 2008 A1
20080094035 Plett Apr 2008 A1
20080182151 Mizusaki et al. Jul 2008 A1
20080248338 Yano et al. Oct 2008 A1
20090029239 Koetting et al. Jan 2009 A1
20090087727 Harada et al. Apr 2009 A1
20090104512 Fassnacht et al. Apr 2009 A1
20090155680 Maguire et al. Jun 2009 A1
20090186265 Koetting et al. Jul 2009 A1
20090258288 Weber et al. Oct 2009 A1
20090280395 Nemesh et al. Nov 2009 A1
20090325052 Koetting et al. Dec 2009 A1
20090325054 Payne et al. Dec 2009 A1
20090325055 Koetting et al. Dec 2009 A1
20100112419 Jang et al. May 2010 A1
20100203376 Choi et al. Aug 2010 A1
20100209760 Yoshihara et al. Aug 2010 A1
20100262791 Gilton Oct 2010 A1
20100275619 Koetting et al. Nov 2010 A1
20100276132 Payne Nov 2010 A1
20100279152 Payne Nov 2010 A1
20100279154 Koetting et al. Nov 2010 A1
20110027640 Gadawski et al. Feb 2011 A1
20110041525 Kim et al. Feb 2011 A1
20110052959 Koetting et al. Mar 2011 A1
20120082880 Koetting et al. Apr 2012 A1
Foreign Referenced Citations (29)
Number Date Country
1577966 Sep 2005 EP
1852925 Nov 2007 EP
08111244 Apr 1996 JP
09129213 May 1997 JP
09219213 Aug 1997 JP
2001105843 Apr 2001 JP
2002038033 Feb 2002 JP
2002319383 Oct 2002 JP
2003188323 Jul 2003 JP
2005126315 May 2005 JP
2005349955 Dec 2005 JP
2006139928 Jun 2006 JP
2007305425 Nov 2007 JP
2008054379 Nov 2007 JP
2008062875 Mar 2008 JP
2008080995 Apr 2008 JP
2008159440 Jul 2008 JP
2009009889 Jan 2009 JP
2009054297 Mar 2009 JP
20050092605 Sep 2005 KR
100637472 Oct 2006 KR
100765659 Oct 2007 KR
20080047641 May 2008 KR
20090082212 Jul 2009 KR
100921346 Oct 2009 KR
2006101343 Sep 2006 WO
2007007503 Jan 2007 WO
2007115743 Oct 2007 WO
2009073225 Jun 2009 WO
Non-Patent Literature Citations (32)
Entry
U.S. Appl. No. 12/165,100, filed Jun. 30, 2008 entitled Battery Cell Assembly Having Heat Exchanger with Serpentine Flow Path.
U.S. Appl. No. 12/164,780, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assembly with Heat Exchanger.
U.S. Appl. No. 12/164,627, filed Jun. 30, 2008 entitled Liquid Cooled Battery Manifold Assembly with Flow Balancing Feature.
U.S. Appl. No. 12/246,073, filed Oct. 6, 2008 entitled Battery Cell Carrier That Engages Side Walls of Active Cell.
U.S. Appl. No. 12/164,445, filed Jun. 30, 2008 entitled Battery Module Having a Rubber Cooling Manifold.
U.S. Appl. No. 12/258,696, filed Oct. 27, 2008 entitled Battery Module Having Cooling Manifold with Ported Screws and Method for Cooling the Battery Module.
U.S. Appl. No. 12/433,155, filed Apr. 30, 2009 entitled Cooling System for a Battery and a Method for Cooling the Battery System.
U.S. Appl. No. 12/433,427, filed Apr. 30, 2009 entitled Cooling Manifold and Method for Manufacturing the Cooling Manifold.
U.S. Appl. No. 12/433,534, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module.
U.S. Appl. No. 12/433,397, filed Apr. 30, 2009 entitled Battery Systems, Battery Modules, and Method for Cooling a Battery Module.
U.S. Appl. No. 12/164,741, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assemblies with Alignment-Coupling Features.
U.S. Appl. No. 12/433,485, filed Apr. 30, 2009 entitled Battery Systems, Battery Module and Method for Cooling the Battery Module.
U.S. Appl. No. 12/426,795, filed Apr. 20, 2009 entitled Frame Member, Frame Assembly and Battery Cell Assembly Made Therefrom and Methods of Making the Same.
U.S. Appl. No. 12/511,530, filed Jul. 29, 2009 entitled Battery Module and Method for Cooling the Battery Module.
U.S. Appl. No. 12/511,552, filed Jul. 29, 2009 entitled Battery Module and Method for Cooling the Battery Module.
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>.
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages.
International Search Report; International Application No. PCT/KR2009/003428; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages.
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages.
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages.
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages.
Machine translation of Japanese Patent Application No. 2009-009889 A, published Jan. 15, 2009.
Thomas J. Gadawski et al., pending U.S Appl. No. 13/433,649 entitled “Battery System and Method for Cooling the Battery System,” filed with the U.S. Patent and Trademark Office on Mar. 29, 2012.
U.S. Appl. No. 13/475,963 filed on May 19, 2012 entitled Battery Cell Assembly and Method for Manufacturing a Cooling Fin for the Battery Cell Assembly.
Related Publications (1)
Number Date Country
20110052959 A1 Mar 2011 US