This application relates generally to a battery module having a rubber cooling manifold.
Battery packs generate heat during usage. To prevent degradation of the battery packs, the battery packs should be cooled.
The inventors herein have recognized that heat exchangers disposed in battery cell assemblies should be utilized to cool the battery cell assemblies. Further, the inventors herein have recognized that a flexible cooling manifold configured to supply fluid to the heat exchangers should be utilized to effectively couple to the heat exchangers.
A battery module in accordance with an exemplary embodiment is provided. The battery module includes a plurality of battery cell assemblies having a plurality of heat exchangers therein. The battery module includes a first rubber cooling manifold configured to route a fluid into the plurality of heat exchangers. The first rubber cooling manifold has a first tubular member, a first inlet port, a first plurality of outlet ports, and first and second end caps. The first end cap is coupled to a first end of the first tubular member. The second end cap is coupled to a second end of the first tubular member. The first inlet port is disposed on a top portion of the first tubular member for routing the fluid into the first tubular member. The first plurality of outlet ports is disposed collinearly and longitudinally along an outer surface of the first tubular member and spaced apart from one another. The first plurality of outlet ports extend outwardly from the outer surface of the first tubular member. The first plurality of outlet ports route the fluid from the first tubular member into the plurality of heat exchangers for cooling the plurality of battery cell assemblies.
Referring to
The battery cell assemblies 30, 32, 34, 36, 38, 40, 42, 44 are electrically coupled together utilizing the interconnect assembly 74. In particular, the interconnect assembly 74 electrically couples together electrical terminals from the battery cell assemblies in a desired configuration to provide an electrical current and voltage therefrom.
The heat exchangers 50, 52, 54, 56 receive a fluid from the cooling manifold 78 to cool the battery cell assemblies. The heated fluid from the heat exchangers 50, 52, 54, 56 is received by the cooling manifold 80.
The side plates 60, 62, 64, 66 are coupled to the battery cell assemblies to provide additional support for the battery cell assemblies. The coupling plates 70, 72 are provided to engage the side plates 64, 66 to provide additional support for the battery cell assemblies. The cover plate 76 is provided to cover the interconnect assembly 74.
Referring to
The rectangular ring-shaped frame member 90 is configured to be coupled to the rectangular ring-shaped frame member 98 for holding the battery cell 92, the securement ring-shaped member 94, and the battery cell 96 therebetween.
The battery cell 92 is provided to output an operational voltage between the electrical terminals 164, 166. The battery cell 92 includes a body portion and a peripheral lip portion extending around the body portion, and electrical terminals extending from the body portion. The battery cell 92 is disposed between the frame member 90 and a portion of the securement ring-shaped member 94 and the battery cell 96.
The securement ring-shaped member 94 is provided to further secure the battery cells 92, 96 between the rectangular ring-shaped members 90, 98. The securement ring-shaped member 94 is disposed between the peripheral lip portions of the battery cells 92, 96 to further support the battery cells 92, 96.
The battery cell 96 is disposed between the rectangular ring-shaped frame member 98 and both a portion of the battery cell 92 and the securement ring-shaped member 94. The structure of the battery cell 96 is substantially similar to the battery cell 92.
The rectangular ring-shaped frame member 98 is configured to be coupled to the rectangular ring-shaped frame member 90 for holding the battery cell 92, the securement ring-shaped member 94, and the battery cell 96 therebetween. Further, the rectangular ring-shaped frame member 98 is provided to couple to the rectangular ring-shaped frame member 106 for holding the heat exchanger 100, the securement ring-shaped member 102, and the battery cell 104 therebetween.
The heat exchanger 100 is configured to cool the battery cells 92, 96 and 104 to maintain the battery cells at a desired temperature. The heat exchanger 100 is disposed between (i) a portion of the battery cell 96 and the rectangular ring-shaped frame member 98, and (ii) a portion of the battery cell 104 and the securement ring-shaped member 102. The heat exchanger 100 includes a housing 260, an inlet port 262, and an outlet port 264. While flowing through the heat exchanger 100, the fluid extracts heat energy from the battery cells 92, 96, 104 to cool the battery cells. From the outlet port 264, the heated fluid flows to the cooling manifold 80.
The securement ring-shaped member 102 is provided to further secure the heat exchanger 100 and the battery cell 104 between the rectangular ring-shaped members 90, 106. The securement ring-shaped member 102 is disposed between the rectangular ring-shaped frame member 98 and a peripheral lip portion of the battery cell 104.
The battery cell 104 is disposed between the rectangular ring-shaped frame member 106 and both a portion of the heat exchanger 100 and the securement ring-shaped member 102. The structure of the battery cell 104 is substantially similar to the battery cell 92.
The rectangular ring-shaped frame member 106 is configured to be coupled to the rectangular ring-shaped frame member 98 for holding the heat exchanger 100, the securement ring-shaped member 102, and the battery cell 104 therebetween.
Referring to
The inlet port 602 is provided to route fluid from a fluid reservoir 812 into the tubular member 600. The inlet port 602 is disposed on a top portion of the tubular member 600.
The tubular member 600 receives the fluid from the inlet port 602 and routes the fluid to the outlet ports 604, 606, 608, 610, 612, 614, 616, 618, 620, 622, 624, 626, 628, 630, 632. The end cap 640 is disposed at a first end of the tubular member 600. The end cap 642 is disposed at a second of the tubular member 600.
Referring to
Referring to
The inlet ports 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732 are disposed collinearly and longitudinally along the outer surface 703 of the tubular member 700 and are spaced apart from one another. Further, the inlet ports 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732 extend outwardly from the outer surface 703 of the tubular member 700. The inlet ports 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732 receive the fluid from the heat exchangers 50, 52, 54, 56 and the heat exchangers in the battery cell assemblies 30, 32, 34, 36, 40, 42, 44 and route the fluid to the tubular member 700.
The tubular member 700 receives the fluid from the inlet ports 704, 706, 708, 710, 712, 714, 716, 718, 720, 722, 724, 726, 728, 730, 732 and routes the fluid to the outlet port 702. The outlet port 702 is disposed on the top portion of the tubular member 700 and routes the fluid from the tubular member 700 to the reservoir 812. The end cap 742 is disposed at a first end of the tubular member 700. The end cap 744 is disposed at a second of a tubular member 700.
Referring to
The battery module 20 having cooling manifolds 78, 80 provide a substantial advantage over other battery systems. In particular, the battery module has cooling manifolds constructed from rubber that provides a technical effect of allowing the cooling manifolds to be readily coupled to heat exchangers in the battery cell assemblies within the battery module.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed for carrying this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms, first, second, etc. are used to distinguish one element from another. Further, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
Number | Name | Date | Kind |
---|---|---|---|
3964930 | Reiser | Jun 1976 | A |
4390841 | Martin et al. | Jun 1983 | A |
5392873 | Masuyama et al. | Feb 1995 | A |
5606242 | Hull et al. | Feb 1997 | A |
5652502 | Van Phuoc et al. | Jul 1997 | A |
5658682 | Usuda et al. | Aug 1997 | A |
5796239 | Van Phuoc et al. | Aug 1998 | A |
5825155 | Ito et al. | Oct 1998 | A |
5982403 | Inagaki | Nov 1999 | A |
6016047 | Notten et al. | Jan 2000 | A |
6159630 | Wyser | Dec 2000 | A |
6289979 | Kato | Sep 2001 | B1 |
6353815 | Vilim et al. | Mar 2002 | B1 |
6362598 | Laig-Horstebrock et al. | Mar 2002 | B2 |
6441586 | Tate, Jr. et al. | Aug 2002 | B1 |
6515454 | Schoch | Feb 2003 | B2 |
6534954 | Plett | Mar 2003 | B1 |
6563318 | Kawakami et al. | May 2003 | B2 |
6724172 | Koo | Apr 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6829562 | Sarfert | Dec 2004 | B2 |
6832171 | Barsoukov et al. | Dec 2004 | B2 |
6876175 | Schoch | Apr 2005 | B2 |
6892148 | Barsoukov et al. | May 2005 | B2 |
6927554 | Tate, Jr. et al. | Aug 2005 | B2 |
6943528 | Scoch | Sep 2005 | B2 |
6967466 | Koch | Nov 2005 | B2 |
7012434 | Koch | Mar 2006 | B2 |
7039534 | Ryno et al. | May 2006 | B1 |
7061246 | Dougherty et al. | Jun 2006 | B2 |
7072871 | Tinnemeyer | Jul 2006 | B1 |
7098665 | Laig-Hoerstebrock | Aug 2006 | B2 |
7109685 | Tate, Jr. et al. | Sep 2006 | B2 |
7126312 | Moore | Oct 2006 | B2 |
7197487 | Hansen et al. | Mar 2007 | B2 |
7199557 | Anbuky et al. | Apr 2007 | B2 |
7250741 | Koo et al. | Jul 2007 | B2 |
7253587 | Meissner | Aug 2007 | B2 |
7315789 | Plett | Jan 2008 | B2 |
7321220 | Plett | Jan 2008 | B2 |
7327147 | Koch | Feb 2008 | B2 |
7591303 | Zeigler et al. | Sep 2009 | B2 |
8011467 | Asao et al. | Sep 2011 | B2 |
8663829 | Koetting et al. | Mar 2014 | B2 |
20020012833 | Gow et al. | Jan 2002 | A1 |
20020086201 | Payen et al. | Jul 2002 | A1 |
20030017384 | Marukawa et al. | Jan 2003 | A1 |
20030184307 | Kozlowski et al. | Oct 2003 | A1 |
20030189104 | Watanabe et al. | Oct 2003 | A1 |
20040121205 | Blanchet | Jun 2004 | A1 |
20050100786 | Ryu et al. | May 2005 | A1 |
20050127874 | Lim et al. | Jun 2005 | A1 |
20050194936 | Cho | Sep 2005 | A1 |
20060097698 | Plett | May 2006 | A1 |
20060100833 | Plett | May 2006 | A1 |
20060111854 | Plett | May 2006 | A1 |
20060111870 | Plett | May 2006 | A1 |
20070035307 | Scoch | Feb 2007 | A1 |
20070046292 | Plett | Mar 2007 | A1 |
20070103120 | Plett | May 2007 | A1 |
20070120533 | Plett | May 2007 | A1 |
20070188143 | Plett | Aug 2007 | A1 |
20070236182 | Plett | Oct 2007 | A1 |
20080094035 | Plett | Apr 2008 | A1 |
20080110606 | Gorbounov et al. | May 2008 | A1 |
20080182151 | Mizusaki et al. | Jul 2008 | A1 |
20080299446 | Kelly | Dec 2008 | A1 |
20090123819 | Kim | May 2009 | A1 |
20090325059 | Niedzwiecki et al. | Dec 2009 | A1 |
20100304203 | Buck et al. | Dec 2010 | A1 |
20100307723 | Thomas et al. | Dec 2010 | A1 |
20110000241 | Favaretto | Jan 2011 | A1 |
20110020676 | Kurosawa | Jan 2011 | A1 |
20110027631 | Koenigsmann | Feb 2011 | A1 |
20110045326 | Leuthner et al. | Feb 2011 | A1 |
20110052960 | Kwon et al. | Mar 2011 | A1 |
20110189523 | Eom | Aug 2011 | A1 |
20110293982 | Martz et al. | Dec 2011 | A1 |
20110293983 | Oury et al. | Dec 2011 | A1 |
20120156542 | Schaefer et al. | Jun 2012 | A1 |
20120171543 | Hirsch et al. | Jul 2012 | A1 |
20120183830 | Schaefer et al. | Jul 2012 | A1 |
20130045410 | Yang et al. | Feb 2013 | A1 |
20130136136 | Ando et al. | May 2013 | A1 |
20140120390 | Merriman et al. | May 2014 | A1 |
20140147709 | Ketkar et al. | May 2014 | A1 |
20140227575 | Ketkar | Aug 2014 | A1 |
20140308558 | Merriman et al. | Oct 2014 | A1 |
20150010801 | Arena et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
1385917 | Dec 2002 | CN |
101101997 | Jan 2008 | CN |
1754279 | Sep 2010 | CN |
102008034860 | Jan 2010 | DE |
102009006426 | Jul 2010 | DE |
102010021922 | Dec 2011 | DE |
2065963 | Jun 2009 | EP |
2200109 | Jun 2010 | EP |
19970199186 | Jul 1997 | JP |
2006512731 | Apr 2006 | JP |
2006125835 | May 2006 | JP |
2007107684 | Apr 2007 | JP |
20090107443 | Oct 2009 | KR |
20100119497 | Sep 2010 | KR |
20100119498 | Sep 2010 | KR |
20110013269 | Feb 2011 | KR |
1020110013270 | Feb 2011 | KR |
20110126764 | Nov 2011 | KR |
2006083446 | Aug 2006 | WO |
2011145830 | Nov 2011 | WO |
Entry |
---|
U.S. Appl. No. 12/164,780, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assembly with Heat Exchanger. |
U.S. Appl. No. 12/165,100, filed Jun. 30, 2008 entitled Battery Cell Assembly Having Heat Exchanger With Serpentine Flow Path. |
U.S. Appl. No. 12/016,630, filed Jan. 18, 2008 entitled Battery Cell Assembly and Method for Assembling the Battery Cell Assembly. |
U.S. Appl. No. 11/828,927, filed Jul. 26, 2007 entitled Battery Cell Carrier Assembly Having a Battery Cell Carrier for Holding a Battery Cell Therein. |
U.S. Appl. No. 12/164,741, filed Jun. 30, 2008 entitled Battery Module Having Battery Cell Assemblies with Alignment-Coupling Features. |
U.S. Appl. No. 12/164,627, filed Jun. 30, 2008 entitled Battery Module Having Cooling Manifold and Method for Cooling Battery Module. |
International Search Report for International application No. PCT/KR2013/004015 dated Sep. 26, 2013. |
U.S. Appl. No. 14/273,572, filed May 9,2014 entitled Battery Pack and Method of Assembling the Battery Pack. |
U.S. Appl. No. 14/273,586, filed May 9, 2014 entitled Battery Module and Method of Assembling the Battery Module. |
U.S. Appl. No. 14/328,000, filed Jul. 10, 2014 entitled Battery System and Method of Assembling the Battery System. |
U.S. Appl. No. 14/330,163, filed Jul. 14, 2014 entitled Battery System and Method for Cooling the Battery System. |
U.S. Appl. No. 14/511,389, filed Oct. 10, 2014 entitled Battery Cell Assembly. |
U.S. Appl. No. 14/516,667, filed Oct. 17, 2014 entitled Battery Cell Assembly. |
U.S. Appl. No. 14/531,696, filed Nov. 3, 2014 entitled Battery Pack. |
Written Opinion for International application No. PCT/KR2013002597 dated Feb. 2, 2015. |
Written Opinion for International application No. PCT/KR2014/002090 dated May 26, 2014. |
Number | Date | Country | |
---|---|---|---|
20090325051 A1 | Dec 2009 | US |