The present invention relates to a battery monitoring system and method. The present invention more specifically relates to a system and method for predicting whether the battery will perform in certain applications as expected in the future.
It is generally known to provide for a system for determining when to replace a battery of a vehicle. According to such known systems, a determination is made to replace the battery at a pre-selected time such as five years after installation of the battery. According to such known systems, a determination is also made to replace the battery when the perceived time required for the battery to crank the engine (cranking time) is longer than expected. However, such known systems have several disadvantages including that the battery may require replacement before such pre-selected time, and any perceived increase in the cranking time may be due to other factors unrelated to the battery (such as a faulty starter).
It is also generally known to provide for a system for determining when to replace a battery of a vehicle based on the voltage of the battery. According to such known systems, a determination is made to replace the battery when the voltage of the battery falls below a pre-selected value. However, such known systems have several disadvantages, including that they do not record the “history” of the battery during its use as would allow for a more accurate prediction of the capacity of the battery, notwithstanding the measured voltage.
Accordingly, it would be advantageous to provide a battery monitoring system for predicting whether the battery will perform in certain applications as expected in the future. It would also be advantageous to provide a system for determining when a battery for a vehicle should be replaced which accounts for the history of the battery during its use. It would be desirable to provide for a battery monitoring system having one or more of these or other advantageous features.
The present invention relates to a method for predicting the remaining life of a battery for a vehicle. The method includes obtaining a value representative of the amount of remaining life for a battery in a new and fully charged state and monitoring at least one parameter of the battery during use of the battery. The method also includes obtaining an acceleration factor based on the at least one monitored parameter and estimating the amount of life lost from the battery utilizing the acceleration factor.
The present invention also relates to a method for monitoring a battery. The method includes obtaining an estimate of the time that a new battery will deliver a sufficient amount of power for a vehicle application and monitoring the battery during use. The method also includes determining the amount of time that the battery has been in a first state during the use, obtaining an acceleration factor for the first state, and adjusting the amount of time that the battery has been in the first state utilizing the acceleration factor. The method further includes subtracting the adjusted amount of time from the estimate to obtain an estimate of the remaining time that the battery will deliver a sufficient amount of power for a vehicle application.
The present invention also relates to a method for monitoring a battery for a vehicle. The method includes obtaining an input signal representative of an estimate of the amount of life remaining for a new battery and obtaining input signals during use of the battery that are representative of states of the battery. The method also includes determining the amount of time the battery is at a first state and determining the amount of time the battery is at a second state. The method further includes obtaining a first acceleration factor for the first state and a second acceleration factor for the second state. The method further includes applying the first acceleration factor to the amount of time the battery is at the first state to provide a first adjusted amount of time and applying the second acceleration factor to the amount of time the battery is at the second state to provide a second adjusted amount of time. The method further includes subtracting the first adjusted amount of time and the second adjusted amount of time from the estimate to provide an adjusted estimate of the remaining life of the battery.
A battery monitoring system 10 as shown in
System 10 predicts the ability of battery system 20 to perform in certain applications as expected in the future. Specifically, system 10 predicts whether battery system 20 has a sufficient remaining amount of “life” (i.e. may deliver a sufficient amount of power to the vehicle for a sufficient amount of time). In other words, system 10 predicts whether battery system 20 will likely be able to start the engine of the vehicle and power the loads of the vehicle.
A new, fully charged battery of battery system 10 has a fixed amount of “life.” A certain amount of life is “lost” from battery system 20 during its use. For example, the cold cranking capability, reserve capacity and cycling capability of battery system 20 is reduced during its use of battery system 20. The extent to which the amount of life is lost from the battery depends on a variety of parameters, including the voltage, temperature, resistance, and state of charge of the battery system. An output signal 26 (such as a warning signal) that battery system 20 should be replaced is provided when system 10 predicts that battery system 20 will not likely perform for the intended use. (According to an alternative embodiment, another output signal comprises a signal to close a switch 40 (or switches) to connect the loads of an electrical system 22 to battery system 20 to “manage” operation of the battery system 20.)
One way system 10 predicts the amount of life remaining in battery system 20 is based on the monitored history or use of battery system 20. In general, the battery monitoring system sets a parameter intended to be representative of a battery “life.” As the battery is in use over time, the battery monitoring system then subtracts a certain amount from the “life” based on the nature of the use. For example, a greater amount of life is subtracted if the battery undergoes a high voltage or temperature. The system also subtracts a greater amount of life if the battery is discharged to a great extent before it is recharged. Other uses may affect the extent to which the “life” is reduced.
Another way system 10 predicts the amount of life remaining in battery system 20 is based on a parameter monitored during cranking of the engine. In general, the battery monitoring system subtracts a greater amount of life if the battery takes a greater time to deliver a sufficient amount of power to crank the engine, or if the voltage of the battery drops dramatically during cranking of the engine.
A routine 50 for predicting whether a battery of a battery system may deliver a sufficient amount of power for a sufficient amount of time is shown in FIG. 3. Routine 50 uses an input signal from a sensor (or otherwise acquired) representative of the voltage and temperature of the battery during use according to a preferred embodiment. The voltage and temperature of a battery is monitored and recorded over time according to a particularly preferred embodiment. The history of the voltage and temperature of a battery during use is shown in
Referring to
The amount of life lost from the battery is determined based on the monitored parameters. If the battery undergoes at a high voltage or temperature during use, the amount of life lost from the battery is accelerated. An acceleration factor based on the voltage and temperature of the battery is pre-determined according to a preferred embodiment. The time the battery is at the voltage and temperature is multiplied by the acceleration factor based on voltage and temperature (step 58), resulting in a prediction of the amount of life lost of the battery due to voltage and temperature.
The amount of life lost from the battery is also determined based on the state of charge of the battery. If the battery undergoes a low state of charge, the amount of life lost from the battery is accelerated. An acceleration factor for each state of charge of the battery is pre-determined according to a preferred embodiment. The time the battery is at the state of charge is divided by the acceleration factor based on the state of charge (step 60), resulting in a prediction of the amount of life lost of the battery due to state of charge.
The time the battery is at the specified voltage and temperature (adjusted by the acceleration factors) is subtracted from the initial estimate of time the new, fully charged battery will deliver a sufficient amount of power for a sufficient amount of time (step 62). The result is a prediction of the amount of time (e.g. days) the battery may deliver a sufficient amount of power is then made (step 72).
Referring further to
The steps for predicting whether a battery may deliver a sufficient amount of power for a sufficient amount of time is shown in TABLES 1-4 according to an exemplary embodiment. The time the battery is at a specified voltage, temperature and state of charge is continuously monitored during use of the battery in a vehicle according to a preferred embodiment. Over a 3.5 hour period, the battery is at the parameters shown in TABLE 1:
The acceleration factor based on the voltage and temperature of the battery is determined (e.g. pre-determined from a lookup table stored in memory of the battery management system) according to a preferred embodiment as shown in TABLE 2:
The acceleration factor based on the state of charge of the battery is also determined (e.g. from a lookup table) according to a preferred embodiment as shown in TABLE 3:
The amount of life or time lost from the battery during use is obtained by multiplying the time the battery was at the voltage and temperature (from TABLE 1) by the acceleration factor based factor voltage and temperature (from TABLE 2) and dividing by the acceleration factor based on the state of charge of the battery (from TABLE 3) as shown in TABLE 4:
The time the battery is at the specified voltage and temperature (adjusted by the acceleration factors) is subtracted from the initial estimate of time the new, fully charged battery will deliver a sufficient amount of power for a sufficient amount of time. Note the battery with parameters listed in TABLE 4 is used for 3.5 hours, but 37.2 hours are predicted to be lost from the battery (due to the acceleration factors).
The steps for predicting whether a battery may deliver a sufficient amount of power for a sufficient amount of time is shown in TABLES 5-7 according to an alternative embodiment. The cycling of the battery during discharge is continuously monitored during use of the battery in a vehicle according to a preferred embodiment. The battery is cycled the following amounts as shown in TABLE 5:
The acceleration factor based on the cycling of the battery is determined (e.g. from a lookup table) according to a preferred embodiment) as shown in TABLE 6:
The amount of cycling (from TABLE 5) is adjusted by the acceleration factor based on cycling (from TABLE 6) for each period of use of the battery as shown in TABLE 7:
The sum of the adjusted cycling counts is subtracted from the initial estimate of the number of cycling counts of the new, fully charged battery.
Referring to
During period 74a (about time 0.0 seconds) the open circuit voltage of the battery is about 12.6 V. During period 704b (about time 0.01 seconds) a relatively large drop from the voltage of the battery occurs (to about 9.0 V). This drop corresponds to the connection of the starter to the battery and a resulting initial high current draw by the starter. During period 74c (about time 0.01 to 0.05 seconds) the voltage of the battery recovers to about 11.1 V.
Referring further to
Referring further to
Referring further to
A routine 80 for predicting whether a battery may deliver a sufficient amount of power for a sufficient amount of time (based on a weak crank of the engine) is shown in
The monitored drop in voltage of the battery from open circuit voltage to the voltage of the ripple interval may be adjusted due to the temperature of the battery according to an alternative embodiment. Without intending to be limited to any particular theory, it is believed that the drop in voltage of the battery from open circuit voltage to the voltage of the ripple interval may increase as temperature decreases. The drop in voltage of the battery from open circuit voltage to the voltage of the ripple interval at various temperatures is shown in
Referring further to
Referring further to
Referring further to
Referring further to
Referring further to
According to a particularly preferred embodiment, routine 80 is run after routine 50 makes a determination that there is relatively little life remaining in the battery (e.g. 10 percent life remaining, about 330 days of life remaining, more than 1000 life cycling counts used by the battery, etc.). The pre-determined values of routine 80 may be adjusted according to the amount of life remaining in the battery as determined by routine 50 according to an alternative embodiment.
The input signals (or combination of input signals) may be representative of conditions or states of the battery system such as voltage of the battery, current drawn by loads connected to the battery, resistance of the battery, temperature of the battery, time, etc. according to any preferred or alternative embodiments. The input signals may also relate to a characteristic of the battery (such as model number, purchase date, installation date, size, capacity, cold cranking capability rating, reserve capacity rating, etc.) according to any preferred or alternative embodiment. The range of the pre-determined values that are compared to the input signals by the battery management system may be preprogrammed or determined during operation, use, testing, etc. of the vehicle according to any preferred or alternative embodiments. The range of the pre-determined values may be adjusted or calibrated over time according to any preferred or alternative embodiments. The “other devices” for providing inputs to the battery management system may comprise an input device such as a keyboard, display (e.g. touch screen), etc. according to alternative embodiments. The other devices may include a “remote connection” to the battery management system such as a wireless device (e.g. HomeLink™ wireless control system, key fob, cellular or digital device, etc.) communicated by a variety of methods and protocols (e.g. infrared, radio frequency, Bluetooth, Wide Application Protocol, etc.) according to alternative embodiments. The “other devices” may comprise a magnetically coupled communication port such as a Manual Swipe Magnetic Card Low-Co Reader/Writer model no. RS-232 commercially available from Uniform Industrial Corp., Fremont, Calif., USA according to a particularly preferred embodiment.
The battery management system may comprise a computing device, microprocessor, controller or programmable logic controller (PLC) for implementing a control program, and which provides output signals based on input signals provided by a sensor or that are otherwise acquired. Any suitable computing device of any type may be included in the battery management system according to alternative embodiments. For example, computing devices of a type that may comprise a microprocessor, microcomputer or programmable digital processor, with associated software, operating systems and/or any other associated programs to implement the control program may be employed. The controller and its associated control program may be implemented in hardware, software or a combination thereof, or in a central program implemented in any of a variety of forms according to alternative embodiments. A single control system may regulate the controller for the battery management system and the controller for the vehicle according to an alternative embodiment.
It is important to note that the use of the term battery “management” or “battery management system” is not intended as a term of limitation insofar as any function relating to the battery, including monitoring, charging, discharging, recharging, conditioning, connecting, disconnecting, reconnecting, etc., is intended to be within the scope of the term.
It is important to note that the construction and arrangement of the elements of the battery monitoring system as shown in the preferred and other exemplary embodiments is illustrative only. Although only a few embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. For example, the battery management system may be installed directly on the battery or otherwise electrically connected to the battery according to alternative embodiments. Accordingly, all such modifications are intended to be included within the scope of the present invention as defined in the appended claims. The input signals may be representative of the current drawn from the battery according to an alternative embodiment. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the present invention as expressed in the appended claims.
This application is a continuation under 35 U.S.C. § 120 of U.S. patent application Ser. No. 10/313,983 titled “Battery Monitoring System” filed on Dec. 6, 2002, now U.S. Pat. No. 6,727,708 which claims the benefit of priority as available under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 60/337,183 titled “Battery Monitoring System and Method” filed Dec. 6, 2001. The disclosures of the following patent applications are hereby incorporated by reference in their entirety: U.S. patent application Ser. No. 10/313,983 titled “Battery Monitoring System” filed on Dec. 6, 2002 and U.S. Provisional Patent Application No. 60/337,183 titled “Battery Monitoring System and Method” filed Dec. 6, 2001.
Number | Name | Date | Kind |
---|---|---|---|
3906329 | Bader | Sep 1975 | A |
4153867 | Jungfer et al. | May 1979 | A |
4193025 | Frailing et al. | Mar 1980 | A |
4207611 | Gordon | Jun 1980 | A |
4322685 | Frailing et al. | Mar 1982 | A |
4595880 | Patil | Jun 1986 | A |
4642600 | Gummelt et al. | Feb 1987 | A |
4659977 | Kissel et al. | Apr 1987 | A |
4665370 | Holland | May 1987 | A |
4719427 | Morishita et al. | Jan 1988 | A |
4816736 | Dougherty et al. | Mar 1989 | A |
4876513 | Brilmyer et al. | Oct 1989 | A |
4888716 | Ueno | Dec 1989 | A |
4937528 | Palanisamy | Jun 1990 | A |
4943777 | Nakamura et al. | Jul 1990 | A |
4952861 | Horn | Aug 1990 | A |
5002840 | Klebenow et al. | Mar 1991 | A |
5032825 | Kuznicki | Jul 1991 | A |
5055656 | Farah et al. | Oct 1991 | A |
5079716 | Lenhardt et al. | Jan 1992 | A |
5130699 | Reher et al. | Jul 1992 | A |
5159272 | Rao et al. | Oct 1992 | A |
5162164 | Dougherty et al. | Nov 1992 | A |
5204610 | Pierson et al. | Apr 1993 | A |
5223351 | Wruck | Jun 1993 | A |
5280231 | Kato et al. | Jan 1994 | A |
5281919 | Palanisamy | Jan 1994 | A |
5316868 | Dougherty et al. | May 1994 | A |
5321227 | Fuchs et al. | Jun 1994 | A |
5349535 | Gupta | Sep 1994 | A |
5352968 | Reni et al. | Oct 1994 | A |
5381096 | Hirzel | Jan 1995 | A |
5394089 | Clegg | Feb 1995 | A |
5404129 | Novak et al. | Apr 1995 | A |
5412323 | Kato et al. | May 1995 | A |
5416402 | Reher et al. | May 1995 | A |
5428560 | Leon et al. | Jun 1995 | A |
5439577 | Weres et al. | Aug 1995 | A |
5488283 | Dougherty et al. | Jan 1996 | A |
5549984 | Dougherty | Aug 1996 | A |
5552642 | Dougherty et al. | Sep 1996 | A |
5563496 | McClure | Oct 1996 | A |
5572136 | Champlin | Nov 1996 | A |
5578915 | Crouch, Jr. et al. | Nov 1996 | A |
5656915 | Eaves | Aug 1997 | A |
5680050 | Kawai et al. | Oct 1997 | A |
5698965 | York | Dec 1997 | A |
5721688 | Bramwell | Feb 1998 | A |
5744936 | Kawakami | Apr 1998 | A |
5744963 | Arai et al. | Apr 1998 | A |
5761072 | Bardsley, Jr. et al. | Jun 1998 | A |
5773977 | Dougherty | Jun 1998 | A |
5808367 | Akagi et al. | Sep 1998 | A |
5808445 | Aylor et al. | Sep 1998 | A |
5818116 | Nakae et al. | Oct 1998 | A |
5818333 | Yaffe et al. | Oct 1998 | A |
5896023 | Richter | Apr 1999 | A |
5898292 | Takemoto et al. | Apr 1999 | A |
5936383 | Ng et al. | Aug 1999 | A |
5955869 | Rathmann | Sep 1999 | A |
5965954 | Johnson et al. | Oct 1999 | A |
5977654 | Johnson et al. | Nov 1999 | A |
5990660 | Meissner | Nov 1999 | A |
6016047 | Notten et al. | Jan 2000 | A |
6037749 | Parsonage | Mar 2000 | A |
6037777 | Champlin | Mar 2000 | A |
6057666 | Dougherty et al. | May 2000 | A |
6087808 | Pritchard | Jul 2000 | A |
6091325 | Zur et al. | Jul 2000 | A |
6118252 | Richter | Sep 2000 | A |
6118275 | Yoon et al. | Sep 2000 | A |
6144185 | Dougherty et al. | Nov 2000 | A |
6160382 | Yoon et al. | Dec 2000 | A |
6222341 | Dougherty et al. | Apr 2001 | B1 |
6268712 | Laig-Horstebrock et al. | Jul 2001 | B1 |
6271642 | Dougherty et al. | Aug 2001 | B1 |
6296593 | Gotou et al. | Oct 2001 | B1 |
6300763 | Kwok | Oct 2001 | B1 |
6304059 | Chalasani et al. | Oct 2001 | B1 |
6331762 | Bertness | Dec 2001 | B1 |
6369578 | Crouch, Jr. et al. | Apr 2002 | B1 |
6388421 | Abe | May 2002 | B1 |
6388450 | Richter et al. | May 2002 | B1 |
6392389 | Kohler | May 2002 | B1 |
6392414 | Bertness | May 2002 | B1 |
6392415 | Laig-Horstebrock et al. | May 2002 | B1 |
6417668 | Howard et al. | Jul 2002 | B1 |
6424157 | Gollomp et al. | Jul 2002 | B1 |
6441585 | Bertness | Aug 2002 | B1 |
6445158 | Bertness et al. | Sep 2002 | B1 |
6452361 | Dougherty et al. | Sep 2002 | B1 |
6472875 | Meyer | Oct 2002 | B1 |
6495990 | Champlin | Dec 2002 | B1 |
6507194 | Suzuki | Jan 2003 | B1 |
6515452 | Choo | Feb 2003 | B1 |
6515456 | Mixon | Feb 2003 | B1 |
6522148 | Ochiai et al. | Feb 2003 | B1 |
6534992 | Meissner et al. | Mar 2003 | B1 |
6556019 | Bertness | Apr 2003 | B1 |
6600237 | Meissner | Jul 2003 | B1 |
6600293 | Kikuchi | Jul 2003 | B1 |
6608482 | Sakai et al. | Aug 2003 | B1 |
6653818 | Laig-Horstebrock et al. | Nov 2003 | B1 |
20020008495 | Dougherty et al. | Jan 2002 | A1 |
20020026252 | Wruck et al. | Feb 2002 | A1 |
20020031700 | Wruck et al. | Mar 2002 | A1 |
20030047366 | Andrew et al. | Mar 2003 | A1 |
20030082440 | Mrotek et al. | May 2003 | A1 |
20030142228 | Flach et al. | Jul 2003 | A1 |
20030236656 | Dougherty | Dec 2003 | A1 |
20040021468 | Dougherty et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
22 42 410 | Mar 1973 | DE |
2 242 510 | Apr 1974 | DE |
25 11 426 | Sep 1975 | DE |
33 34 128 | Apr 1985 | DE |
37 12 629 | Oct 1987 | DE |
38 08 559 | Sep 1989 | DE |
39 01 680 | Mar 1990 | DE |
40 07 883 | Sep 1991 | DE |
38 82 374 | Oct 1993 | DE |
44 14 134 | Nov 1994 | DE |
43 39 568 | May 1995 | DE |
689 24 169 | Mar 1996 | DE |
195 40 827 | May 1996 | DE |
195 43 874 | May 1996 | DE |
197 50 309 | May 1999 | DE |
691 31 276 | Dec 1999 | DE |
198 47 648 | Apr 2000 | DE |
694 23 918 | Aug 2000 | DE |
199 60 761 | May 2001 | DE |
93 21 638 | Aug 2001 | DE |
100 21 161 | Oct 2001 | DE |
699 00 638 | Aug 2002 | DE |
0 516 336 | Feb 1992 | EP |
199 52 693 | May 2001 | EP |
1 116 958 | Jul 2001 | EP |
1 120 641 | Aug 2001 | EP |
WO 9715839 | May 1997 | WO |
WO 99 17128 | Apr 1999 | WO |
WO 99 66340 | Dec 1999 | WO |
WO 0004620 | Jan 2000 | WO |
WO 01 15023 | Mar 2001 | WO |
WO 03001224 | Jan 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040189257 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60337183 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10313983 | Dec 2002 | US |
Child | 10781567 | US |